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Abstract. In this note we characterize a weak Orlicz-Poincaré
inequality through the Hölder continuity of locally integrable func-
tions possessing upper gradients in the corresponding Orlicz space,
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are proved in the setting of doubling metric measure spaces.
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1. Introduction

Poincaré inequality is an essential tool in the extensions to met-
ric measure spaces of the theory of Sobolev spaces [11], [22], [9], of
quasiconformal theory [16], [15], of nonlinear potential theory [3], in
the study of differentiability of Lipschitz functions on metric measure
spaces [4].
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Orlicz-Poincaré inequalities have been introduced by Tuominen [23]
in the setting of metric measure space. Orlicz-Poincaré inequalities
are closely related to (1, p)−Poincaré inequalities with 1 ≤ p <
∞. An Orlicz-Poincaré defined via a Young function Φ, called a
(1,Φ)−Poincaré inequality, is a (1, p)−Poincaré inequality if Φ (t) =
tp. Moreover, every pair of functions (u, g) satisfying a (1,Φ)−Orlicz-
Poincaré with Φ doubling also satisfies a (1, p)−Poincaré inequality,
provided that log2CΦ ≤ p < ∞, where CΦ denotes the doubling con-
stant of Φ. A generalization of Orlicz-Poincaré inequalities in which
the Orlicz space is replaced by a Banach function space has been in-
troduced in [20].

Orlicz-Poincaré inequalities have self-improving properties as proved
by Heikkinen [12] , that generalized results proved by Cianchi in the
Euclidean setting and by Haj lasz and Koskela [11] for (1, p)−Poincaré
inequalities on metric spaces. Heikkinen also gave a characterization
of Orlicz-Sobolev spaces by means of generalized Orlicz-Poincaré in-
equalities [13]. J. Björn characterized Orlicz–Poincaré inequalities on
doubling metric measure spaces by means of pointwise inequalities in-
volving maximal functions of the gradient [2]. Orlicz-Poincaré inequal-
ities on metric measure spaces have applications to nonlinear potential
theory [19]. Geometric consequences of (1, p)−Poincaré inequalities,
even in the case p =∞ have been investigated in [6], [7], [8].

Very recently, E. Durand-Cartagena, J. Jaramillo and N. Shanmu-
galingam [8] established the following result, providing two charac-
terizations of p−Poincaré inequality in a complete Ahlfors Q−regular

space with p > Q, one in terms of the locally
(

1− Q
p

)
−Hölder con-

tinuity of the functions in N1,p (X) and the other in terms of the
p−modulus of quasiconvex curves connecting pairs of points in the
space.

Theorem 1. Let X be a complete Ahlfors Q−regular space and p > Q.
Then the following conditions are equivalent:

(1) X supports a weak p−Poincaré inequality.
(2) There are constants C > 0, τ ≥ 1 such that every u ∈ N1,p (X)

is
(

1− Q
p

)
−Hölder continuous and for all x, y ∈ X we have

|u(x)− u(y)| ≤ C ‖gu‖Lp(B(x,τd(x,y))) d (x, y)1−Q
p ,

where gu is the minimal p− weak upper gradient of u.
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(3) There is a constant C ≥ 1 such that, for every pair of distinct
points x, y ∈ X,

Modp (Γ ({x} , {y} , C)) ≥ 1

Cd (x, y)p−Q
,

where Γ ({x} , {y} , C) denotes the family of C−quasiconvex curves
connecting x to y.

In this note we give a characterization of a weak Orlicz-Poincaré
inequality in a doubling metric measure space through the Hölder
continuity of locally integrable functions possesing upper gradients in
the corresponding Orlicz space, under some growth assumptions on
the Young function.

2. Preliminaries

Let (X, d, µ) be a metric measure space. We will denote by B (x, r)
the open ball centered at x ∈ X of radius r > 0. If B = B (x, r) is
a ball given with center and radius and σ > 0, we denote by σB the
ball B (x, σr) with the same center and the radius multiplied by σ.
Note that the pair center-radius of a ball in a metric space may be not
unique.

The measure µ is called doubling if there exists a constant
Cµ ≥ 1 so that µ (B (x, 2r)) ≤ Cµµ (B (x, r)) for all x ∈ X and all
r > 0. Doubling measures play an important role in harmonic analysis,
through the notion of space of homogeneous type [5]. The following
lower bound estimate holds for a doubling measure

µ (B (x, r))

µ (B (x0, r0))
≥ Cb

(
r

r0

)Q
,

where Q = log2Cµ, for every ball B (x0, r0), whenever x ∈ B (x0, r0)
and 0 < r ≤ r0. If µ satisfies the above lower bound estimate for some
Q > 0, then the constant Q is called a homogeneous dimension of the
metric measure space (X, d, µ).

A useful special case of doubling metric measures spaces is that of
Ahlfors regular spaces. Recall that the metric measure space (X, d, µ)
is said to be Q−Ahlfors regular, where Q > 0, if there is a constant
CA ≥ 1 so that

(1)
1

CA
rQ ≤ µ(B(x, r)) ≤ CAr

Q
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for every ball B(x, r) in X with 0 < r < diam (X). Note that for an
Q−Ahlfors regular space a homogeneous dimension is Q.

Given a locally integrable function u on X and E ⊂ X a measurable
set of positive finite measure, we denote the integral mean of u on E
by uE, i. e. uE = 1

µ(E)

∫
E

u dµ.

In first order calculus on metric spaces, the notion of upper gradi-
ent, introduced by Heinonen and Koskela in [16], is a substitute for
the length of the gradient of a smooth function. A Borel measurable
function g : X → [0,∞] is an upper gradient of a real-valued function
u on X if

(2) |u(γ (a))− u(γ (b))| ≤
∫
γ

g ds

for every non-constant rectifiable curve γ : [a, b] → X. We will recall
later the more general notion of weak upper gradient on a metric
measure space, with respect to a Young function.

In applications of Orlicz spaces, some growth conditions for the
corresponding Young functions are very useful. A Young function
Φ : [0,∞)→ [0,∞] is said to be doubling or to satisfy a ∆2−condition
if there is a constant C ≥ 1 such that Φ(2t) ≤ CΦ(t) for all t ≥ 0;

in this case we will denote CΦ = sup
t>0

Φ(2t)
Φ(t)

and will call CΦ the dou-

bling constant of Φ. A doubling Young function is real-valued, strictly
increasing and continuous. The inverse of a strictly increasing Young
function Φ : [0,∞)→ [0,∞) is an increasing concave function which is
subadditive, hence is doubling with a doubling constant 1 ≤ CΦ−1 ≤ 2
[23, Lemma 2.9]. By [23, Lemma 2.7], iterating the ∆2−condition
Φ(2t) ≤ CΦΦ(t) for a doubling Young function Φ we get

(3) Φ (λt) ≤ CΦλ
log2 CΦΦ (t) for all λ ≥ 1, t ≥ 0.

We collect some estimates on the growth of the inverse of a doubling
Young function, see [23, Lemma 2.7] and [23, (5.7)].

Lemma 2. Let Φ : [0,∞) → [0,∞) be a doubling Young function,
with a doubling constant CΦ. Then the inverse Φ−1 : [0,∞)→ [0,∞)
satisfies for all t ≥ 0 the inequalities

(4) Φ−1 (λt) ≤ 2λlog2 CΦ−1 Φ−1 (t) if λ ≥ 1

and

(5) Φ−1 (λt) ≤ 2λ
1

log2 CΦ Φ−1 (t) if 0 ≤ λ ≤ 1.
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Proof. The first inequality follows from condition (3) applied to Φ−1,
since CΦ−1 ≤ 2.

Let t ≥ 0 and 0 ≤ λ ≤ 1. If t = 0 or λ = 0 inequality (5) obviously
holds. Let t > 0 and 0 < λ ≤ 1. Inequality (3) shows that for all

0 < a ≤ b we have Φ (b) ≤ CΦ

(
b
a

)log2 CΦ Φ (a), hence

a

b
≤ C

1
log2 CΦ
Φ

(
Φ (a)

Φ (b)

) 1
log2 CΦ

.

For a = Φ−1 (λt) and b = Φ−1 (t) the latter inequality implies (5),

since C
1

log2 CΦ
Φ = 2.

Corollary 3. If log2CΦ · log2CΦ/−1 ≤ 1, then

(6) Φ−1 (λt) ≤ C min
(
λ

1
log2 CΦ , λlog2 CΦ−1

)
Φ−1 (t)

for all λ ≥ 0 and t ≥ 0.

Remark 1. In the classical case where Φ (t) = tp with p ≥ 1 one has
log2CΦ = p and log2CΦ−1 = 1

p
, hence log2CΦ · log2CΦ/−1 = 1.

Let t > 0. We have

2t = Φ
(
Φ−1 (2t)

)
≤ Φ

(
CΦ−1Φ−1 (t)

)
≤ CΦ (CΦ−1)log2 CΦ t,

We applied (3) to get the second inequality. Then 2 ≤ CΦ (CΦ−1)log2 CΦ ,
which implies log2CΦ (1 + log2CΦ−1) ≥ 1.

It would be interesting to find more examples of Young functions
satisfying log2CΦ ·log2CΦ/−1 ≤ 1, besides the classical case Φ (t) = Ctp

with 1 ≤ p <∞.

Let (X,A, µ) be a measure space with µ a complete, σ−finite mea-
sure and let Φ : [0,∞) → [0,∞] be a Young function. The Or-
licz space LΦ(X) is the set of all real-valued measurable functions
u in X such that

∫
X

Φ(λ |u|)dµ < ∞ for some λ > 0. We identify

any two functions that agree µ−a.e. LΦ(X) is a vector space and

‖u‖LΦ(X) = inf

{
k > 0 :

∫
X

Φ( |u|
k

)dµ ≤ 1

}
defines a norm on LΦ(X),

called the Luxemburg norm.

Let Γ be a family of curves in the metric measure space (X, d, µ).
An admissible metric for Γ is a nonnegative Borel function ρ on X such
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that
∫
γ

ρds ≥ 1 for all locally rectifiable curves γ ∈ Γ. The Φ-modulus

of the family Γ is

MΦ (Γ) = inf ‖ρ‖LΦ(X) ,

where the infimum is taken over all admissible metrics for Γ. Note
that for Φ (t) = tp with 1 ≤ p < ∞ the Φ-modulus does not coincide

with the usual p−modulus Modp, since MΦ (Γ) = (Modp (Γ))1/p, but
p−modulus and Φ-modulus are both outer measures on the set of
curves in X.

A Borel nonnegative function g on X is a Φ−weak upper gradient
of real-valued function u on X if the inequality (2) from the definition
of an upper gradient holds for all non-constant rectifiable curve
γ : [a, b]→ X except for a curve family of zero Φ−modulus.

Tuominen [23] introduced the Orlicz-Sobolev space N1,Φ (X). The

collection Ñ1,Φ (X) of all real-valued functions u ∈ LΦ (X) possesing
Φ−weak upper gradients in LΦ (X) is a vector space. The application

defined on Ñ1,Φ (X) by ‖u‖1,Φ = ‖u‖LΦ(X) + inf ‖g‖LΦ(X), where the

infimum is taken over all Φ−weak upper gradients g ∈ LΦ (X) of u

is a seminorm. Setting u ∼ v if ‖u− v‖1,Φ = 0, for u, v ∈ Ñ1,Φ (X),

we obtain an equivalence relation on Ñ1,Φ (X). The set of equivalence

classes of functions u ∈ Ñ1,Φ (X) is a vector space denoted by N1,Φ (X)
and its norm as a quotient space is defined by ‖u‖N1,Φ(X) = ‖u‖1,Φ.

If Φ (t) = tp with 1 ≤ p < ∞, then N1,Φ (X) = N1,p (X) is the
Newtonian space introduced by Shanmugalingam [22].

The (1,Φ)−Poincaré inequality introduced in [23] is a generalization
of the well-known (1, p)−Poincaré inequality [16], [11]. Let Φ be a
strictly increasing real-valued Young function. It is said that a function
u ∈ L1

loc (X) and a non-negative measurable function g on X satisfy a
weak (1,Φ)−Poincaré inequality if there exist constants CP > 0 and
τ ≥ 1 such that

(7)
1

µ(B)

∫
B

|u− uB| dµ ≤ CP rΦ
−1

 1

µ(τB)

∫
τB

Φ (g) dµ

 .

Moreover, it is said that the metric measure space (X, d, µ) sup-
ports a weak (1,Φ)−Poincaré inequality if the inequality (7) holds for
each pair (u, g) with u ∈ L1

loc (X) and g an upper gradient of u, with
constants CP , τ not depending on (u, g).
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For Φ (t) = tp, 1 ≤ p < ∞, the (1,Φ)−Poincaré inequality is the
(1, p)−Poincaré inequality

(8)
1

µ(B)

∫
B

|u− uB| dµ ≤ CP r

 1

µ(τB)

∫
τB

gpdµ

 1
p

.

Assume that (X, d, µ) supports a weak (1,Φ)−Poincaré inequality
(7) and that Φ satisfies a ∆2−condition. Then replacing CP by CPCΦ

in (7) we obtain an inequality that holds for each pair (u, g0) with
u ∈ L1

loc (X) and g0 a Φ−weak upper gradient of u, as we show in the
following.
There exist a sequence of upper gradients (gn)n≥1 of u such that

lim
n→∞

‖gn − g0‖LΦ(X) = 0, which implies lim
n→∞

∫
τB

Φ (|gn − g0|) dµ = 0

[23, Lemma 4.3]. For each n ≥ 1 the pair (u, g) = (u, gn) satisfies (7).
Since Φ (gn) ≤ CΦ

2
Φ (g0) + CΦ

2
Φ (|gn − g0|) and Φ−1

(
CΦ

2
u+ CΦ

2
v
)
≤

CΦΦ−1 (u) + CΦΦ−1 (v) for all u, v ≥ 0, we get

Φ−1

 1

µ(τB)

∫
τB

Φ (gn) dµ

 ≤ CΦΦ−1

 1

µ(τB)

∫
τB

Φ (g0) dµ


+CΦΦ−1

 1

µ(τB)

∫
τB

Φ (|gn − g0|) dµ

 .

It follows that for all n ≥ 1

1

µ(B)

∫
B

|u− uB| dµ ≤ CPCΦrΦ
−1

 1

µ(τB)

∫
τB

Φ (g0) dµ


+CPCΦΦ−1

 1

µ(τB)

∫
τB

Φ (|gn − g0|) dµ

 .

Letting n tend to infinity we see that (u, g0) satisfies the analogous (7)
with CPCΦ instead CP .

3. The interplay between Orlicz-Poincaré inequality
and Hölder continuity

Let Φ be a Young function satisfying a ∆2-condition. If g ∈ LΦ (X),
then for every measurable set A ⊂ X we have

∫
A

Φ (g) dµ < ∞.
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We denote IΦ (g, A) := Φ−1

(∫
A

Φ (g) dµ

)
, using the convention that

IΦ (g, A) = ∞ if
∫
A

Φ (g) dµ = ∞. If in addition lim
t→∞

Φ(t)
t

= ∞, then

LΦ (X) ⊂ L1
loc (X) [21]. Note that in general IΦ (g, A) and ‖g‖LΦ(A)

are not comparable.
In what follows, we denote p := log2CΦ and q := log2CΦ/−1 .

Theorem 4. Let (X, d, µ) be a metric space with a doubling measure
µ and a homogeneous dimension Q > 1. Let Φ be an Young function
satisfying the ∆2− condition, such that p > Q and q < 1/Q. Then
there exists some constant C > 0 such that for every pair (u, g) satis-
fying a weak Φ−Poincaré inequality (7), where u ∈ L1

loc (X) and g is
a nonnegative measurable function, we have
(9)

|u(x)− u(y)| ≤ C max
(
d (x, y)1−Q

p , d (x, y)1−Qq
)
IΦ (g,B (x, 2τd (x, y)))

for all distinct Lebesgue points x, y ∈ X of u. The constant C depends
only on p, q, on the constants Cµ, Q, CA associated with µ and on the
constants τ , CPI associated with the weak Φ−Poincaré inequality (7).

Proof. Let u ∈ L1
loc (X). Let x, y ∈ X be distinct Lebesgue points of u.

We apply a telescoping argument similar to that from the proof of [22,
Theorem 4.1]. Denoting B0 = B (x, 2d (x, y)) and B1 = B (y, d (x, y)),
define B(−i−1) = 1

2
B(−i) and Bi+1 = 1

2
Bi for all integers i ≥ 1. Then

B(−i) = B (x, 21−id (x, y)) and Bi = B (y, 21−id (x, y)) for all i ≥ 1.
Since x, y are Lebesgue points of u, we have u(x) = lim

i→∞
uB(−i)

and

u(y) = lim
i→∞

uBi
. Then

|u (x)− u (y)| ≤
∞∑

i=−∞

∣∣uBi
− uBi+1

∣∣ .
Recall the following estimate: if B′ ⊂ B ⊂ X are balls, then for

every measure µ which is finite and positive on balls and each u ∈
L1
loc (X) we have

|uB′ − uB| ≤
µ (B)

µ (B′)

 1

µ (B)

∫
B

u dµ

 .

Note that B±(i+1) ⊂ B±i = 2B±(i+1) for all i ≥ 1, while B1 ⊂ B0 ⊂
3B1 ⊂ 22B1. Since µ is doubling, it follows from the above inequality
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that for each i ≥ 1,
∣∣∣uB±(i+1)

− uB±i

∣∣∣ ≤ Cµ

(
1

µ(B±i)

∫
B±i

u dµ

)
and

|uB1 − uB0| ≤ (Cµ)2

(
1

µ(B0)

∫
B0

u dµ

)
. Then

(10)

|u (x)− u (y)| ≤ Cµ

∞∑
i=1

1

µ (B±i)

∫
B±i

u dµ+ (Cµ)2

 1

µ (B0)

∫
B0

u dµ

 .

Since the pair (u, g) satisfies the weak Φ−Poincaré inequality (7), we
have
(11)

1

µ (B±i)

∫
B±i

u dµ ≤ CPI2
1−id (x, y) Φ−1

 1

µ (τB±i)

∫
τB±i

Φ (g) dµ

 .

Our goal is to estimate the last factor from the right hand
side of the above inequality JΦ (g, τB±i), where JΦ (g,B) :=

Φ−1

(
1

µ(B)

∫
B

Φ (g) dµ

)
, in terms of IΦ (g, τB±i). Note that

IΦ (g, τB±i) ≤ IΦ (g, τB0), since Φ (g) is non-negative and Φ−1 is in-
creasing. Let i be a nonnegative integer. By Lemma 2,

JΦ (g, τB±i) ≤ 2µ (τB±i)
−q IΦ (g, τB±i)

if µ (τB±i) ≤ 1, while

JΦ (g, τB±i) ≤ 2µ (τB±i)
−1/p IΦ (g, τB±i)

if µ (τB±i) ≥ 1.
Using the first inequality in (1) these inequalities yield

JΦ (g, τB±i) ≤ 2Cq
Aτ
−qQ (21−id (x, y)

)−qQ
IΦ (g, τB±i)

if µ (τB±i) ≤ 1, respectively

JΦ (g, τB±i) ≤ 2C
1/p
A τ−Q/p

(
21−id (x, y)

)−Q/p
IΦ (g, τB±i)

if µ (τB±i) ≥ 1. Then (11) implies

(12)
1

µ (B±i)

∫
B±i

u dµ ≤ 2CPIM (x, y) IΦ (g, τB±i) ,

where we denoted
M (x, y) = max

(
Cq
Aτ
−qQ (21−id (x, y))

1−qQ
, C

1/p
A τ−Q/p (21−id (x, y))

1−Q/p
)

.
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But

max
(
Cq
Aτ
−qQ (21−id (x, y)

)1−qQ
, C

1/p
A τ−Q/p

(
21−id (x, y)

)1−Q/p
)
≤

C1 max
(
2(1−i)(1−qQ), 2(1−i)(1−Q)/p

)
max

(
d (x, y)1−Q

p , d (x, y)1−Qq
)
,

where
C1 := max

(
Cq
Aτ
−qQ, C

1/p
A τ−Q/p

)
and

max
(
2(1−i)(1−qQ), 2(1−i)(1−Q)/p

)
= max

(
21−qQ, 21−Q/p) for i = 0 and

max
(
2(1−i)(1−qQ), 2(1−i)(1−Q)/p

)
= m(1−i) for i ≥ 1, where

m := min
(
2(1−qQ), 2(1−Q)/p

)
. Note that m > 1, due to our assumptions

p > Q and q < 1/Q, hence
∞∑
i=1

m1−i = m/ (1−m).

From (10), (12) and IΦ (g, τB±i) ≤ IΦ (g, τB0) for i ≥ 0 we get (9)
with

C = 2CµCPIC1

(
2m

1−m
+ Cµ max

(
2(1−qQ), 2(1−Q)/p

))
.

Corollary 5. Consider the assumptions of the above theorem. Sup-
pose that that X supports a weak Φ−Poincaré inequality (7). If pq ≤ 1,
then there exists some constant C > 0 such that for every u ∈ L1

loc (X)
with a Φ− weak upper gradient g we have

|u(x)− u(y)| ≤ C min
(
d (x, y)1−Q

p , d (x, y)1−Qq
)
IΦ (g,B (x, 2τd (x, y)))

for all distinct Lebesgue points x, y ∈ X of u. Here
C = C (p, q, Cµ, Q, CA, τ, CPI).

Proof. Let u ∈ L1
loc (X) and g be a Φ− weak upper gradient of u. Since

X supports a weak Φ−Poincaré inequality, the pair (u, g) satisfies a
weak Φ−Poincaré inequality (7).

We slightly modify the proof of Theorem 4. Taking into account
Corollary 3, we may replace inequality (12) by the stronger inequality

(13)
1

µ (B±i)

∫
B±i

u dµ ≤ 2CPIm (x, y) IΦ (g, τB±i) ,

where
m(x, y) := min

(
Cq
Aτ
−qQ (21−id (x, y))

1−qQ
, C

1/p
A τ−Q/p (21−id (x, y))

1−Q/p
)

.

From (10), (13) and IΦ (g, τB±i) ≤ IΦ (g, τB0) for i ≥ 0 we get

|u(x)− u(y)| ≤ C2d (x, y)1−Qq IΦ (g, τB0)
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and
|u(x)− u(y)| ≤ C3d (x, y)1−Q

p IΦ (g, τB0) ,

where we denoted C2 := 2CµCPIC
q
Aτ
−qQ21−qQ ( 2

21−qQ−1
+ Cµ

)
and

C3 := 2CµCPIC
1/p
A τ−Q/p21−Q/p

(
2

21−Q/p − 1
+ Cµ

)
.

Setting C = max (C2, C3) the claim (5) follows.

Corollary 6. Consider the assumptions of the above theorem. Sup-
pose that that X supports a weak Φ−Poincaré inequality (7), where

lim
t→∞

Φ(t)
t

= ∞. Then for every u ∈ N1,Φ (X) there exist a constant

C (u) > 0 and a continuous representative ũ of u satisfying

|ũ(x)− ũ(y)| ≤ C (u) max
(
d (x, y)1−Q

p , d (x, y)1−Qq
)

for all x, y ∈ X. Moreover, if pq ≤ 1, then every u ∈ N1,Φ (X)
has a representative ũ which is (1−Qq)−Hölder continuous and
(1−Q/p)− Hölder continuous.

Remark 2. The above Corollary generalizes implication (1) ⇒ (2)
from [8, Theorem 5.1].

Remark 3. By [18, Theorem 1], if the pair (u, g) with u ∈ L1
loc (X)

and g ∈ LΦ
loc (X) satisfies a weak Φ−Poincaré inequality, then u has

a representative that is locally (1−Qq)−Hölder continuous, provided
that q < 1/Q. There it was not assumed that p > Q, but the claim is
weaker than that of Theorem 4.

We are looking for a generalization of the implication (2) ⇒ (1)
from [8, Theorem 5.1].

Lemma 7. Let (X, d, µ) be a metric space with a doubling measure µ
satisfying µ (B (x, r)) ≤ CAr

Q for every ball B(x, r) in X with 0 < r <
diam (X), where CA, Q > 0 are constants. Let Φ be an Young function
satisfying the ∆2−condition. Let u ∈ L1

loc (X) and g be a non-negative
measurable function. Assume that there exist some constants α > 0,
λ ≥ 1 and C > 0 such that the following inequality holds, for almost
all x, y ∈ X with x 6= y:

|u(x)− u(y)| ≤ Cd (x, y)α IΦ (g,B (x, λd (x, y))) .

Then for every ball B = B (a, r) ⊂ X we have

1

µ (B)

∫
B

|u− uB| dµ ≤ C1r
α+QqΦ−1

 1

µ (5λB)

∫
5λB

Φ (g) dµ
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if µ (5λB) ≥ 1 and

(14)
1

µ (B)

∫
B

|u− uB| dµ ≤ C2r
α+Q

p Φ−1

 1

µ (5λB)

∫
5λB

Φ (g) dµ


if µ (5λB) ≤ 1. Here C1 = 2α+1C (CA)q and C2 = 2α+1C (CA)1/p.

If in addition pq ≤ 1, then (14) holds for every ball B = B (a, r) ⊂
X.

Proof. Let u ∈ L1
loc (X) with a Φ− weak upper gradient g. Let

B = B (a, r) ⊂ X be a ball. Since

|u (x)− uB| =

∣∣∣∣ 1
µ(B)

∫
B

(u (x)− u (y)) dµ (y)

∣∣∣∣ ≤
1

µ(B)

∫
B

|u(x)− u(y)| dµ (x)

for every x ∈ X, we have

(15)

1

µ (B)

∫
B

|u− uB| dµ ≤
(

1

µ (B)

)2 ∫
B

∫
B

|u(x)− u(y)| dµ (y) dµ (x) .

There exists a null set E ⊂ X such that

|u(x)− u(y)| ≤ Cd (x, y)α IΦ (g,B (x, λd (x, y)))

for all x, y ∈ X\E with x 6= y.
If x, y ∈ B, then

B (x, λd (x, y)) ⊂ (4λ+ 1)B ⊂ 5λB, hence
IΦ (g,B (x, λd (x, y))) ≤ IΦ (g, 5λB). Note that
|u(x)− u(y)| ≤ 2αCrαIΦ (g,B (x, λd (x, y))) for x, y ∈ B \ E.
It follows that
|u(x)− u(y)| ≤ 2αCrαIΦ (g, 5λB) for all x, y ∈ B \ E, hence

(16)(
1

µ (B)

)2 ∫
B

∫
B

|u(x)− u(y)| dµ (y) dµ (x) ≤ 2αCrαIΦ (g, 5λB) .

By (15) and (16) we get

(17)
1

µ (B)

∫
B

|u− uB| dµ ≤ 2αCrαIΦ (g, 5λB) .
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But

IΦ (g, 5λB) = Φ−1

( ∫
5λB

Φ (g) dµ

)
≤

≤ 2 (µ (5λB))s Φ−1

(
1

µ(5λB)

∫
5λB

Φ (g) dµ

)
,

where s = q if µ (5λB) ≥ 1 and s = 1
p

if µ (5λB) ≤ 1.

Using the Ahlfors regularity of µ we obtain

(18) IΦ (g, 5λB) ≤ 2 (CA)s rQsΦ−1

 1

µ (5λB)

∫
5λB

Φ (g) dµ

 ,

where s = q if µ (5λB) ≥ 1 and s = 1
p

if µ (5λB) ≤ 1. If in addition

pq ≤ 1, then for µ (5λB) ≥ 1 we have (µ (5λB))q ≤ (µ (5λB))1/p,
therefore inequality (18) with s = 1

p
holds for every ball B = B (a, r) ⊂

X.
Now (17) and (18) imply the claim.

The following Proposition is a straightforward consequence of
Lemma 7.

Proposition 8. Let (X, d, µ) be a metric space with a doubling mea-
sure µ satisfying µ (B (x, r)) ≤ CAr

Q for every ball B(x, r) in X with
0 < r < diam (X), where CA, Q > 0 are constants. Let Φ be an Young
function satisfying the ∆2− condition, such that p > Q and pq ≤ 1.
Assume that there exist some constants λ ≥ 1 and C > 0 such that
for every u ∈ L1

loc (X) with a Φ− weak upper gradient g the following
inequality holds, for almost all x, y ∈ X with x 6= y:

|u(x)− u(y)| ≤ Cd (x, y)1−Q
p IΦ (g,B (x, λd (x, y))) .

Then X supports a weak Φ−Poincaré inequality.

Proposition 8 partly generalizes the implication (2) ⇒ (1) from [8,
Theorem 5.1]. To obtain a full generalization we would need a result
guaranteeing that a space supporting a Orlicz-Poincaré inequality for
functions u ∈ N1,Φ (X) also supports a Orlicz-Poincaré inequality for
functions u ∈ L1

loc (X), that would be a counterpart of a result of Keith
[17] where Φ (t) = tp, 1 ≤ p <∞.

We conclude with the following result, combining Corollary 5 and
Proposition 8.
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Theorem 9. Let (X, d, µ) be a Q−Ahlfor regular metric measure space
with Q > 1. Let Φ be an Young function satisfying the ∆2− condi-
tion, such that p > Q and pq ≤ 1. Then the following conditions are
equivalent:

(1) X supports a weak Φ−Poincaré inequality.
(2) There exist some constants λ ≥ 1 and C > 0 such that for every

u ∈ L1
loc (X) with a Φ− weak upper gradient g the following inequality

holds, for almost all x, y ∈ X with x 6= y:

|u(x)− u(y)| ≤ Cd (x, y)1−Q
p Φ−1

 ∫
B(x,λd(x,y))

Φ (g) dµ

 .
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pp.

[4] J. Cheeger, Differentiability of Lipschitz functions on metric measure
spaces, Geom. Funct. Anal. 9 (1999), 428-517.

[5] R. R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative
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