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RECOGNITION ALGORITM FOR P4-TIDY GRAPHS
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Abstract. In this article we give a characterization of P4-tidy
graphs. We also give recognition algorithm for P4-tidy graphs, com-
parable to existent ones as execution time. Finally, we determine the
combinatorial optimization number in efficient time for P4-tidy graphs.
We show that for P4-tidy graphs clique problem is polynomial time.
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1. Introduction

Throughout this paper, G = (V,E) is a connected, finite and undi-
rected graph [1], without loops and multiple edges, having V = V (G)
as the vertex set and E = E(G) as the set of edges. G is the comple-
ment of G. If U ⊆ V , by G(U) (or [U ]G) we denote the subgraph of G
induced by U . By G−X we mean the subgraph G(V −X), whenever
X ⊆ V , but we simply write G − v, when X = {v}. If e = xy is
an edge of a graph G, then x and y are adjacent, while x and e are
incident, as are y and e. If xy ∈ E, we also use x ∼ y, and x ̸∼ y
whenever x, y are not adjacent in G.
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If A,B ⊂ V are disjoint and ab ∈ E for every a ∈ A and b ∈ B, we
say that A,B are totally adjacent and we denote by A ∼ B, while by
A ̸∼ B we mean that no edge of G joins some vertex of A to a vertex
from B and, in this case, we say A and B are totally non-adjacent.

The neighborhood of the vertex v ∈ V is the set NG(v) = {u ∈
V : uv ∈ E}, while NG[v] = NG(v) ∪ {v}; we denote N(v) and N [v],
when G appears clearly from the context. The degree of v in G is
dG(v) = |NG(v)|. The neighborhood of the vertex v in the complement
of G will be denoted by N(v).

The neighborhood of S ⊂ V is the set N(S) = ∪v∈SN(v) − S and
N [S] = S∪N(S). A graph is complete if every pair of distinct vertices
is adjacent.

By Pn, Cn, Kn we mean a chordless path on n ≥ 3 vertices, a
chordless cycle on n ≥ 3 vertices, and a complete graph on n ≥ 1
vertices, respectively.

Let F denote a family of graphs. A graph G is called F -free if none
of its subgraphs are in F .

The Zykov sum of the graphs G1, G2 is the graph G = G1 + G2

having:

V (G) = V (G1) ∪ V (G2),
E(G) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2)}.

The chromatic number of a graph G (χ(G)) is the least number of
colors it takes to color its vertices so that adjacent vertices have differ-
ent colors. The stability number α(G) of a graph G is the cardinality
of the largest stable set. Recall that a stable set of G is a subset of
the vertices such that no two of them are connected by an edge. The
clique number of a graph G is the number of vertices in a maximum
clique of G, denoted ω(G).

A graph G is said to be perfect if, for each induced subgraph S
of G, the chromatic number of S is equal to the clique number of S.
A graph G is a Berge graph if neither G nor its complement has an
odd-length induced cycle of length 5 or more.

2. The weak decomposition of a graph

The notion of weak decomposition and the study of its properties
allow us to obtain several important it follows such as: characterization
of cographs, K1,3-free graphs, {P4, C4}-free and paw-free graphs.

Definition 1. [7], [8] A set A ⊂ V (G) is called a weak set of the
graph G if NG(A) ̸= V (G)−A and G(A) is connected. If A is a weak
set, maximal with respect to set inclusion, then G(A) is called a weak
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component. For simplicity, the weak component G(A) will be denoted
with A.

Definition 2. [7], [8] Let G = (V,E) be a connected and non-
complete graph. If A is a weak set, then the partition {A,N(A), V −
A ∪N(A)} is called a weak decomposition of G with respect to A.

Below we recall a characterization of the weak decomposition of a
graph.

The name of weak component is justified by the following result.
Theorem 1. [7], [8] Every connected and non-complete

graph G=(V,E) admits a weak component A such that G(V-
A)=G(N(A))+G(N(A)).

Theorem 2. [3] Let G = (V,E) be a connected and non-complete
graph and A ⊂ V . Then A is a weak component of G if and only if
G(A) is connected and N(A) ∼ N(A).

The next result, that follows from Theorem 2, ensures the existence
of a weak decomposition in a connected and non-complete graph.

Corollary 1. If G = (V,E) is a connected and non-complete graph,
then V admits a weak decomposition (A,B,C), such that G(A) is a
weak component and G(V − A) = G(B) +G(C).

Theorem 2 provides an O(n + m) algorithm for building a weak
decomposition for a non-complete and connected graph.

Algorithm for the weak decomposition of a graph [7]
Input: A connected graph with at least two nonadjacent vertices, G =
(V,E).
Output: A partition V = (A,N,R) such that G(A) is connected,
N = N(A), A ̸∼ R = N(A).
begin

A := any set of vertices such that A ∪N(A) ̸= V
N := N(A)
R := V − A ∪N(A)
while (∃n ∈ N , ∃r ∈ R such that nr ̸∈ E ) do

begin
A := A ∪ {n}
N := (N − {n}) ∪ (N(n) ∩R)
R := R− (N(n) ∩R)

end
end
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3. P4-tidy graphs

A cograph is a graph that does not contain P4 as an induced sub-
graph. Several generalizations of cographs have been defined in the
literature, such as P4-sparse, P4-lite, P4-extendible and P4-reducible
graphs. A graph class generalizing all of them is the class of P4-tidy
graphs.

We say that a graph is P4-tidy if, for every P4 induced by {u, v, x, y},
there exists at most one vertex z such that {u, v, x, y, z} induces more
than one P4.

The P4-tidy graphs is defined by Rusu [6].
Giakoumakis and Fouquet in [4] propose linear algorithms for op-

timization problems on P4-tidy graphs, as clique number, stability
number and chromatic number.

We shows in [9] (see [2]) that for P4-tidy graphs: clique problem is
polynomial time.

A spider is a graph whose vertex set has a partition (T,C, S), where
C = {c1, ..., ck} and S = {s1, ..., sk} for k ≥ 2 are respectively a clique
and a stable set; si is adjacent to cj if and only if i = j (a thin spider),
or si is adjacent to cj if and only if i ̸= j (a thick spider); and every
vertex of T is adjacent to each vertex of C and non-adjacent to each
vertex of S.

A quasi-spider is a graph obtained from a spider (T,C, S) by re-
placing at most one vertex from C ∪ S by a K2 (the complete graph
on two vertices) or a K2 (the complement of K2).

A graph gem and the next graph written by means of degrees
(2,2,3,3,4) are isomorphic. A graph bull and the next graph written
by means of degrees (1,1,2,3,3) are isomorphic.

A graph P and the next graph written by means of degrees
(1,2,2,2,3) are isomorphic.

A graph house=P 5 and a graph fork and the next graph written
by means of degrees (1,1,1,2,3) are isomorphic.

Theorem 3 [5]. A graph G is a P4-tidy graph if and only if exactly
one of the following holds:
(a) G is the union or the join of two P4-tidy graphs;
(b) G is a quasi-spider (T,C, S) and G[T] is a P4-tidy graph;
(c) G is isomorphic to P5, P5, C5, K1 or V (G) = ∅.

A new characterization of P4-tidy graphs, using weak decomposi-
tion, is given below.
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Theorem 4. Let G = (V,E) a connected, non-complete and
{gem, bull}-free graph with |V (G)| ≥ 5 and (A,N,R) a weak decom-
position with G(A) as the weak component. G = (V,E) is P4-tidy if
and only if:
i) A ∼ N ∼ R;
ii) G(A), G(N), G(R) are P4-tidy.

Proof. I) Let G be P4-tidy. We show that i) and ii) hold. From the
propriety of heredity of P4-tidy graphs, it follows ii). From the weak
decomposition with G(A) as weak component, N ∼ R hold. We show
that A ∼ N hold.

We assume that ∃n ∈ N , ∃b ∈ A, such that nb ̸∈ E . From
N = NG(A), for n ∈ N , ∃a ∈ A such that na ∈ E . Because G(A)
is connected, for a, b ∈ A, ∃Pab ⊆ G(A) . There exists a first vertex,
from a to b, w ∈ V (Pab), with nw ̸∈ E . Let v be on Pab, the vertex
before it w. Then nv ∈ E, wv ∈ E. Let ∀r ∈ R be.

Case1. We suppose that a = v and b = w. Because |V (G)| ≥ 5
there is at least a vertex either in R (r′ ∈ R) (and then there exists
either P (if rr′ ∈ E) or fork (if rr′ ̸∈ E) as induced subgraph in
G) or in N (n′ ∈ N) (and then there exists either (P5 or C5 or P or
P5, if nn

′ ̸∈ E) or (P or house or co − fork or gem, if nn′ ∈ E) as
induced subgraph in G) or in A (a′ ∈ A) (and then there exists either
(P5 or fork or P ) (if a′n ̸∈ E) or (fork or P or bull or co− fork) (if
a′n ∈ E)).

Case2. We suppose that a = v and b ̸= w. Because G(A) is
connected, ∃Pab ⊆ G(A), then there is P5 as induced subgraph in G.

Case3. We suppose that a ̸= v and b ̸= w. Then there is (either P5

or fork or P or bull) as induced subgraph in G.
Case4. We suppose that a ̸= v and b = w. Then there is (either

bull or fork) as induced subgraph in G.
Other situations not exist.
II) Let conditions i) and ii) be fulfilled. We show that G is P4-sparse.

From ii) it follows that G(A), G(N), G(R), G(A ∪N) and G(N ∪R)
are P4-sparse graphs. Because G(A ∪ R) is not connected it follows
that G(A ∪R) is P4-sparse.

However, we suppose that there is X ⊆ V with |X| = 5 so that
either G(X) = C5 or G(X) = P or G(X) = P5 or G(X) = fork or
G(X) = P or G(X) = P5 or G(X) = co− fork.

If |X ∩R| = 1 then A ∼ N not holds.
If |X ∩ R|=2 (r1, r2 ∈ R) then either (|X ∩ N |=1 and |X ∩ A|=2)

or (|X ∩ N |=2 and |X ∩ A|=1). For |X ∩ N |=1 and |X ∩ A|=2,
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∃n ∈ X ∩ N and ∃a1, a2 ∈ A ∩ X with r1n, r2n, a1n, a2n ∈ E. For
|X ∩ N |=2 and |X ∩ A|=1, ∃n1, n2 ∈ N ∩ X, ∃a ∈ A ∩ X with
n1r1, n1r2, n2r1, n2r2, n1a, n2a ∈ E. The above statements are not
possible for G(X) = C5, G(X) = P5, G(X) = P5, while the above
statements are possible for G(X) = P , G(X) = fork, G(X) = P ,
G(X) = co− fork, and A ∼ N is not hold.

If |X ∩ R|=3 then, because R ∼ N , ∃r1, r2, r3 ∈ X ∩ R and either
∃n ∈ X ∩ N with r1n, r2n, r3n ∈ E (for G(X) = P , G(X) = fork,
G(X) = P or G(X) = P5 or G(X) = co − fork, and A ∼ N is
not holds) or ̸ ∃n ∈ X ∩ N with r1n, r2n, r3n ∈ E (for G(X) = C5,
G(X) = P5).
|X∩R| ∈ {4, 5} it is not possible, because X∩A ̸= ∅ and X∩N ̸= ∅.
Other situations not exist.

The recognition algorithm for P4-tidy, {gem, bull}-free graphs
Input: A connected, non-complete graph G = (V,E).
Output: An answer to the question: Is G P4-tidy ?
begin
1. LG ← {G}
2. while LG ̸= ∅ do
3. extracts an element H from LG

4. determine the weak decomposition (A,N,R) with [A]H weak
component
5. if (∃a ∈ A, ∃n ∈ N such that an ̸∈ E) then

G is not P4-tidy else
6. introduce in LG subgraphs G(A), G(N), G(R) incomplete and
of at least order 4
7. Return: G is P4-tidy
8. end
EndRecognition

The complexity of the algorithm
Because step 4 takes O(n+m) time, and the other steps of the cycle

while take less time, it results that the algorithm is executed in an
overall time of O(n(n+m)).

Corollary 2. Let G = (V,E) a connected and non-complete graph.
Let (A,N,R) be a weak decomposition, with G(A) as weak component.
If G = (V,E) is P4-tidy, {gem, bull}-free then:
ω(G) = ω(G(N)) +max{ω(G(A)), ω(G(R))};
α(G) = max{α(G(A)) + α(G(R)), α(G(N))}.



RECOGNITION ALGORITM FOR P4-TIDY GRAPHS 65

We notice that the determination of α and ω, takes O(n(n + m))
time.

4. Conclusions

We give a characterization of P4-tidy graphs using weak decompo-
sition. We also give recognition algorithms for P4-tidy graphs, com-
parable to the existent ones as execution time. Finally, we determine
the combinatorial optimization numbers in efficient time.
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