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fgs∗ - CLOSED SETS AND fgs∗-CONTINUOUS
FUNCTIONS IN FUZZY TOPOLOGICAL SPACES

ANJANA BHATTACHARYYA

Abstract. In this paper, we introduce and study a new type of
fuzzy generalized closed set and fuzzy generalized continuity in a fuzzy
topological space. Also it is shown that fuzzy compactness and fuzzy
normality remain invariant under this newly defined continuous func-
tion. Afterwards, a new type of fuzzy closure operator is introduced
which is an idempotent operator which is distributive over union but
not over intersection. Lastly, we introduce and characterize the notion
of fgs∗-closed (resp., fgs∗-open) function which is weaker than that
of fgs-closed (resp. fgs-open) function [8].

1. Introduction and Preliminaries

After the introduction of fuzzy generalized closed sets in [2], several
types of fuzzy generalized forms of closed sets have been introduced
and studied in [3, 4, 5, 6, 7, 8]. Here we introduce the class of fgs∗-
closed sets which lies between the class of fuzzy semiclosed sets [1] and
the class of fgs-closed sets [3].

————————————–
Keywords: fs∗g-closed set, fgs∗-closed set, fs∗g-continuous func-
tion, fgs∗-continuous function, fgs∗-neighbourhood of a fuzzy point
(fuzzy set), fgs∗-closed (open) function.
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In Section 2, we define a type of fuzzy space and in Section 3, we
show that in this space fuzzy compactness and fuzzy normality remain
invariant under fgs∗-continuous function.
Throughout this paper, by (X, τ) or simply by X we shall mean a
fuzzy topological space (fts, for short) in the sense of Chang [10]. A
fuzzy set [15] A in an fts X, denoted by A ∈ IX , is defined to be a
mapping from a non-empty set X into the closed interval I = [0, 1].
The support [15] of a fuzzy set A, denoted by suppA and is defined
by suppA = {x ∈ X : A(x) 6= 0}. The fuzzy set with the singleton
support {x} ⊆ X and the value t (0 < t ≤ 1) will be denoted by xt. 0X
and 1X are the constant fuzzy sets taking values 0 and 1 respectively
in X. The complement [15] of a fuzzy set A in X is denoted by 1X \A
and is defined by (1X \ A)(x) = 1 − A(x), for each x ∈ X. For any
two fuzzy sets A,B in X, A ≤ B means A(x) ≤ B(x), for all x ∈ X
[15] while AqB means A is quasi-coincident (q-coincident, for short)
[12] with B, i.e., there exists x ∈ X such that A(x) + B(x) > 1.
The negation of these two statements will be denoted by A 6≤ B and
A /qB respectively. A fuzzy set A in X is called a fuzzy neighbourhood
(nbd, for short) [12] of a fuzzy point (resp., fuzzy set) xt (resp., B)
if there exists a fuzzy open set G in X such that xt ∈ G ≤ A (resp.,
B ≤ G ≤ A). For a fuzzy set A, clA and intA will stand for fuzzy
closure [10] and fuzzy interior [10] respectively. A fuzzy set A in X
is called fuzzy regular open [1] (resp., fuzzy semiopen [1], fuzzy α-
open [9]) if A = intclA (resp., A ≤ clintA, A ≤ intclintA). The
complement of a fuzzy semiopen (resp., fuzzy α-open) set is called
fuzzy semiclosed [1] (resp., fuzzy α-closed [9]). The intersection of all
fuzzy semiclosed (resp., fuzzy α-closed) sets containing a fuzzy set A
in X is called fuzzy semiclosure (resp., fuzzy α-closure) of A, to be
denoted by sclA [1] (resp., αclA [9]). The union of all fuzzy semiopen
sets contained in a fuzzy set A is called fuzzy semi interior of A,
denoted by sintA [1]. The collection of all fuzzy semiopen sets in X is
denoted by FSO(X) and that of fuzzy semiclosed sets in X is denoted
by FSC(X). A fuzzy set A is called fQ-set if intclA = clintA.

2. fgs∗-Closed Sets : Some Properties

We first recall some definitions from [2, 3, 5] for ease of reference.

Definition 2.1 [2]. A fuzzy set A in an fts (X, τ) is called fuzzy
generalized closed (fg-closed, for short) [2] if clA ≤ U whenever
A ≤ U ∈ τ .
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The complement of an fg-closed set is called an fg-open set.

Definition 2.2. A fuzzy set A in an fts (X, τ) is called
(i) fuzzy semi generalized closed (fsg-closed, for short) [3] if sclA ≤ U
whenever A ≤ U ∈ FSO(X),
(ii) fuzzy generalized semiclosed (fgs-closed, for short) [3] if sclA ≤ U
whenever A ≤ U ∈ τ ,
(iii) fuzzy α-generalized closed (fαg-closed, for short) [3] if αclA ≤ U
whenever A ≤ U ∈ τ ,
(iv) fuzzy strongly generalized closed (fs∗g-closed, for short) [5] if
clA ≤ U whenever A ≤ U and U is fg-open in X.

The complements of the above mentioned closed sets are called
their respective open sets.

Definition 2.3. A fuzzy set A in an fts (X, τ) is called fuzzy
generalized strongly closed (fgs∗-closed, for short) if sclA ≤ U
whenever A ≤ U where U is fg-open in X.

The complement of an fgs∗-closed set is called an fgs∗-open set.

Remark 2.4 (i). Every fuzzy semiclosed set is fgs∗-closed set, but
not conversely, as it can be seen from Example 2.5.
(ii). Every fgs∗-closed set is fgs-closed, but not conversely, as it can
be seen from Example 2.6.

Example 2.5. There exists an fgs∗-closed set which is not fuzzy
semiclosed.
Let X = {a, b}, τ = {0X , 1X , A,B} where A(a) = 0.4, A(b) =
0.55, B(a) = 0.5, B(b) = 0.6. Then (X, τ) is an fts. Here
FSO(X) = {0X , 1X , B, U} where U ≥ A and that of
FSC(X) = {0X , 1X , 1X \ B, 1X \ U} where 1X \ U ≤ 1X \ A.
Consider the fuzzy set D defined by D(a) = 0.6, D(b) = 0.5. Clearly
D is not fuzzy semiopen. Again any non-zero fuzzy set V ≤ A is not
fg-closed. So other than 1X , 1X \ V ≥ 1X \ A is not fg-open. So 1X
is the only fg-open set in X such that D < 1X and so sclD ≤ 1X ,
therefore D is fgs∗-closed.

Example 2.6. There exists an fgs-closed set which is not
fgs∗-closed.
Consider Example 2.5 and consider the fuzzy set C defined
by C(a) = 0.5, C(b) = 0.8. Now C < 1X(∈ τ) only and so
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sclC ≤ 1X , therefore C is fgs-closed. Now 1X \ C < B ∈ τ and
cl(1X \ C) = 1X \ B < B, hence 1X \ C is fg-closed , i.e., C is
fg-open in (X, τ). Now C ≤ C, but sclC = 1X 6≤ C, therefore C is
not fgs∗-closed.

Remark 2.7. Every fs∗g-closed set is fgs∗-closed, but not
conversely, as follows from the next example.

Example 2.8. There exists an fgs∗-closed set which is not
fs∗g-closed.
Consider Example 2.5. Consider the fuzzy set E defined
by E(a) = E(b) = 0.4. Clearly E is fg-open and so
E ≤ E, sclE = E ≤ E, hence E is fgs∗-closed. But clE = 1X \B 6≤ E
implies E is not fs∗g-closed.

Remark 2.9 (i). fsg-closedness and fgs∗-closedness are indepen-
dent notions, as follows from Example 2.10 and Example 2.11.
(ii) fαg-closedness and fgs∗-closedness are independent notions, as
follows from Example 2.12 and Example 2.13.

Example 2.10. There exists an fsg-closed set which is not
fgs∗-closed.
Let X = {a, b}, τ = {0X , 1X , A} where A(a) = 0.5, A(b) = 0.4. Then
(X, τ) is an fts. Then FSO(X) = {0X , 1X , U} where A ≤ U ≤ 1X \A
and FSC(X) = {0X , 1X , 1X \ U} where A ≤ 1X \ U ≤ 1X \ A. The
collection of all fg-closed sets is {0X , 1X , V } where V > A and that of
fg-open sets is {0X , 1X , 1X \V }, where 1X \V < 1X \A. Consider the
fuzzy set B defined by B(a) = 0.5, B(b) = 0.3. Then B ≤ B where B
is fg-open in X and sclB = A 6≤ B. Hence B is not fgs∗-closed in X.
But B ≤ A where A is fuzzy semiopen in X, hence sclB = A ≤ A.
Therefore B is fsg-closed in X.

Example 2.11. There exists an fgs∗-closed set which is not
fsg-closed.
Consider Example 2.5. Here D is fgs∗-closed. Now D < U , where U
being fuzzy semiopen in X defined by U(a) = 0.6, U(b) = 0.55. Then
sclD = 1X 6≤ U . Therefore, D is not fsg-closed.

Example 2.12. There exists an fαg-closed set which is not
fgs∗-closed.
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Consider Example 2.6. Here C is not fgs∗-closed. But 1X is the only
fuzzy open set in X such that C < 1X and so αclC ≤ 1X . Hence C is
fαg-closed.

Example 2.13. There exists an fgs∗-closed set which is not
fαg-closed.
Consider Example 2.10 and the fuzzy set A. Then A is fg-open in
X with A ≤ A and sclA = A ≤ A implies A is fgs∗-closed set. But
A ≤ A ∈ τ, αclA = 1X \ A 6≤ A and so A is not fαg-closed. Infact,
the collection of all fuzzy α-open sets in X is {0X , 1X , A} and that of
fuzzy α-closed sets is {0X , 1X , 1X \ A}.

Remark 2.14 (i). Since for any two fuzzy sets A,B in an fts
(X, τ), scl(A

∨
B) = sclA

∨
sclB, it is clear that union of any two

fgs∗-closed sets is fgs∗-closed. So intersection of any two fgs∗-open
sets is fgs∗-open.

(ii) Intersection of two fgs∗-closed sets need not be fgs∗-closed as
it can be seen from the following example.

Example 2.15. Consider Example 2.10. Let a fuzzy set C be
defined by C(a) = 0.4, C(b) = 0.7. Consider two fuzzy sets A and
C. It is shown in Example 2.13 that A is fgs∗-closed. Now 1X is the
only fg-open set in X such that C < 1X and so sclC < 1X implies C
is fgs∗-closed in X. But D = A

∧
C defined by D(a) = D(b) = 0.4

is not fgs∗-closed in X. Indeed, D is fg-open set in X with D ≤ D,
but sclD = A 6≤ D and hence D is not fgs∗-closed.

Lemma 2.16. Let B ∈ IX be an fgs∗-closed set in X. Then there
does not exist an fg-closed set V such that V /qB and V qsclB.

Proof. Assume that V is an fg-closed set such that V /qB. Then
B ≤ 1X \ V where 1X \ V is fg-open set in X. As B is fgs∗-closed,
sclB ≤ 1X \ V , hence V /qsclB.

Lemma 2.17. Let (X, τ) be an fts. If B ∈ IX is fg-open and
fgs∗-closed in X, then B is fuzzy semiclosed.

Proof. B ≤ B implies sclB ≤ B (as B is fgs∗-closed). which
shows that B is fuzzy semiclosed.
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Corollary 2.18. If B ∈ IX is fuzzy open and fgs∗-closed, then B
is fuzzy semiclosed.

Lemma 2.19. Let B ∈ IX in an fts (X, τ). Then the following
statements are equivalent:
(i) B is fuzzy regular open,
(ii) B is fuzzy open and fgs∗-closed.

Proof (i) ⇒ (ii). B is fuzzy regular open implies B is fuzzy
open. Let H be an fg-open set in X with B ≤ H. Then
B
∨
intclB = B ≤ H, hence sclB ≤ H. Therefore B is fgs∗-closed.

(ii) ⇒ (i). Let B ∈ τ and fgs∗-closed in X. Then B is fg-open in
X with B ≤ B. By hypothesis, sclB ≤ B and so B

∨
intclB ≤ B

implies intclB ≤ B. Again as B is fuzzy open, B ≤ intclB, hence
B = intclB. Therefore B is fuzzy regular open in X.

Theorem 2.20. Let B ∈ IX in an fts (X, τ). Then the following
statements are equivalent :
(i) B ∈ τ and B ∈ τ c,
(ii) B ∈ τ , B is an fQ-set and an fgs∗-closed set.

Proof (i) ⇒ (ii). By (i), B = intB,B = clB and as a result
B = intclB = clintB, therefore B is an fQ-set. Let H be an
fg-open set in X such that B ≤ H. Then clB = B ≤ H, therefore
sclB ≤ clB ≤ H. It follows that B is fgs∗-closed.

(ii)⇒ (i). By Lemma 2.19 (ii)⇒ (i), B is fuzzy regular open. Again
B is an fQ-set implies intclB = clintB, hence B = clB, i.e., B ∈ τ c.

3. fgs∗-Continuity : Some Results

We first recall some definitions for ease of reference.

Definition 3.1. A fuzzy function f : (X, τ)→ (Y, τ1) is called
(i) fuzzy continuous [13] if f−1(V ) ∈ τ c for every V ∈ τ c1 ,
(ii) fgs-continuous [3] if f−1(V ) is fgs-closed in X for every V ∈ τ c1 ,
(iii) fs∗g-continuous [5] if f−1(V ) ∈ τ c for every fg-closed set V in Y ,
(iv) fuzzy open function [14] if f(F ) is fuzzy open in Y for every
fuzzy open set F in X .
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Definition 3.2. A fuzzy function f : (X, τ) → (Y, τ1) is called
fgs∗-continuous if f−1(V ) is fgs∗-closed in X for every V ∈ τ c1 .

Theorem 3.3. Every fuzzy continuous function is fgs∗-continuous.

Proof. The proof follows from the fact that every fuzzy closed set
is fgs∗-closed.

The converse of Theorem 3.3. is not true, as it can be seen from
the following example.

Example 3.4. fgs∗-continuity does not imply fuzzy continuity
Let X = {a, b}, τ = {0X , 1X , A}, τ1 = {0X , 1X , B} where
A(a) = 0.5, A(b) = 0.4, B(a) = 0.5, B(b) = 0.6. Then (X, τ) and
(X, τ1) are fts’s. Consider the identity function i : (X, τ) → (X, τ1).
Here 1X \B ∈ τ c1 , i−1(1X \B) = 1X \B which is fgs∗-closed (as shown
in Example 2.13) in (X, τ), but not fuzzy closed in (X, τ). Hence i is
fgs∗-continuous but not fuzzy continuous.

Remark 3.5. By Remark 2.4(ii), every fgs∗-continuous function
is fgs-continuous. But the converse is not true, as it can be seen
from the following example.

Example 3.6. fgs-continuity does not imply fgs∗-continuity
Let X = {a, b}, τ = {0X , 1X , A,B}, τ1 = {0X , 1X , C} where
A(a) = 0.4, A(b) = 0.55, B(a) = 0.5, B(b) = 0.6, C(a) = 0.5,
C(b) = 0.2. Then (X, τ) and (X, τ1) are fts’s. Consider the identity
function i : (X, τ)→ (X, τ1). Then 1X \C ∈ τ c1 , i−1(1X \C) = 1X \C.
Now 1X is the only fuzzy open set in (X, τ) with 1X \ C < 1X and
so 1X \ C is fgs-closed in (X, τ), therefore i is an fgs-continuous
function. But 1X \ C is fg-open in (X, τ) and so 1X \ C ≤ 1X \ C
implies scl(1X \ C) = 1X 6≤ 1X \ C. It follows that the function i is
not fgs∗-continuous.

Remark 3.7. The inverse image of some fgs∗-closed set under
fgs∗-continuous function may not be fgs∗-closed as it can be seen
from the following example.

Example 3.8. Consider Example 3.4. Let us consider the fuzzy
set C defined by C(a) = 0.5, C(b) = 0.3. Now the collection of all
fg-open as well as FSO(X, τ1) is {0X , 1X ,W} where W ≥ B and



102 A.BHATTACHARYYA

FSC(X, τ1) = {0X , 1X , 1X \ W} where 1X \ W ≤ 1X \ B. Now
C < B where B is fg-open in (X, τ1) and sclC = C < B implies C
is fgs∗-closed in (X, τ1). But i−1(C) = C < C where C is fg-open
in (X, τ) and sclC = A 6≤ C. It follows that C is not fgs∗-closed in
(X, τ).

Remark 3.9. Since a fgs∗-closed set is not necessarily fuzzy
closed always, the composition of two fgs∗-continuous functions need
not be fgs∗-continuous.

To achieve this result we have to define some new type of fuzzy
space.

Definition 3.10. An fts (X, τ) is called fTgs∗-space if every
fgs∗-closed set is fuzzy closed.

Theorem 3.11. Let f : (X, τ) → (Y, τ1) and g : (Y, τ1) → (Z, τ2)
be two fgs∗-continuous functions where (Y, τ1) is fTgs∗-space. Then
the function g ◦ f : (X, τ)→ (Z, τ2) is fgs∗-continuous.

Proof. The proof is obvious.

Theorem 3.12. Every fs∗g-continuous function is fgs∗-
continuous.

Proof. Let f : (X, τ) → (Y, τ1) be fs∗g-continuous and V ∈ τ c1 .
Then V is fg-closed in Y . As f is fs∗g-continuous, f−1(V ) ∈ τ c

implies f−1(V ) is fgs∗-closed in X. Hence the proof.
But the converse may not be true as it can be seen from the

following example.

Example 3.13. fgs∗-continuity does not imply fs∗g-continuity
Consider Example 3.4. Here the fuzzy set F defined by
F (a) = 0.5, F (b) = 0.7 is fg-closed in (X, τ1). Now i−1(F ) = F 6∈ τ c,
therefore i is not fs∗g-continuous. But here i is fgs∗-continuous (as
shown in Example 3.4).

Remark 3.14. In an fTgs∗-space, fgs∗-closed set is fsg-closed,
fg-closed.
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4. gs∗-Closure Operator and fgs∗-Closed (Open)
Functions : Some Properties

In this section a new type of closure (interior) operator, viz.
gs∗-closure (resp., gs∗-interior) operator is introduced and stud-
ied. It is shown that this operator is an idempotent operator.
Also a new type of fuzzy closed (resp., fuzzy open) function is
introduced and characterized. It is shown that this class of fuzzy
closed functions is strictly larger than the class of fgs-closed functions.

Definition 4.1. The intersection of all fgs∗-closed sets containing
a fuzzy set A in an fts (X, τ) is called gs∗-closure of A to be denoted
by gs∗clA, i.e., gs∗cl(A) =

∧
{F : A ≤ F and F is fgs∗-closed in X}.

Now we recall a definition from [8] for ease of reference.

Definition 4.2 [8]. The intersection of all fgs-closed sets contain-
ing a fuzzy set A in an fts (X, τ) is called gs-closure of A and will be
denoted by gscl(A), i.e., gscl(A) =

∧
{F : A ≤ F and F is fgs-closed

in X}.

Remark 4.3. Since every fgs∗-closed set is fgs-closed, it is clear
that A ≤ gscl(A) ≤ gs∗cl(A) ≤ clA.

Remark 4.4. If a fuzzy set A is fgs∗-closed, then A = gs∗cl(A).
But gs∗cl(A) may not be fgs∗-closed since intersection of two
fgs∗-closed sets may not be so, as it is seen in Example 2.15.

Theorem 4.5. Let (X, τ) be an fts and A ∈ IX . Then for a fuzzy
point xt in X, xt ∈ gs∗cl(A) if and only if for every fgs∗-open set U ,
xtqU implies UqA.

Proof. Let xt ∈ gs∗cl(A) and let U be any fgs∗-open set in X
with xtqU . Then xt ∈ F for every fgs∗-closed set F containing A.
Now U(x) + t > 1 implies xt 6∈ 1X \ U , but 1X \ U is an fgs∗-closed
set in X and so A 6≤ 1X \ U shows that there exists y ∈ X such that
A(y) > 1− U(y), hence AqU .

Conversely, assume that for every fgs∗-open set U, xtqU implies
UqA. We have to prove that xt ∈ F , for every fgs∗-closed set F in X
containing A. Let F be an fgs∗-closed set in X containing A. Assume
by contrary that xt 6∈ F . Then F (x) < t implies 1 − F (x) > 1 − t,
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i.e., xtq(1X \ F ), but 1X \ F is fgs∗-open in X and so by hypothesis,
Aq(1X \ F ). Then there exists y ∈ X such that A(y) + 1− F (y) > 1,
hence A(y) > F (y), a contradiction.

Theorem 4.6. Let (X, τ) be an fts and A,B ∈ IX . Then the
following statements are true :
(i) gs∗cl(0X) = 0X ,
(ii) gs∗cl(1X) = 1X ,
(iii) If A ≤ B, then gs∗cl(A) ≤ gs∗cl(B),
(iv) gs∗cl(A

∨
B) = gs∗cl(A)

∨
gs∗cl(B),

(v) gs∗cl(A
∧
B) ≤ gs∗cl(A)

∧
gs∗cl(B)

(vi) gs∗cl(gs∗cl(A)) = gs∗cl(A).

Proof. The proofs of (i), (ii) and (iii) are obvious.
(iv) gs∗cl(A)

∨
gs∗cl(B) ≤ gs∗cl(A

∨
B) follows from (iii).

To prove the converse, let xt ∈ gs∗cl(A
∨
B). Then by Theorem

4.5, for any fgs∗-open set U in X with xtqU , we have Uq(A
∨
B).

Then there exists y ∈ X such that U(y) + max{A(y), B(y)} > 1
which shows that either U(y) + A(y) > 1 or U(y) + B(y) > 1. Then
either UqA or UqB, therefore either xt ∈ gs∗cl(A) or xt ∈ gs∗cl(B),
hence xt ∈ gs∗cl(A)

∨
gs∗cl(B).

(v) Follows from (iii).
(vi) From definition, A ≤ gs∗cl(A) implies gs∗cl(A) ≤ gs∗cl(gs∗cl(A))
by (iii).

To prove the converse, let xt ∈ gs∗cl(gs∗cl(A)) = gs∗cl(B) where
B = gs∗cl(A). Let U be any fgs∗-open set in X with xtqU . Then
UqB, therefore there exists y ∈ X such that U(y) + B(y) > 1.
Let B(y) = t. Then yt ∈ B and ytqU . Since yt ∈ gs∗cl(A),
UqA by Theorem 4.5, which implies xt ∈ gs∗cl(A) and hence
gs∗cl(gs∗cl(A)) ≤ gs∗cl(A).

In Theorem 4.6 (v), equality does not hold in general, as it can be
seen in Example 4.7.

Example 4.7. Consider Example 2.15. Here A and C be-
ing fgs∗-closed sets in X, A = gs∗cl(A), C = gs∗cl(C) and so
gs∗cl(A)

∧
gs∗cl(C) = A

∧
C = D 6= gs∗cl(D) = gs∗cl(A

∧
C) as D

is not fgs∗-closed in X.
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Definition 4.8. A function f : X → Y is said to be fgs∗-closed
(resp., fgs∗-open) if f(F ) is fgs∗-closed (resp., fgs∗-open) in Y for
every fuzzy closed (resp., fuzzy open) set F in X.

Remark 4.9. It is clear from definition that every fgs∗-closed
(resp., fgs∗-open) function is fgs-closed (resp., fgs-open) function.
The converse does not hold, as it can be seen from the following
example.

Example 4.10. There exists an fgs-closed function which is not
fgs∗-closed.
Let X = {a, b}, τ1 = {0X , 1X , B}, τ2 = {0X , 1X , A} where
A(a) = 0.5, A(b) = 0.4, B(a) = B(b) = 0.6. Then (X, τ1) and (X, τ2)
are fts’s. Now FSO(X, τ2) = {0X , 1X , U} where A ≤ U ≤ 1X \A and
FSC(X, τ2) = {0X , 1X , 1X \ U} where A ≤ 1X \ U ≤ 1X \ A.
Consider the identity function i : (X, τ1) → (X, τ2). Now
1X \ B ∈ τ c1 , i(1X \ B) = 1X \ B (= D, say ) is not fgs∗-closed in
(X, τ2) as shown in Example 2.15. So i is not fgs∗-closed function.
We claim that i is fgs-closed function. Indeed, 1X \ B < A ∈ τ2,
hence sclτ2(1X \B) = A ≤ A, which implies that 1X \B is fgs-closed
in (X, τ2) and so i is fgs-closed function.

Theorem 4.11. If f : X → Y is an fgs∗-closed function, then
gs∗cl(f(A)) ≤ f(clA) for all A ∈ IX .

Proof. Let A ∈ IX . Then clA is fuzzy closed in X. As f is
fgs∗-closed function, f(clA) is fgs∗-closed in Y . Now f(A) ≤ f(clA).
So gs∗cl(f(A)) ≤ gs∗cl(f(clA)) = f(clA).

Definition 4.12. The union of all fgs∗-open sets contained in a
fuzzy set A in an fts X is called gs∗int(A).

Remark 4.13. It is clear from definitions that for a fuzzy set A in
an fts (X, τ), intA ≤ gs∗intA ≤ gsintA ≤ A.

Lemma 4.14. For a fuzzy set A in an fts (X, τ), the following
statements are equivalent:
(i) gs∗cl(1X \ A) = 1X \ gs∗int(A)
(ii) gs∗int(1X \ A) = 1X \ gs∗cl(A).
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Proof (i). Let xt ∈ gs∗cl(1X \ A). If possible, let xt 6∈ 1X \
gs∗int(A). Then 1 − (gs∗int(A))(x) < t, i.e. [gs∗int(A)](x) + t >
1, hence gs∗int(A)qxt. Then there exists at least one fgs∗-open set
F ≤ A with xtqF , which shows that xtqA. As xt ∈ gs∗cl(1X \A) and
Fq(1X \ A), it follows that Aq(1X \ A), a contradiction. Hence

(1) gs∗cl(1X \ A) ≤ 1X \ gs∗int(A)

Conversely, let xt ∈ 1X \ gs∗int(A). Then

(2) 1− [gs∗int(A)](x) ≥ t ⇒ xt /q(gs∗int(A))⇒ xt /qF

where F is any fgs∗-open set contained in A .
Let U be any fgs∗-closed set in X such that 1X \ A ≤ U . Then
1X \ U ≤ A. Now 1X \ U is fgs∗-open set in X contained in A. By
(2), xt /q(1X \ U) implies xt ∈ U . Therefore xt ∈ gs∗cl(1X \ A) and so

(3) 1X \ gs∗int(A) ≤ gs∗cl(1X \ A).

Combining (1) and (3), (i) follows.

(ii) Putting 1X \A for A in (i), we get gs∗cl(A) = 1X \gs∗int(1X \A),
hence gs∗int(1X \ A) = 1X \ gs∗cl(A).

Theorem 4.15. For a bijective function f : X → Y , the following
statements are equivalent:
(i) f is fgs∗-open,
(ii) f(intA) ≤ gs∗int(f(A)), for all A ∈ IX ,
(iii) For each fuzzy point xt in X and each fuzzy open set U in X
containing xt, there exists an fgs∗-open set V containing f(xt) such
that V ≤ f(U).

Proof (i) ⇒ (ii). Let A ∈ IX . Then intA is fuzzy open in
X. By (i), f(intA) is fgs∗-open in Y . Since f(intA) ≤ f(A) and
gs∗int(f(A)) is the union of all fgs∗-open sets contained in f(A), we
have f(intA) ≤ gs∗int(f(A)).

(ii) ⇒ (i). Let U be a fuzzy open set in X. Then
f(U) = f(intU) ≤ gs∗int(f(U)) (by (ii)), hence f(U) is fgs∗-
open in Y .

(ii)⇒ (iii). Let xt be a fuzzy point inX and let U be a fuzzy open set
in X such that xt ∈ U . Then f(xt) ∈ f(U) = f(intU) ≤ gs∗int(f(U)),
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hence f(U) is fgs∗-open in Y . Let V = f(U). Then f(xt) ∈ V and
V ≤ f(U).

(iii) ⇒ (i). Let U be any fuzzy open set in X and yt be any
fuzzy point in f(U), i.e., yt ∈ f(U). Then there exists x ∈ X
such that f(x) = y (as f is bijective). Then [f(U)](y) ≥ t, hence
U(f−1(y)) ≥ t, therefore U(x) ≥ t, which implies xt ∈ U . By (iii),
there exists an fgs∗-open set V in Y such that f(xt) ∈ V and
V ≤ f(U). Then f(xt) ∈ V = gs∗int(V ) ≤ gs∗int(f(U)). Since xt is
taken arbitrarily and f(U) is the union of all fuzzy points in f(U),
f(U) ≤ gs∗int(f(U)), hence f(U) is fgs∗-open in Y . It follows that
the function f is fgs∗-open.

Theorem 4.16. If f : X → Y is fgs∗-open, then the following
statements are true :
(i) For each fuzzy point xt in X and each fuzzy open set U in X with
xtqU , there exists an fgs∗-open set V in Y with f(xt)qV such that
V ≤ f(U),
(ii) f−1(gs∗cl(B)) ≤ cl(f−1(B)), for all B ∈ IY .

Proof (i). Let xt be any fuzzy point in X and U be any fuzzy open
set in X with xtqU = intU implies f(xt)qf(intU) ≤ gs∗int(f(U)) (by
Theorem 4.15) which shows that f(xt)qgs

∗int(f(U)) and hence there
exists fgs∗-open set V in Y such that f(xt)qV and V ≤ f(U).

(ii) Let xt be any fuzzy point in X such that xt 6∈ cl(f−1(B)) for
any B ∈ IY . Then there exists a fuzzy open set U in X with xtqU ,
U /qf−1(B). Now

(4) f(xt)qf(V )

where f(U) is fgs∗-open in Y (as f is fgs∗-open function). Now
f−1(B) ≤ 1X \U implies B ≤ f(1X \U) ≤ 1Y \ f(U) and so B /qf(U).
Let V = 1Y \ f(U). Then V is fgs∗-closed in Y with B ≤ V . We
claim that f(xt) 6∈ V . Assume that f(xt) ∈ V = 1Y \ f(U). Then
1 − [f(U)](f(x)) ≥ t, hence f(U) /qf(xt), which contradicts (4). So
f(xt) 6∈ V implies f(xt) 6∈ gs∗cl(B) and therefore xt 6∈ f−1(gs∗cl(B)).
Hence f−1(gs∗cl(B)) ≤ cl(f−1(B)).

Theorem 4.17. If f : X → Y is an injective, fgs∗-open function,
B ∈ IY and F is a fuzzy closed set in X with f−1(B) ≤ F , then there
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exists an fgs∗-closed set V in Y such that B ≤ V and f−1(V ) ≤ F .

Proof. Let B ∈ IY and F be a fuzzy closed set in X with f−1(B) ≤
F . Then 1X \ f−1(B) ≥ 1X \ F , where 1X \ F is fuzzy open in X,
implies f(1X \F ) ≤ f(1X \ f−1(B)) ≤ 1Y \B (as f is injective) where
f(1X \ F ) is an fgs∗-open in Y . Let V = 1Y \ f(1X \ F ). Then
V is fgs∗-closed in Y such that B ≤ 1Y \ f(1X \ F ) = V . Now
f−1(V ) = f−1(1Y \ f(1X \ F )) = 1X \ f−1(f(1X \ F )) ≤ F .

5. fgs∗-Neighbourhood of a Fuzzy Point and a Fuzzy Set

In this section a new type of fuzzy neighbourhood nbd, for short)
system, viz., fgs∗-nbd system of a fuzzy point is introduced which is
coarser than the fuzzy nbd system.

Definition 5.1. A fuzzy set A in an fts (X, τ) is called an fgs∗-nbd
of a fuzzy point xt in X if there exists an fgs∗-open set G in X such
that xt ∈ G ≤ A.

Definition 5.2. A fuzzy set A in an fts (X, τ) is called an fgs∗-nbd
of a fuzzy set B in X if there exists an fgs∗-open set G in X such
that B ≤ G ≤ A.

Remark 5.3. The fgs∗-nbd of a fuzzy point xt need not be an
fgs∗-open set in X, as it can be seen from the following example.

Example 5.4. Consider Example 2.15 and the fuzzy point a0.5.
Here 1X \ D is not fgs∗-open. Now (1X \ D)(a) = 0.6 > 0.5,
hence a0.5 ∈ 1X \ D. Now (1X \ A)(a) = 0.5 ≥ 0.5 implies
a0.5 ∈ 1X \ A ≤ 1X \ D where 1X \ A is fgs∗-open in X and hence
1X \D is an fgs∗-nbd of a0.5.

It is clear from definition that

Theorem 5.5. Every nbd of a fuzzy point xt is an fgs∗-nbd of
this point.

But the converse may not be true, as it can be seen from the
following example.

Example 5.6. Consider Example 2.15 and a fuzzy point a0.6. Here
1X \ C being an fgs∗-open set with a0.6 ∈ 1X \ C is an fgs∗-nbd of
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a0.6. But 1X \ C is not a fuzzy nbd of a0.6.

Remark 5.7. An fgs∗-open set is an fgs∗-nbd of each of its
points.

But the converse may not be true in general, as it can be seen from
the following example.

Example 5.8. Consider Example 2.15. Here 1X \ D is not
fgs∗-open set. We claim that 1X \ D is an fgs∗-nbd of each
of its points. The points of 1X \ D are either of the form at,
(0 < t ≤ 0.6) or of the form bt1 , (0 < t1 ≤ 0.6). For at, (0 < t ≤ 0.6),
at ∈ 1X \ C ≤ 1X \ D where 1X \ C is an fgs∗-open set in
X. For bt1 , (0 < t1 ≤ 0.6), bt1 ∈ 1X \ A ≤ 1X \ D where 1X \ A
is an fgs∗-open set in X. So 1X \D is an fgs∗-nbd of each of its points.

Theorem 5.9. Let F ∈ IX be fgs∗-closed set in X and
xt ∈ 1X \ F . Then there exists an fgs∗-nbd G of xt such that G /qF .

Proof. 1X \ F is fgs∗-open in X. By Remark 5.7, there exists an
fgs∗-nbd G of xt such that xt ∈ G ≤ 1X \ F implies G 6 qF .

Definition 5.10. The set of all fgs∗-nbds of a fuzzy point xt
(0 < t ≤ 1) in an fts (X, τ) is called the fgs∗-nbd system at xt, to be
denoted by fgs∗ −N(xt).

Theorem 5.11. For a fuzzy point xt in an fts (X, τ), the following
statements hold :
(i) fgs∗ −N(xt) 6= ∅,
(ii) If G ∈ fgs∗ −N(xt), then xt ∈ G,
(iii) If G ∈ fgs∗ −N(xt), F ≥ G, then F ∈ fgs∗ −N(xt),
(iv) F,G ∈ fgs∗ −N(xt) implies F

∧
G ∈ fgs∗ −N(xt),

(v) If G ∈ fgs∗ − N(xt), then there exists F ∈ fgs∗ − N(xt) such
that F ≤ G and F ∈ fgs∗ −N(yt′) for every yt′ ∈ F .

Proof. (i) Since 1X is an fgs∗-open set, it is an fgs∗-nbd of any
fuzzy point xt (0 < t ≤ 1) and so fgs∗ −N(xt) 6= ∅.

(ii) and (iii) follow from Definition 5.10.
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(iv) Follows from Remark 2.14 (i).

(v) Follows from Definition 5.10 and Remark 5.7.

Theorem 5.12. Let xt be a fuzzy point in an fts (X, τ). Let
fgs∗ − N(xt) be a non-empty collection of fuzzy sets in X satisfying
the following conditions :
(1) G ∈ fgs∗ −N(xt) implies xt ∈ G,
(2) F,G ∈ fgs∗ −N(xt) implies F

∧
G ∈ fgs∗ −N(xt).

Let τ consist of 0X and all those non zero fuzzy sets G of X having
the property that for every xt ∈ G there exists an F ∈ fgs∗ − N(xt)
such that xt ∈ F ≤ G. Then τ is a fuzzy topology on X.

Proof. (i) By hypothesis, 0X ∈ τ .
(ii) It is clear from the given property of τ that 1X ∈ τ as 1X is an
fgs∗ −N(xt) for every fuzzy point xt(0 < t ≤ 1) in an fts X by (1).
(iii) Let G1, G2 ∈ τ . If G1

∧
G2 = 0X , then G1

∧
G2 ∈ τ . If G1

∧
G2 6=

0X , let xt ∈ G1

∧
G2 (where 0 < t ≤ 1). Then G1(x) ≥ t, G2(x) ≥ t.

Since G1, G2 ∈ τ , there exist F1, F2 ∈ fgs∗ − N(xt) such that xt ∈
F1 ≤ G1, xt ∈ F2 ≤ G2. Then xt ∈ F1

∧
F2 ≤ G1

∧
G2 and by (2),

F1

∧
F2 ∈ fgs∗ −N(xt) implies G1

∧
G2 ∈ τ by construction of τ .

(iv) Let G = {Gα : α ∈ Λ} where Gα ∈ τ , for all α ∈ Λ. Let

xt ∈
∨
α∈Λ

Gα. Then xt ∈ Gβ, for some β ∈ Λ. By construction of τ ,

there exists Fβ ∈ fgs∗ − N(xt) such that xt ∈ Fβ ≤ Gβ ≤
∨
α∈Λ

Gα

implies
∨
α∈Λ

Gα ∈ τ .

It follows that τ is a fuzzy topology on X.

6. Applications

In this section it is shown that fuzzy normal and fuzzy compact
spaces remain invariant under fgs∗-continuous functions.

Definition 6.1 [11]. An fts (X, τ) is called fuzzy normal if for any
two fuzzy closed sets A,B in X with A 6 qB, there exist U, V ∈ τ such
that A ≤ U,B ≤ V and U 6 qV .

Theorem 6.2. Let f : (X, τ) → (Y, τ1) be a bijective, fgs∗-
continuous, open function. If X is fuzzy normal and fTgs∗-space,
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then Y is also fuzzy normal.

Proof. Let A,B ∈ τ c1 be such that A 6 qB. Then f−1(A) 6 qf−1(B)
where f−1(A) and f−1(B) are fgs∗-closed in X. As X is fTgs∗-space,
f−1(A), f−1(B) ∈ τ c. As X is fuzzy normal, there exist U, V ∈ τ
such that f−1(A) ≤ U, f−1(B) ≤ V and U 6 qV . As f is bijective,
A ≤ f(U), B ≤ f(V ) and f(U) 6 qf(V ) where f(U), f(V ) ∈ τ1 and
hence Y is fuzzy normal space.

We now recall the following definition from [3] for easy reference

Definition 6.3. An fts (X, τ) is called fTb-space if every fgs-closed
set is fuzzy closed.

Theorem 6.4. Let f : (X, τ) → (Y, τ1) be a bijective, fgs∗-
continuous, open function. If X is fuzzy normal and fTb-space, then
Y is fuzzy normal.

Proof. The proof is similar to that of Theorem 6.2.
Let us now recall the following two definitions from [10] for ready

reference.

Definition 6.5. Let (X, τ) be an fts. A collection U of fuzzy sets
in X is called a fuzzy cover of X if

⋃
U = 1X . If, in addition, all the

members of U are fuzzy open in X, U is called a fuzzy open cover of X.

Definition 6.6. An fts (X, τ) is said to be fuzzy compact if every
fuzzy open cover U has a finite subcover, i.e., there exists a finite
subcollection U0 of U such that

⋃
U0 = 1X .

Theorem 6.7. Let f : (X, τ) → (Y, τ1) be an fgs∗-continuous
function from a fuzzy compact, fTgs∗-space X onto an fts Y . Then
Y is fuzzy compact.

Proof. Let U = {Uα : α ∈ Λ} be a fuzzy cover of Y . Then
V = {f−1(Uα) : α ∈ Λ} being an fgs∗-open cover is a fuzzy open
cover of X (as f is fgs∗-continuous function and also X is an fTgs∗-
space). Since X is fuzzy compact, there exists a finite subset Λ0 of Λ
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such that
⋃
α∈Λ0

f−1(Uα) = 1X . Hence 1Y = f(1X) = f(
⋃
α∈Λ0

f−1(Uα)) =⋃
α∈Λ0

ff−1(Uα) ≤
⋃
α∈Λ0

Uα ⇒ Y is fuzzy compact space.
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