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GROWTH AND OSCILLATION OF SOLUTIONS TO
HIGHER ORDER LINEAR DIFFERENTIAL

EQUATIONS WITH COEFFICIENTS OF FINITE
LOGARITHMIC ORDER

AMINA FERRAOUN AND BENHARRAT BELAÏDI

Abstract. In this paper, we study the growth of solutions of com-
plex higher order linear differential equations with entire or meromor-
phic coefficients of finite logarithmic order. We extend some precedent
results due to L. Kinnunen; B. Beläıdi; J. Liu, J. Tu and L. Z. Shi; H.
Hu, X. M. Zheng; T. B. Cao, K. Liu and J. Wang and others. We also
consider the fixed points of solutions in this paper.

1. Introduction

We assume that the reader is familiar with the fundamental results and
the standard notations of Nevanlinna’s theory (see e.g. [13, 27]). For
r ∈ [0,+∞), we define exp1 r := er and expp+1 r := exp(expp r), p ∈ N.
For all r sufficiently large, we define log1 r := log r and logp+1 r :=
log(logp r), p ∈ N. We also denote exp0 r := r = log0 r, log−1 r :=
exp1 r and exp−1 r := log1 r.
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Furthermore, we define the linear measure of a set E ⊂ [0,+∞) by
m(E) =

∫
E
dt and the logarithmic measure of a set F ⊂ [1,+∞) by

ml(F ) =
∫
F
dt
t
. Now, we shall introduce the definition of meromorphic

functions of [p, q]-order and [p, q]-type, where p, q are positive integers
satisfying p ≥ q ≥ 1 or 2 ≤ q = p + 1. In order to keep accordance
with the definition of iterated order (see e.g. [21, 26]), we will give
a minor modification to the original definition of [p, q]-order (see e.g.
[19, 20]).

Definition 1.1 ([23, 24]) . Let 1 ≤ q ≤ p or 2 ≤ q = p + 1. The
(p, q)-order of a meromorphic function f is defined by

σ(p.q)(f) = lim
r→+∞

logp T (r, f)

logq r
,

where T (r, f) is the characteristic function of Nevanlinna of the func-
tion f. If f is an entire function, then

σ(p.q)(f) = lim
r→+∞

logp+1M(r, f)

logq r
,

where M(r, f) is the maximum modulus of f in the circle |z| = r.

Remark 1.1 (i) By the Definition 1.1, it is clear that σ(p,1)(f) = σp(f)
is the iterated p-order of f (see e.g. [21, 26]) and in particular, we have
that σ(1,1)(f) = σ(f) and σ(2,1)(f) = σ2(f) are the order and hyper-
order of f, respectively (see e.g. [13, 27]).
(ii) σ(1,2)(f) = σlog(f) is the logarithmic order of f (see e.g. [9]).
(iii) The logarithmic order of any non-constant rational function f is
one, and therefore, any transcendental meromorphic function in the
plane has logarithmic order no less than one. However, a function of
logarithmic order one is not necessarily a rational function. Constant
functions have zero logarithmic order, while there are no meromorphic
functions of logarithmic order between zero and one. In addition, any
meromorphic function with finite logarithmic order in the plane is of
order zero.

Definition 1.2 ([18]) . Let 1 ≤ q ≤ p or 2 ≤ q = p + 1. The lower
(p, q)-order of a meromorphic function f (z) is defined by

µ(p.q)(f) = lim
r→+∞

logp T (r, f)

logq r
.



GROWTH AND OSCILLATION OF SOLUTIONS 117

If f (z) is an entire function, then

µ(p.q)(f) = lim
r→+∞

logp+1M(r, f)

logq r
.

Remark 1.2 µ(1,2)(f) = µlog(f) is the logarithmic lower order of f (z).

Definition 1.3 ([21]) . The finiteness degree of growth i(f) of a mero-
morphic function f (z) is defined by

i(f) =


0, if f is rational,
min{j ∈ N : σ(j,1)(f) < +∞}, if f is transcendental
and σ(j,1)(f) < +∞ for some j ∈ N,
+∞, if σ(j,1)(f) = +∞, for all j ∈ N.

Definition 1.4 ([23, 24]) . Let 1 ≤ q ≤ p or 2 ≤ q = p + 1. The
(p, q)-type of a meromorphic function f (z) with 0 < σ(p,q)(f) < +∞
is defined by

τ(p.q)(f) = lim
r→+∞

logp−1 T (r, f)

(logq−1 r)
σ(p,q)(f)

.

If f (z) is an entire function with 0 < σ(p,q)(f) < +∞, then

τ(p.q)(f) = lim
r→+∞

logpM(r, f)

(logq−1 r)
σ(p,q)(f)

.

Definition 1.5 ([18]) . Let 1 ≤ q ≤ p or 2 ≤ q = p + 1. The lower
(p, q)-type of a meromorphic function f (z) with 0 < µ(p,q)(f) < +∞
is defined by

τ (p.q)(f) = lim
r→+∞

logp−1 T (r, f)

(logq−1 r)
µ(p,q)(f)

.

If f (z) is an entire function with 0 < µ(p,q)(f) < +∞, then

τ (p.q)(f) = lim
r→+∞

logpM(r, f)

(logq−1 r)
µ(p,q)(f)

.

Remark 1.3 τ(1,1)(f) = τ(f) is the type of f (z), τ (1,1)(f) = τ(f) is
the lower type of f (z) , τ(1,2)(f) = τlog(f) is the logarithmic type of
f (z) and τ (1,2)(f) is the logarithmic lower type of f (z) .

Definition 1.6 ([23, 24]) . Let 1 ≤ q ≤ p or 2 ≤ q = p+ 1. The (p, q)-
exponent of convergence of the sequence of a-points of a meromorphic
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function f (z) is defined by

λ(p.q)(f − a) = lim
r→+∞

logp n(r, 1
f−a)

logq r

and the (p, q)-exponent of convergence of the sequence of distinct a-
points of a meromorphic function f (z) is defined by

λ̄(p.q)(f − a) = lim
r→+∞

logp n(r, 1
f−a)

logq r
.

If a = 0, the (p, q)-exponent of convergence of zeros of a meromorphic
function f (z) is defined by

λ(p.q)(f) = lim
r→+∞

logp n(r, 1
f
)

logq r

and the (p, q)-exponent of convergence of distinct zeros of a meromor-
phic function f (z) is defined by

λ̄(p.q)(f) = lim
r→+∞

logp n(r, 1
f
)

logq r
,

where n
(
r, 1

f

)
(or n

(
r, 1

f

)
) denotes the number of zeros (or distinct

zeros) of f in the disc |z| ≤ r. If a = ∞, the (p, q)-exponent of con-
vergence of the sequence of poles of a meromorphic function f (z) is
defined by

λ(p.q)

(
1

f

)
= lim

r→+∞

logp n(r, f)

logq r
.

The (p, q)-exponent of convergence of the sequence of distinct fixed
points of a meromorphic function f (z) is defined by

λ̄(p.q)(f − z) = lim
r→+∞

logp n(r, 1
f−z )

logq r
.

Remark 1.4 (i) λ(1,2)(f) = λlog(f) is the logarithmic exponent of

convergence of zeros of f (z) , (see e.g. [9]) and λ(1,2)(f) = λlog(f) is
the logarithmic exponent of convergence of distinct zeros of f (z) .
(ii) For the case p ≥ q ≥ 1, λ(p.q)(f) (or λ̄(p.q)(f)) can also be defined

by using N(r, 1
f
) (or N(r, 1

f
)) instead of n(r, 1

f
) (or n(r, 1

f
)) respectively

(see e.g. [24]), yet, it does not hold for the case p < q. For example, the
logarithmic order of N(r, 1

f
) is equal to λlog(f) + 1, (see [9], Theorem

4.1).
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Definition 1.7 ([21]) . The finiteness degree of the iterated conver-
gence exponent of the sequence of zeros of a meromorphic function
f (z) is defined by

iλ(f) =


0, if n(r, 1

f
) = O(log r),

min{j ∈ N : λ(j,1)(f) < +∞}, if λ(j,1)(f) < +∞
for some j ∈ N,
+∞, if λ(j,1)(f) = +∞, for all j ∈ N.

For k ≥ 2, we consider the linear differential equation

(1.1) f (k) + Ak−1(z)f (k−1) + · · ·+ A1(z)f ′ + A0(z)f = 0,

where A0(z) 6≡ 0. When the coefficients A0(z), A1(z), · · · , Ak−1(z) are
entire functions, it is well-known that all solutions of (1.1) are entire
functions, and that if some coefficients of (1.1) are transcendental then
(1.1) has at least one solution with infinite order. As much as we
know, the idea of the iterated order was first introduced by Bernal [4]
to express the fast growth of solutions of complex linear differential
equations. From then, many authors achieved further results on the
iterated order of solutions of (1.1), (see e.g. [1, 2, 3, 6, 7, 17, 21]).

Theorem A ([1]). Let Aj(z) (j = 0, 1, · · · , k− 1) be entire functions,
and let i(A0) = p (0 < p <∞). Assume that either

max{i(Aj) : j = 1, 2, · · · , k − 1} < p

or

max{σp(Aj) : j = 1, 2, · · · , k − 1} ≤ σp(A0) := σ (0 < σ <∞),

max{τp(Aj) : σp(Aj) = σp(A0)} < τp(A0) := τ (0 < τ <∞).

Then every solutionf(z) 6≡ 0 of (1.1) satisfies i(f) = p+ 1 and
σp+1(f) = σp(A0).

For the case when the dominant coefficient in (1.1) is of finite
iterated lower order, Hu and Zheng in [17], investigated the growth of
solutions of (1.1) and obtained the following result.

Theorem B ([17]). Let Aj(z) (j = 0, 1, · · · , k−1) be entire functions
of finite iterated order satisfying

max{σp(Aj) : j = 1, 2, · · · , k − 1} < µp(A0) ≤ σp(A0) <∞.
Then every solution f(z) 6≡ 0 of (1.1) satisfies

µp(A0) = µp+1(f) ≤ σp+1(f) = σp(A0).



120 A. FERRAOUN AND B. BELAÏDI

In [6], Cao, Xu and Chen considered the growth of meromorphic
solutions of equation (1.1) with meromorphic coefficients of finite iter-
ated order, and obtained the following result when A0 is the dominant
coefficient with finite iterated order.

Theorem C ([6]). Let Aj(z) (j = 0, 1, · · · , k − 1) be meromorphic
functions in the plane, and let i(A0) = p (0 < p < ∞). Assume that
either iλ(

1
A0

) < p or λp(
1
A0

) < σp(A0), and that either

max{i(Aj) : j = 1, 2, · · · , k − 1} < p

or

max{σp(Aj) : j = 1, 2, · · · , k − 1} ≤ σp(A0) := σ (0 < σ <∞),

max{τp(Aj) : σp(Aj) = σp(A0)} < τp(A0) := τ (0 < τ <∞).

Then every meromorphic solution f(z) 6≡ 0, whose poles are of uni-
formly bounded multiplicities, of (1.1) satisfies i(f) = p + 1 and
σp+1(f) = σp(A0).

In [24], Liu, Tu and Shi were the first to use the concepts of (p, q)-
order and (p, q)-type for the case p ≥ q ≥ 1 to investigate the growth
of entire solutions of (1.1), and obtained some results which improve
and generalize other results.

Theorem D ([24,Theorems 2.2 and 2.3]). Let p ≥ q ≥ 1, and let
A0(z), A1(z), · · · , Ak−1(z) be entire functions such that either

max{σ(p,q)(Aj) : j 6= 0} < σ(p,q)(A0) < +∞
or

max{σ(p,q)(Aj) : j 6= 0} ≤ σ(p,q)(A0) < +∞,
max{τ(p,q)(Aj) : σ(p,q)(Aj) = σ(p,q)(A0) > 0} < τ(p,q)(A0).

Then every solution f(z) 6≡ 0 of (1.1) satisfies σ(p+1,q)(f) = σ(p,q)(A0).

In Theorems A and D, the authors investigated the growth of the
solutions of (1.1) when the coefficients are of finite iterated order or
finite (p, q)-order. A natural question occurs: How about the growth of
solutions of (1.1) when the coefficients are of order zero? Recently, the
concept of logarithmic order has been used to investigate the growth
and the oscillation of solutions of linear differential equations in the
complex plane [5] and in the unit disc ([15] , [16]). In [5], Cao, Liu and
Wang discussed the above question and obtained the following result,
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when the dominant coefficient A0 is transcendental and of order zero,
by making use of the idea of the logarithmic order due to Chern [9].

Theorem E ([5]). Let Aj(z) (j = 0, 1, · · · , k − 1) be entire functions
of finite logarithmic order. If A0(z) is transcendental and satisfies

max{σ(1,2)(Aj) : j = 1, · · · , k − 1} = σ(1,2)(A0) <∞,
and

max{τ(1,2)(Aj) : σ(1,2)(Aj) = σ(1,2)(A0)} < τ(1,2)(A0) ≤ ∞,
then every transcendental solution f(z) of equation (1.1) satisfies
σ(2,1)(f) = 0 and

1 ≤ σ(1,2)(A0) ≤ σ(2,2)(f) ≤ σ(1,2)(A0) + 1.

Furthermore, if σ(1,2)(A0) > 1, then the degree of any nonzero poly-
nomial solution of (1.1) is not less than τ(1,2)(A0); if σ(1,2)(A0) = 1,
then any nonzero solution of (1.1) can not be a polynomial.

2. Main results

Now we consider the following questions: Firstly, what do we say
about the growth of solutions of (1.1) in Theorems B and C when the
dominant coefficient is of finite logarithmic lower order? And secondly,
can we extend the above results when the coefficients are meromorphic
functions of finite logarithmic order? In this paper, we consider the
above questions and obtain the following results.

Theorem 2.1 Let Aj(z) (j = 0, 1, · · · , k − 1) be entire functions
satisfying

max{σ(1,2)(Aj) : j = 1, 2, · · · , k − 1} < µ(1,2)(A0)

≤ σ(1,2)(A0) := σ <∞.
Then every solution f(z) 6≡ 0 of (1.1) satisfies

1 ≤ µ(1,2)(A0) ≤ µ(2,2)(f) ≤ µ(1,2)(A0) + 1,

σ(2,1)(f) = 0 and 1 ≤ σ(1,2)(A0) ≤ σ(2,2)(f) = λ(2,2)(f − ϕ)

= λ̄(2,2)(f − ϕ) ≤ σ(1,2)(A0) + 1,

where ϕ(z) 6≡ 0 is an entire function satisfying σ(2,2)(ϕ) < µ(1,2)(A0).

Theorem 2.2 Let Aj(z) (j = 0, 1, · · · , k − 1) be entire functions of
finite logarithmic order. If A0(z) is transcendental and satisfies

max{σ(1,2)(Aj) : j = 1, 2, · · · , k − 1} ≤ µ(1,2)(A0) := µ <∞,
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lim
r→+∞

k−1∑
j=1

m(r, Aj)/m(r, A0) < 1,

then every transcendental solution f(z) of (1.1) satisfies

µ(1,2)(A0) ≤ µ(2,2)(f) ≤ µ(1,2)(A0) + 1,

σ(2,1)(f) = 0 and 1 ≤ σ(1,2)(A0) ≤ σ(2,2)(f) = λ(2,2)(f − ϕ)

= λ̄(2,2)(f − ϕ) ≤ σ(1,2)(A0) + 1,

where ϕ(z) 6≡ 0 is an entire function satisfying σ(2,2)(ϕ) < µ(1,2)(A0).

Theorem 2.3 Let Aj(z) (j = 0, 1, · · · , k − 1) be entire functions of
finite logarithmic order. If A0(z) is transcendental and satisfies

max{σ(1,2)(Aj) : j 6= 0} ≤ µ(1,2)(A0) ≤ σ(1,2)(A0) <∞,

τ1 := max{τ(1,2)(Aj) : σ(1,2)(Aj) = µ(1,2)(A0), j 6= 0}
< τ (1,2)(A0) := τ <∞,

then every transcendental solution f(z) of equation (1.1)

µ(1,2)(A0) ≤ µ(2,2)(f) ≤ µ(1,2)(A0) + 1,

σ(2,1)(f) = 0 and 1 ≤ σ(1,2)(A0) ≤ σ(2,2)(f) = λ(2,2)(f − ϕ)

= λ̄(2,2)(f − ϕ) ≤ σ(1,2)(A0) + 1,

where ϕ(z) 6≡ 0 is an entire function satisfying σ(2,2)(ϕ) < µ(1,2)(A0).

Our next results are for the case when the coefficients Aj(z) are
meromorphic functions.

Theorem 2.4 Let Aj(z) (j = 0, 1, · · · , k − 1) be meromorphic func-

tions. Assume that λ(1,2)

(
1
A0

)
< σ(1,2)(A0), and

max{σ(1,2)(Aj) : j = 1, 2, · · · , k − 1} < σ(1,2)(A0) := σ <∞.
Then every meromorphic solution f(z) 6≡ 0 of (1.1) satisfies

σ(2,2)(f) ≥ σ(1,2)(A0) ≥ 1.

Theorem 2.5 Let Aj(z) (j = 0, 1, · · · , k − 1) be meromorphic func-

tions of finite logarithmic order. Assume that λ(1,2)

(
1
A0

)
< µ(1,2)(A0),

and

max{σ(1,2)(Aj) : j = 1, 2, · · · , k − 1} < µ(1,2)(A0) ≤ σ(1,2)(A0) <∞.
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Then every meromorphic solution f(z) 6≡ 0 of the equation (1.1) sat-
isfies σ(2,2)(f) ≥ µ(2,2)(f) ≥ µ(1,2)(A0) ≥ 1.

Replacing the dominant coefficient A0 by an arbitrary coefficient
As, where s ∈ {0, 1, · · · , k − 1}, we obtain the following results.

Theorem 2.6 Let Aj(z) (j = 0, 1, · · · , k − 1) be non-constant mero-
morphic functions. Suppose that there exists one As(z) (0 ≤ s ≤ k−1)

satisfying λ(1,2)

(
1
As

)
< σ(1,2)(As), and

max
{
σ(1,2)(Aj) : j 6= s

}
< σ(1,2)(As) := σ <∞,

Then every transcendental meromorphic solution f (z) of (1.1) satis-
fies σ(1,2)(f) ≥ σ(1,2)(As) > 1, and every non-transcendental mero-
morphic solution f(z) 6≡ 0 of (1.1) is a polynomial with degree
deg(f) ≤ s − 1 if s ≥ 1. Furthermore, if all solutions f(z) 6≡ 0
of (1.1) are meromorphic functions, then there is at least one mero-
morphic solution f1(z) which satisfies σ(2,2)(f1) ≥ σ(1,2)(As) > 1.

Theorem 2.7 Let Aj(z) (j = 0, 1, · · · , k − 1) be non-constant mero-
morphic functions. Suppose that there exists one As(z) (0 ≤ s ≤ k−1)

satisfying λ(1,2)

(
1
As

)
< µ(1,2)(As), and

max
{
σ(1,2)(Aj) : j 6= s

}
< µ(1,2)(As) ≤ σ(1,2)(As) := σ <∞.

Then every transcendental meromorphic solution f (z) of (1.1) sat-
isfies σ(1,2)(f) ≥ µ(1,2)(f) ≥ µ(1,2)(As) > 1, and every non-
transcendental meromorphic solution f (z) 6≡ 0 of (1.1) is a poly-
nomial with degree deg(f) ≤ s − 1 if s ≥ 1. Furthermore, if all
solutions f(z) 6≡ 0 of (1.1) are meromorphic functions, then there is
at least one meromorphic solution f1(z) which satisfies σ(2,2)(f1) ≥
µ(2,2)(f1) ≥ µ(1,2)(As) > 1.

Set g(z) = f(z) − z. Then we have λ̄(2,2)(f − z) = λ̄(2,2)(g) and
σ(2,2)(f) = σ(2,2)(g). Many authors have investigated the problems on
the fixed points and the distinct fixed points of solutions of linear dif-
ferential equations and obtained some valuables results [2, 3, 6, 8, 25].
In the following results, we obtained some estimates of distinct fixed
points of meromorphic solutions of (1.1).
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Theorem 2.8 Under the hypotheses of Theorem 2.4, if σ(1,2)(A0) > 1,
then every meromorphic solution f(z) 6≡ 0 of (1.1) satisfies λ̄(2,2)(f −
z) = σ(2,2)(f) ≥ σ(1,2)(A0) > 1.

Theorem 2.9 Under the hypotheses of Theorem 2.6, if A1(z) +
zA0(z) 6≡ 0 and all solutions of (1.1) are meromorphic then any tran-
scendental meromorphic solution f(z) with σ(1,2)(f) > σ(1,2)(As) > 1
satisfies λ̄(1,2)(f−z) = σ(1,2)(f). Furthermore, there exists at least one
solution f1(z) satisfying λ̄(2,2)(f1 − z) = σ(2,2)(f1) ≥ σ(1,2)(As) > 1.

3. Preliminary lemmas

In order to prove our theorems, we need the following lemmas.

Lemma 3.1 ([14]). Let k and j be integers such that k > j ≥ 0. Let
f be a meromorphic function in the plane C such that f (j) does not
vanish identically. Then, there exists an r0 > 1 such that

m(r,
f (k)

f (j)
) ≤ (k − j) log+ ρ(T (ρ, f))

r(ρ− r)
+ log

k!

j!
+ (k − j)5.3078,

for all r0 < r < ρ < +∞. If f is of finite order s, then

lim sup
r→+∞

m(r, f
(k)

f (j)
)

log r
≤ max{0, (k − j)(s− 1)}.

Lemma 3.2 Let f(z) be a meromorphic function with σ(1,2)(f) <∞.
Then for any given ε > 0, there exists a set E1 ⊂ (1,+∞) having
infinite logarithmic measure such that for all r ∈ E1, we have

σ(1,2)(f) = lim
r→+∞,r∈E1

log T (r, f)

log log r
.

Proof. By the definition of the logarithmic order, there exists a se-
quence {rn}∞n=1 tending to ∞ satisfying (1 + 1

n
)rn < rn+1, and

lim
rn→+∞

log T (rn, f)

log log rn
= σ(1,2)(f).

Then, for any given ε > 0, there exists an n1 such that for n ≥ n1 and
any r ∈ [rn, (1 + 1

n
)rn], we have

log T (rn, f)

log log(1 + 1
n
)rn
≤ log T (r, f)

log log r
≤

log T ((1 + 1
n
)rn, f)

log log rn
.
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Set E1 =
∞⋃

n=n1

[rn, (1 + 1
n
)rn]. Then for any r ∈ E1, we have

lim
r→+∞,r∈E1

log T (r, f)

log log r
= lim

rn→+∞

log T (rn, f)

log log rn
= σ(1,2)(f),

and

mlE1 =
∞∑

n=n1

(1+ 1
n
)rn∫

rn

dt

t
=

∞∑
n=n1

log(1 +
1

n
) =∞.

Lemma 3.3 ([12]). Let g : [0,+∞) → R and h : [0,+∞) → R
be monotone nondecreasing functions such that g(r) ≤ h(r) for all
r 6∈ [0, 1] ∪ E2 where E2 ⊂ (1,+∞) is a set of finite logarithmic
measure. Then for any α > 1, there exists an r0 = r0(α) > 0 such
that g(r) ≤ h(αr) for all r > r0.

Lemma 3.4 ([22]). Let f(z) be a transcendental entire function. Then
there exists a set E3 ⊂ (1,+∞) with finite logarithmic measure such
that for all z satisfying |z| = r /∈ E3 and |f(z)| = M(r, f), we have

f (n)(z)

f(z)
=

(
νf (r)

z

)n
(1 + o(1)), (n ∈ N),

where νf (r) is the central index of f(z).

Lemma 3.5 ([19]). Let f(z) be an entire function of [p, q]-order and
lower [p, q]-order, and let νf (r) be a central index of f(z). Then

lim
r→+∞

logp νf (r)

logq r
= σ(p,q)(f), lim

r→+∞

logp νf (r)

logq r
= µ(p,q)(f).

Lemma 3.6 ([5]). Let Aj(z) (j = 0, 1, · · · , k − 1) be entire functions
such that max{σ(1,2)(Aj) : j = 1, 2, · · · , k − 1} < σ(1,2)(A0) < +∞.
Then any nonzero entire solution f (z) of (1.1) satisfies σ(2,2)(f) ≥
σ(1,2)(A0) ≥ 1.

Lemma 3.7 ([5]). Let Aj(z) (j = 0, 1, · · · , k − 1) be entire functions
such that max{σ(1,2)(Aj) : j = 0, 1, · · · , k − 1} ≤ α < +∞. Then any
solution f (z) of (1.1) satisfies σ(2,1)(f) = 0 and σ(2,2)(f) ≤ α + 1.

Lemma 3.8 ([11]). Let f(z) be a transcendental meromorphic func-
tion in the plane, and let α > 1 be a given constant. Then there exist
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a set E4 ⊂ (1,+∞) that has a finite logarithmic measure, and a con-
stant B > 0 depending only on α and (m,n) (m,n ∈ {0, 1, · · · , k})
m < n such that for all z with |z| = r 6∈ [0, 1] ∪ E4, we have∣∣∣∣ f (n)(z)

f (m)(z)

∣∣∣∣ ≤ B

(
T (αr, f)

r
(logα r) log T (αr, f)

)n−m
.

Lemma 3.9 Let f(z) be an entire function with µ(1,2)(f) <∞. Then
for any given ε > 0, there exists a set E5 ⊂ (1,+∞) having infinite
logarithmic measure such that for all r ∈ E5, we have

µ(1,2)(f) = lim
r→+∞,r∈E5

log T (r, f)

log log r
= lim

r→+∞,r∈E5

log logM(r, f)

log log r

and for any given ε > 0

M(r, f) < exp{(log r)µ(1,2)(f)+ε}.
Proof. By the definition of the logarithmic lower order, there exists a
sequence {rn}∞n=1 tending to ∞ satisfying (1 + 1

n
)rn < rn+1, and

lim
rn→+∞

log logM(rn, f)

log log rn
= µ(1,2)(f).

Then for any given ε > 0, there exists an n2 such that for n ≥ n2 and
any r ∈

[
n
n+1

rn, rn
]
, we have

log logM( n
n+1

rn, f)

log log rn
≤ log logM(r, f)

log log r
≤ log logM(rn, f)

log log n
n+1

rn
.

Set E5 =
∞⋃

n=n2

[
n
n+1

rn, rn
]
. Then for any r ∈ E5, we have

lim
r→+∞,r∈E5

log logM(r, f)

log log r
= lim

rn→+∞

log logM(rn, f)

log log rn
= µ(1,2)(f),

and

mlE5 =
∞∑

n=n2

rn∫
n

n+1
rn

dt

t
=

∞∑
n=n2

log(1 +
1

n
) =∞.

Also, we have

lim
r→+∞,r∈E5

log T (r, f)

log log r
= lim

r→+∞,r∈E5

log logM(r, f)

log log r
.

Then for any given ε > 0

M(r, f) < exp{(log r)µ(1,2)(f)+ε}.
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Using similar proof as in the proof of Theorem 3.4 in [5] , we
obtain the following for the case of logarithmic order.

Lemma 3.10 Let Aj(z) (j = 0, 1, · · · , k − 1) and F (z) 6≡ 0 be mero-
morphic functions and let f(z) be a meromorphic solution of the equa-
tion

f (k) + Ak−1(z)f (k−1) + · · ·+ A1(z)f ′ + A0(z)f = F,

such that

max{σ(i,2)(F ), σ(i,2)(Aj) : j = 0, 1, · · · , k−1} < σ(i,2)(f) < +∞ (i = 1, 2).

Then we have

λ̄(i,2)(f) = λ(i,2)(f) = σ(i,2)(f) (i = 1, 2) .

Remark 3.1. The Lemma 3.10 was proved for i = 2 in [5] .

Lemma 3.11 Let Aj(z) (j = 0, 1, · · · , k − 1) be entire functions of
finite logarithmic order. If A0(z) is transcendental and satisfies

lim
r→+∞

k−1∑
j=1

m(r, Aj)/m(r, A0) < 1,

then every transcendental solution f (z) of (1.1) satisfies σ(2,1)(f) = 0
and

1 ≤ σ(1,2)(A0) ≤ σ(2,2)(f) ≤ σ(1,2)(A0) + 1.

Proof. We divide the proof into two parts : (i) σ(2,2)(f) ≥ σ(1,2)(A0) ≥ 1
and (ii) σ(2,1)(f) = 0, σ(2,2)(f) ≤ σ(1,2)(A0) + 1.
(i) Let f be a transcendental solution of (1.1) . By (1.1), we have

(3.1) −A0(z) =
f (k)

f
+ Ak−1(z)

f (k−1)

f
+ · · ·+ A1(z)

f ′

f
.

Using Lemma 3.1 and (3.1), we obtain

m(r, A0) ≤
k−1∑
j=1

m(r, Aj) +
k∑
j=1

m(r,
f (j)

f
) +O(1)

(3.2) ≤
k−1∑
j=1

m(r, Aj) + k2 log+ T (2r, f) +O(1).
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Suppose that

lim
r→+∞

k−1∑
j=1

m(r, Aj)/m(r, A0) = α < β < 1.

Then, for sufficiently large r, we have

(3.3)
k−1∑
j=1

m(r, Aj) < βm(r, A0).

By (3.2) and (3.3), we have

(3.4) (1− β)m(r, A0) ≤ k2 log+ T (2r, f) +O(1).

By σ(1,2)(A0) := σ ≥ 1 and Lemma 3.2, there exists a set E1 ⊂ (1,+∞)
having infinite logarithmic measure such that for all z satisfying |z| =
r ∈ E1 and for any given ε > 0, we have

(3.5) (1− β) (log r)σ−ε ≤ (1− β)m(r, A0) ≤ k2 log+ T (2r, f) +O(1).

Since ε > 0 is arbitrary, then by (3.5), we have

σ(2,2)(f) ≥ σ = σ(1,2)(A0) ≥ 1.

(ii) By (1.1), we have

(3.6)

∣∣∣∣f (k)(z)

f(z)

∣∣∣∣ ≤ |Ak−1(z)|
∣∣∣∣f (k−1)(z)

f(z)

∣∣∣∣+· · ·+|A1(z)|
∣∣∣∣f ′(z)

f(z)

∣∣∣∣+|A0(z)| .

By Lemma 3.4 and (3.6), there exists a set E3 ⊂ (1,+∞) with finite
logarithmic measure such that for all z satisfying |z| = r /∈ E3 and
|f(z)| = M(r, f), we have(

νf (r)

r

)k
|1 + o(1)|

(3.7) ≤ (|Ak−1(z)|+ |Ak−2(z)|+ · · ·+ |A0(z)|)
(
νf (r)

r

)k−1
|1 + o(1)| .

By (3.3) and σ(1,2)(A0) = σ, it is clear that σ(1,2)(Aj) ≤ σ, j =
1, · · · , k − 1. Then, by the definition of the logarithmic order for any
given ε > 0 and sufficiently large r, we have

(3.8) |Aj(z)| ≤M(r, Aj) ≤ exp{(log r)σ+ε}, j = 1, · · · , k − 1.
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Therefore, by (3.7) and (3.8), for all z satisfying |z| = r /∈ E3, and
|f(z)| = M(r, f), we have(

νf (r)

r

)k
|1 + o(1)| ≤ k exp{(log r)σ+ε}

(
νf (r)

r

)k−1
|1 + o(1)| ,

that is,

(3.9) νf (r) |1 + o(1)| ≤ kr exp{(log r)σ+ε} |1 + o(1)| .
By Lemma 3.3, Lemma 3.5 and (3.9), we have σ(2,1)(f) = 0 and
σ(2,2)(f) ≤ σ(1,2)(A0) + 1. From (i) and (ii), we get 1 ≤ σ(1,2)(A0) ≤
σ(2,2)(f) ≤ σ(1,2)(A0) + 1.

Lemma 3.12 ([5]). Let φ(r) be a continuous and positive increasing
function, defined for r on (0,+∞) with logarithmic order σ(1,2)(φ).
Then for any subset E6 of [0,+∞) that has finite linear measure,
there exists a sequence {rn}, rn 6∈ E6 such that

σ(1,2)(φ) = lim
rn→+∞

log φ(rn)

log log rn
.

Lemma 3.13 ([10]). Let f1, f2, · · · , fk be linearly independent mero-
morphic solutions of the differential equation (1.1) with meromorphic
functions A0, A1, · · · , Ak−1 in the plane as the coefficients. Then

m(r, Aj) = O

{
log

(
max
1≤n≤k

T (r, fn)

)}
(j = 0, 1, · · · , k − 1).

4. Proof of Theorem 2.1

Assume that f(z) 6≡ 0 is a solution of (1.1). Then, by Lemma 3.6,
we have σ(2,2)(f) ≥ σ(1,2)(A0) ≥ 1. On the other hand, by Lemma 3.7,
we have σ(2,1)(f) = 0 and σ(2,2)(f) ≤ σ(1,2)(A0) + 1. Thus, we obtain
σ(2,1)(f) = 0 and 1 ≤ σ(1,2)(A0) ≤ σ(2,2)(f) ≤ σ(1,2)(A0) + 1. Now, we
just need to prove (i) 1 ≤ µ(1,2)(A0) ≤ µ(2,2)(f) ≤ µ(1,2)(A0) + 1 and
(ii) λ̄(2,2)(f − ϕ) = λ(2,2)(f − ϕ) = σ(2,2)(f).
(i) By (1.1), we have

(4.1) |A0(z)| ≤
∣∣∣∣f (k)

f

∣∣∣∣+ |Ak−1(z)|
∣∣∣∣f (k−1)

f

∣∣∣∣+ · · ·+ |A1(z)|
∣∣∣∣f ′f
∣∣∣∣ .

Set α := max{σ(1,2)(Aj) : j = 1, · · · , k − 1} < µ(1,2)(A0) ≤
σ(1,2)(A0) := σ < ∞. Then for any given ε (0 < 2ε < µ(1,2)(A0) − α)
and for sufficiently large r, we have

(4.2) M(r, A0) ≥ exp{(log r)µ(1,2)(A0)−ε}
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and

(4.3) M(r, Aj) ≤ exp{(log r)α+ε}, j = 1, · · · , k − 1.

By Lemma 3.8, there exist a set E4 ⊂ (1,+∞) that has a finite
logarithmic measure and a constant B > 0 such that for all z with
|z| = r 6∈ [0, 1] ∪ E4, we have

(4.4)

∣∣∣∣f (j)(z)

f(z)

∣∣∣∣ ≤ B (T (2r, f))k+1 , j = 1, · · · , k.

By substituting (4.2)− (4.4) into (4.1), for the above ε, we get

(4.5) exp{(log r)µ(1,2)(A0)−ε} ≤ Bk exp{(log r)α+ε} [T (2r, f)]k+1 ,

for all z satisfying |z| = r 6∈ [0, 1]∪E4, r →∞ and |A0(z)| = M(r, A0).
By Lemma 3.3 and (4.5), we have µ(2,2)(f) ≥ µ(1,2)(A0)−ε. Since ε > 0
is arbitrary, then

(4.6) µ(2,2)(f) ≥ µ(1,2)(A0) ≥ 1.

From (1.1), we get

(4.7)

∣∣∣∣f (k)(z)

f(z)

∣∣∣∣ ≤ |Ak−1(z)|
∣∣∣∣f (k−1)(z)

f(z)

∣∣∣∣+· · ·+|A1(z)|
∣∣∣∣f ′(z)

f(z)

∣∣∣∣+|A0(z)| .

By Lemma 3.4, there exists a set E3 ⊂ (1,+∞) having finite log-
arithmic measure such that for all z satisfying |z| = r /∈ E3 and
|f(z)| = M(r, f), we have

(4.8)
f (j)(z)

f(z)
=

(
νf (r)

z

)j
(1 + o(1)), (j = 1, · · · , k).

By Lemma 3.9, there exists a set E5 ⊂ (1,+∞) having infinite loga-
rithmic measure such that for all |z| = r ∈ E5, we have

(4.9) |A0(z)| ≤M(r, A0) ≤ exp{(log r)µ(1,2)(A0)+ε}.
Hence, by (4.3), (4.7)− (4.9), for all |z| = r ∈ E5\E3, we get(
νf (r)

r

)k
|1 + o(1)| ≤ k exp{(log r)µ(1,2)(A0)+ε}

(
νf (r)

r

)k−1
|1 + o(1)| ,

that is

(4.10) νf (r) |1 + o(1)| ≤ kr |1 + o(1)| exp{(log r)µ(1,2)(A0)+ε}.
Since ε > 0 is arbitrary, then by Lemma 3.3, Lemma 3.5 and (4.10),
we have

(4.11) µ(2,2)(f) ≤ µ(1,2)(A0) + 1.
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By (4.6) and (4.11), we obtain

1 ≤ µ(1,2)(A0) ≤ µ(2,2)(f) ≤ µ(1,2)(A0) + 1.

(ii) Now, we prove that λ̄(2,2)(f − ϕ) = λ(2,2)(f − ϕ) = σ(2,2)(f). Set
g = f − ϕ. Since σ(2,2)(ϕ) < µ(1,2)(A0) ≤ σ(1,2)(A0), then we have
σ(2,2)(g) = σ(2,2)(f), λ(2,2)(g) = λ(2,2)(f−ϕ) and λ̄(2,2)(g) = λ̄(2,2)(f−ϕ).
Substituting f = g + ϕ into (1.1), we obtain

g(k) + Ak−1(z)g(k−1) + · · ·+ A1(z)g′ + A0(z)g

(4.12) = −[ϕ(k) + Ak−1(z)ϕ(k−1) + · · ·+ A1(z)ϕ′ + A0(z)ϕ].

If G(z) = ϕ(k) + Ak−1(z)ϕ(k−1) + · · · + A1(z)ϕ′ + A0(z)ϕ ≡ 0, then
by part (i), we have σ(2,2)(ϕ) ≥ µ(2,2)(ϕ) ≥ µ(1,2)(A0), which is a
contradiction. Hence G(z) 6≡ 0. Since G(z) 6≡ 0 and σ(2,2)(G) ≤
σ(2,2)(ϕ) < µ(1,2)(A0) ≤ σ(1,2)(A0) ≤ σ(2,2)(g), then by Lemma 3.10
and (4.12), we have

1 ≤ σ(1,2)(A0) ≤ λ̄(2,2)(g) = λ(2,2)(g) = σ(2,2)(g)

= σ(2,2)(f) ≤ σ(1,2)(A0) + 1.

That is,

1 ≤ σ(1,2)(A0) ≤ λ̄(2,2)(f−ϕ) = λ(2,2)(f−ϕ) = σ(2,2)(f) ≤ σ(1,2)(A0)+1.

5. Proof of Theorem 2.2

Assume that f(z) is a transcendental solution of (1.1). Then, by
Lemma 3.11, we have σ(2,1)(f) = 0 and 1 ≤ σ(1,2)(A0) ≤ σ(2,2)(f) ≤
σ(1,2)(A0)+1. Now it only remains to prove (i) µ(1,2)(A0) ≤ µ(2,2)(f) ≤
µ(1,2)(A0) + 1 and (ii) λ̄(2,2)(f − ϕ) = λ(2,2)(f − ϕ) = σ(2,2)(f).
(i) By µ(1,2)(A0) := µ, for any given ε > 0 and sufficiently large r, we
get

(5.1) m(r, A0) ≥ (log r)µ−ε .

By (3.4) and (5.1), for the above ε and sufficiently large r, we have

(5.2) (1− β) (log r)µ−ε ≤ k2 log+ T (2r, f) +O(1).

Since ε > 0 is arbitrary, then by (5.2), we obtain

µ(2,2)(f) ≥ µ = µ(1,2)(A0).

On the other hand, since max{σ(1,2)(Aj) : j = 1, 2, · · · , k − 1} ≤
µ(1,2)(A0) := µ, then for any given ε > 0 and sufficiently large r, we
have

(5.3) |Aj(z)| ≤ exp{(log r)µ+ε}, j = 1, 2, · · · , k − 1.
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By Lemma 3.9, there exists a set E5 ⊂ (1,+∞) having infinite loga-
rithmic measure such that for all |z| = r ∈ E5, we have

(5.4) |A0(z)| ≤ exp{(log r)µ+ε}.

Hence, by (4.7), (4.8), (5.3) and (5.4), for sufficiently large |z| = r ∈
E5\E3, we have(

νf (r)

r

)k
|1 + o(1)| ≤ k exp{(log r)µ+ε}

(
νf (r)

r

)k−1
|1 + o(1)| ,

that is

(5.5) νf (r) |1 + o(1)| ≤ kr |1 + o(1)| exp{(log r)µ+ε.

Since ε > 0 is arbitrary, then by Lemma 3.3, Lemma 3.5 and (5.5), we
have

µ(2,2)(f) ≤ µ+ 1 = µ(1,2)(A0) + 1.

Thus, we have

µ(1,2)(A0) ≤ µ(2,2)(f) ≤ µ(1,2)(A0) + 1.

(ii) We prove that λ̄(2,2)(f − ϕ) = λ(2,2)(f − ϕ) = σ(2,2)(f). Set
g = f − ϕ. Since σ(2,2)(ϕ) < µ(1,2)(A0) ≤ σ(1,2)(A0), then we have
σ(2,2)(g) = σ(2,2)(f), λ(2,2)(g) = λ(2,2)(f−ϕ) and λ̄(2,2)(g) = λ̄(2,2)(f−ϕ).
Substituting f = g + ϕ into (1.1), we obtain

g(k) + Ak−1(z)g(k−1) + · · ·+ A1(z)g′ + A0(z)g

(5.6) = −[ϕ(k) + Ak−1(z)ϕ(k−1) + · · ·+ A1(z)ϕ′ + A0(z)ϕ].

If G(z) = ϕ(k) + Ak−1(z)ϕ(k−1) + · · · + A1(z)ϕ′ + A0(z)ϕ ≡ 0, then
by part (i), we have σ(2,2)(ϕ) ≥ µ(2,2)(ϕ) ≥ µ(1,2)(A0), which is a
contradiction. Hence G(z) 6≡ 0. Since G(z) 6≡ 0 and σ(2,2)(G) <
σ(2,2)(g), then by Lemma 3.10 and (5.6), we have

1 ≤ σ(1,2)(A0) ≤ λ̄(2,2)(g) = λ(2,2)(g) = σ(2,2)(g)

= σ(2,2)(f) ≤ σ(1,2)(A0) + 1.

That is,

1 ≤ σ(1,2)(A0) ≤ λ̄(2,2)(f−ϕ) = λ(2,2)(f−ϕ) = σ(2,2)(f) ≤ σ(1,2)(A0)+1.
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6. Proof of Theorem 2.3

Assume that f(z) is a transcendental solution of (1.1). First, we prove
that σ(2,1)(f) = 0 and 1 ≤ σ(1,2)(A0) ≤ σ(2,2)(f) ≤ σ(1,2)(A0) + 1. By
Lemma 3.7, we have σ(2,1)(f) = 0 and σ(2,2)(f) ≤ σ(1,2)(A0) + 1. Now
it only remains to prove (i) σ(2,2)(f) ≥ σ(1,2)(A0) ≥ 1, µ(1,2)(A0) ≤
µ(2,2)(f) ≤ µ(1,2)(A0)+1 and (ii) λ̄(2,2)(f−ϕ) = λ(2,2)(f−ϕ) = σ(2,2)(f).
(i) We set d := max{σ(1,2)(Aj) : σ(1,2)(Aj) < σ(1,2)(A0)}. If σ(1,2)(Aj) <
µ(1,2)(A0) ≤ σ(1,2)(A0) or σ(1,2)(Aj) ≤ µ(1,2)(A0) < σ(1,2)(A0) then for
any given ε (0 < 2ε < σ(1,2)(A0) − d) and for sufficiently large r, we
have

(6.1) M(r, Aj) ≤ exp{(log r)d+ε} ≤ exp{(log r)σ(1,2)(A0)−ε}.
If σ(1,2)(Aj) = µ(1,2)(A0) = σ(1,2)(A0), then we have τ(1,2)(Aj) ≤ τ1 <
τ2 := τ(1,2)(A0), so for sufficiently large r and for any given ε (0 < 2ε <
τ2 − τ1) we have

(6.2) M(r, Aj) ≤ exp{(τ1 + ε)(log r)σ(1,2)(A0)},

(6.3) M(r, A0) ≥ exp{(τ2 − ε)(log r)σ(1,2)(A0)}.
By (6.1)−(6.3), (4.1) and (4.4), for sufficiently large |z| = r 6∈ [0, 1]∪E4

and for the above ε, we obtain
(6.4)

exp{(τ2−ε)(log r)σ(1,2)(A0)} ≤ Bk [T (2r, f)]k+1 exp{(τ1+ε)(log r)σ(1,2)(A0)}.
By Lemma 3.3 and (6.4), we have

1 ≤ σ(1,2)(A0) ≤ σ(2,2)(f).

Therefore, σ(2,1)(f) = 0 and

1 ≤ σ(1,2)(A0) ≤ σ(2,2)(f) ≤ σ(1,2)(A0) + 1.

Now, we return to prove that µ(1,2)(A0) ≤ µ(2,2)(f) ≤ µ(1,2)(A0) + 1.
On one hand, we set b := max{σ(1,2)(Aj) : σ(1,2)(Aj) < µ(1,2)(A0)}. If
σ(1,2)(Aj) < µ(1,2)(A0), then for any given ε (0 < 2ε < min{µ(1,2)(A0)−
b, τ − τ1}) and for sufficiently large r, we have

(6.5) M(r, Aj) ≤ exp{(log r)b+ε} ≤ exp{(log r)µ(1,2)(A0)−ε}.
If σ(1,2)(Aj) = µ(1,2)(A0), τ(1,2)(Aj) ≤ τ1 < τ := τ (1,2)(A0), then for
sufficiently large r, we have

(6.6) M(r, Aj) ≤ exp{(τ1 + ε)(log r)µ(1,2)(A0)},

(6.7) M(r, A0) ≥ exp{(τ − ε)(log r)µ(1,2)(A0)}.
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By (6.5)−(6.7), (4.1) and (4.4), for sufficiently large |z| = r 6∈ [0, 1]∪E4

and for the above ε, we obtain
(6.8)

exp{(τ−ε)(log r)µ(1,2)(A0)} ≤ Bk [T (2r, f)]k+1 exp{(τ1+ε)(log r)µ(1,2)(A0)}.
By Lemma 3.3 and (6.8), we have

µ(1,2)(A0) ≤ µ(2,2)(f).

On the other hand, by Lemma 3.9, there exists a set E5 ⊂ (1,+∞)
having infinite logarithmic measure such that for all |z| = r ∈ E5, we
have

(6.9) |A0(z)| ≤M(r, A0) ≤ exp{(log r)µ(1,2)(A0)+ε}.
By (4.7), (4.8), (6.5), (6.6) and (6.9), for sufficiently large |z| = r ∈
E5\E3, we have

(6.10) νf (r) |1 + o(1)| ≤ kr |1 + o(1)| exp{(log r)µ(1,2)(A0)+ε}.
Since ε (0 < 2ε < min{µ(1,2)(A0) − b, τ − τ1}) is arbitrary, then by
Lemma 3.3, Lemma 3.5 and (6.10), we have

µ(2,2)(f) ≤ µ(1,2)(A0) + 1.

Therefore,

µ(1,2)(A0) ≤ µ(2,2)(f) ≤ µ(1,2)(A0) + 1.

(ii) We prove that λ̄(2,2)(f − ϕ) = λ(2,2)(f − ϕ) = σ(2,2)(f). Set
g = f − ϕ. Since σ(2,2)(ϕ) < µ(1,2)(A0) ≤ σ(1,2)(A0), then we have
σ(2,2)(g) = σ(2,2)(f), λ(2,2)(g) = λ(2,2)(f−ϕ) and λ̄(2,2)(g) = λ̄(2,2)(f−ϕ).
Substituting f = g + ϕ into (1.1), we obtain

g(k) + Ak−1(z)g(k−1) + · · ·+ A1(z)g′ + A0(z)g

(6.11) = −[ϕ(k) + Ak−1(z)ϕ(k−1) + · · ·+ A1(z)ϕ′ + A0(z)ϕ].

If G(z) = ϕ(k) + Ak−1(z)ϕ(k−1) + · · · + A1(z)ϕ′ + A0(z)ϕ ≡ 0, then
by part (i), we have σ(2,2)(ϕ) ≥ µ(2,2)(ϕ) ≥ µ(1,2)(A0), which is a
contradiction. Hence G(z) 6≡ 0. Since G(z) 6≡ 0 and σ(2,2)(G) <
σ(2,2)(g), then by Lemma 3.10 and (6.11), we have

1 ≤ σ(1,2)(A0) ≤ λ̄(2,2)(g) = λ(2,2)(g) = σ(2,2)(g)

= σ(2,2)(f) ≤ σ(1,2)(A0) + 1.

That is,

1 ≤ σ(1,2)(A0) ≤ λ̄(2,2)(f−ϕ) = λ(2,2)(f−ϕ) = σ(2,2)(f) ≤ σ(1,2)(A0)+1.
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7. Proof of Theorem 2.4

Assume that f(z) 6≡ 0 is a meromorphic solution of (1.1). By (1.1),
we have

(7.1) −A0(z) =
f (k)

f
+ Ak−1(z)

f (k−1)

f
+ · · ·+ A1(z)

f ′

f
.

By Lemma 3.1 and (7.1), we have

m(r, A0) ≤
k−1∑
j=1

m(r, Aj) +
k∑
j=1

m(r,
f (j)

f
) +O(1)

(7.2) ≤
k−1∑
j=1

m(r, Aj) + k2 log+ T (2r, f) +O(1).

Hence, we obtain

T (r, A0) = N(r, A0) +m(r, A0)

(7.3) ≤ N(r, A0) +
k−1∑
j=1

m(r, Aj) + k2 log+ T (2r, f) +O(1).

By λ(1,2)(
1
A0

) < σ(1,2)(A0) := σ, for any given ε (0 < 2ε < σ −
λ(1,2)(

1
A0

)), we have

(7.4) N(r, A0) ≤ (log r)
λ(1,2)(

1
A0

)+ε
.

Set b := max{σ(1,2)(Aj) : j = 1, · · · , k− 1} < σ(1,2)(A0) := σ. Then for
any given ε (0 < 2ε < σ − b), we have

(7.5) m(r, Aj) ≤ T (r, Aj) ≤ (log r)b+ε , (j = 1, · · · , k − 1).

Since σ(1,2)(A0) := σ ≥ 1, then by Lemma 3.12, for any subset E6 of
[0,+∞) that has finite linear measure, there exists a sequence {rn},
rn →∞, such that for all rn 6∈ E6 and for any given ε (0 < 2ε < σ−b)
we have

(7.6) T (rn, A0) ≥ (log rn)σ−ε .

Hence, by substituting (7.4) − (7.6) into (7.3), for all |z| = rn 6∈ E6,
we obtain

(log rn)σ−ε ≤ (log rn)
λ(1,2)(

1
A0

)+ε
+ (k − 1) (log rn)b+ε

+k2 log+ T (2rn, f) +O(1),
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that is

(7.7) (1− o(1)) (log rn)σ−ε ≤ k2 log+ T (2rn, f).

Since ε
(

0 < 2ε < min
{
σ − b, σ − λ(1,2)( 1

A0
)
})

is arbitrary, then by

(7.7), we have
σ(2,2)(f) ≥ σ(1,2)(A0) ≥ 1.

8. Proof of Theorem 2.5

Assume that f(z) 6≡ 0 is a meromorphic solution of (1.1). By Lemma
3.1 and (7.1), we have

(8.1) m(r, A0) ≤
k−1∑
j=1

m(r, Aj) + k2 log+ T (2r, f) +O(1).

By λ(1,2)(
1
A0

) < µ(1,2)(A0), we have

(8.2) N(r, A0) = o(T (r, A0)), r → +∞.
Therefore, by (8.2) we have

(8.3) µ(1,2)(A0) = lim
r→+∞

logm(r, A0)

log log r
.

By (8.3), for sufficiently large r, we have

(8.4) m(r, A0) ≥ (log r)µ(1,2)(A0)−ε.

Set c := max{σ(1,2)(Aj) : j 6= 0} < µ(1,2)(A0). Then for sufficiently
large r and any given ε (0 < 2ε < µ(1,2)(A0)− c)
(8.5) m(r, Aj) ≤ (log r)c+ε.

From (8.1), (8.4) and (8.5), it follows that

(8.6) (log r)µ(1,2)(A0)−ε ≤ (k − 1)(log r)c+ε + k2 log+ T (2r, f) +O(1).

By (8.6) and ε (0 < 2ε < µ(1,2)(A0)−c), we have σ(2,2)(f) ≥ µ(2,2)(f) ≥
µ(1,2)(A0) ≥ 1.

9. Proof of Theorem 2.6

Suppose that f(z) 6≡ 0 is a rational solution of (1.1). If either f(z)
is a rational function which has a pole at z0 ∈ C of order α(≥ 1), or
f(z) is a polynomial with degree deg(f) ≥ s, then f (s)(z) 6≡ 0. Set
b := max{σ(1,2)(Aj) : j 6= s and j = 0, 1, · · · , k − 1} < σ(1,2)(As) := σ.
Then, for any given ε (0 < 2ε < σ − b), we have

(9.1) m(r, Aj) ≤ T (r, Aj) ≤ (log r)b+ε , (j ∈ {0, 1, · · · , k − 1}\{s}).
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Since σ(1,2)(As) := σ > 1, by Lemma 3.12, for any subset E6 of [0,+∞)
that has finite linear measure, there exists a sequence {rn}, rn →∞,
such that for any given ε (0 < 2ε < σ− b) and for all rn 6∈ E6, we have

(9.2) T (rn, As) ≥ (log rn)σ−ε .

By λ(1,2)(
1
As

) < σ(1,2)(As) := σ, for any given ε (0 < 2ε < σ −
λ(1,2)(

1
As

)), we have

(9.3) N(r, As) ≤ (log r)λ(1,2)(
1
As

)+ε .

By (1.1), we can write

−As(z) =
f

f (s)

[
f (k)

f
+ Ak−1(z)

f (k−1)

f
+ · · ·+ As+1(z)

f (s+1)

f

(9.4) +As−1(z)
f (s−1)

f
+ · · ·+ A1(z)

f ′

f
+ A0(z)

]
.

Noting that

m(r,
f

f (s)
) ≤ m(r, f) +m(r,

1

f (s)
) ≤ T (r, f) + T (r,

1

f (s)
)

(9.5) = T (r, f) + T (r, f (s)) +O(1) = O(log r) +O(1).

By (9.4) and (9.5) , we obtain

m(r, As) ≤ m(r,
f

f (s)
) +

∑
j 6=s

m(r,
f (j)

f
) +

∑
j 6=s

m(r, Aj) +O(1)

(9.6) ≤
∑
j 6=s

m(r, Aj) +O(log r) +O(1).

By (9.6), we have

T (r, As) = N(r, As) +m(r, As)

(9.7) ≤ N(r, As) +
∑
j 6=s

m(r, Aj) +O(log r) +O(1).

Therefore, by substituting (9.1)− (9.3) into (9.7), for all rn 6∈ E6, we
get

(log rn)σ−ε ≤ (log rn)λ(1,2)(
1
As

)+ε + k (log rn)b+ε +O (log rn) +O(1).

Since σ > 1 and ε (0 < 2ε < min
{
σ − b, σ − λ(1,2)( 1

As
)
}

), then we

obtain a contradiction. Therefore, if f(z) 6≡ 0 is a non-transcendental
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meromorphic solution of (1.1), then it must be a polynomial with
degree deg(f) ≤ s− 1 if s ≥ 1.

Now we assume that f(z) is a transcendental meromorphic solu-
tion of (1.1). Note that

m(r,
f

f (s)
) ≤ m(r, f) +m(r,

1

f (s)
) ≤ T (r, f) + T (r,

1

f (s)
)

= T (r, f) + T (r, f (s)) +O(1) ≤ T (r, f) + (s+ 1)T (r, f)

(9.8) +o (T (r, f)) +O(1) = (s+ 2)T (r, f) + o (T (r, f)) +O(1).

By Lemma 3.1, (9.4) and (9.8), we get

m(r, As) ≤ m(r,
f

f (s)
) +

∑
j 6=s

m(r,
f (j)

f
) +

∑
j 6=s

m(r, Aj) +O(1)

≤
∑
j 6=s

m(r, Aj) + k2 log+ T (2r, f) + (s+ 2)T (r, f) + o (T (r, f)) +O(1).

Hence,
T (r, As) = N(r, As) +m(r, As)

(9.9) ≤ N(r, As) +
∑
j 6=s

m(r, Aj) + (s+ 2) (1 + o(1))T (r, f) +O(1).

Then, by substituting (9.1), (9.2) and (9.3) into (9.9), for all rn 6∈ E6,
we have

(9.10) (1− o(1)) (log rn)σ−ε ≤ (s+ 2) (1 + o(1))T (rn, f).

Since ε
(

0 < 2ε < min
{
σ − b, σ − λ(1,2)( 1

As
)
})

is arbitrary, then by

(9.10), we get
σ(1,2)(f) ≥ σ(1,2)(As) > 1.

Suppose that all solutions of (1.1) are meromorphic and that (1.1) has
a meromorphic solution base {f1, f2, · · · , fk}. By Lemma 3.13, we get

m(r, As) = O

{
log

(
max
1≤n≤k

T (r, fn)

)}
.

If N(r, As) > m(r, As) holds for all sufficiently large r, then

T (r, As) = N(r, As) +m(r, As) < 2N(r, As),

that is σ(1,2)(As) ≤ λ(1,2)(
1
As

), which contradicts the assumption

λ(1,2)(
1
As

) < σ(1,2)(As). Then, for all sufficiently large r, there holds

N(r, As) ≤ m(r, As).
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Hence, we obtain

T (r, As) = O

{
log

(
max
1≤n≤k

T (r, fn)

)}
.

This means that there exists one of {f1, f2, · · · , fk}, say f1, satisfying
T (r, As) = O {log T (r, f1)}. Hence, we have

σ(2,2)(f1) ≥ σ(1,2)(As) > 1.

10. Proof of Theorem 2.7

Suppose that f(z) 6≡ 0 is a rational solution of (1.1). If either f(z)
is a rational function which has a pole at z0 ∈ C of order α(≥ 1),
or f(z) is a polynomial with degree deg(f) ≥ s then f (s)(z) 6≡ 0. Set
b := max{σ(1,2)(Aj) : j 6= s and j = 0, 1, · · · , k − 1} < µ(1,2)(As) ≤
σ(1,2)(As) := σ < ∞. Then, for any given ε (0 < 2ε < µ(1,2)(As) − b)
and for all sufficiently large r, we have

(10.1) m(r, Aj) ≤ T (r, Aj) ≤ (log r)b+ε , (j ∈ {0, 1, · · · , k − 1}\{s}),

(10.2) T (r, As) ≥ (log r)µ(1,2)(As)−ε.

By λ(1,2)(
1
As

) < µ(1,2)(As), we have

(10.3) N(r, As) = o (T (r, As)) , r → +∞.

By (9.4) and (9.5) , we obtain

m(r, As) ≤ m(r,
f

f (s)
) +

∑
j 6=s

m(r,
f (j)

f
) +

∑
j 6=s

m(r, Aj) +O(1)

(10.4) ≤
∑
j 6=s

m(r, Aj) +O(log r) +O(1).

By (10.4), we get

T (r, As) = N(r, As) +m(r, As)

(10.5) ≤ N(r, As) +
∑
j 6=s

m(r, Aj) +O(log r) +O(1).

By (10.3) , it follows from (10.5) that

(10.6) (1− o (1))T (r, As) ≤
∑
j 6=s

m(r, Aj) +O(log r) +O(1).
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Therefore, by substituting (10.1) and (10.2) into (10.6), for any given
ε (0 < 2ε < µ(1,2)(As)− b) and for all sufficiently large r, we have

(log r)µ(1,2)(As)−ε ≤ k (log r)b+ε +O (log r) +O(1).

By µ(1,2)(As) > 1 and ε (0 < 2ε < µ(1,2)(As)− b), we obtain a contra-
diction. Therefore, if f(z) 6≡ 0 is a non-transcendental meromorphic
of (1.1), then it must be a polynomial with degree deg(f) ≤ s − 1 if
s ≥ 1.

Now we assume that f(z) is a transcendental meromorphic solu-
tion of (1.1). By Lemma 3.1, (9.4) and (9.8), we get

m(r, As) ≤ m(r,
f

f (s)
) +

∑
j 6=s

m(r,
f (j)

f
) +

∑
j 6=s

m(r, Aj) +O(1)

≤
∑
j 6=s

m(r, Aj) + k2 log+ T (2r, f) + (s+ 2)T (r, f) + o (T (r, f)) +O(1).

Hence,
T (r, As) = N(r, As) +m(r, As)

≤ N(r, As) +
∑
j 6=s

m(r, Aj) + (s+ 2) (1 + o(1))T (r, f) +O(1).

By (10.3) , it follows that
(10.7)

(1− o (1))T (r, As) ≤
∑
j 6=s

m(r, Aj) + (s+ 2) (1 + o(1))T (r, f) +O(1).

Then, by substituting (10.1) and (10.2) into (10.7), for any given ε
(0 < 2ε < µ(1,2)(As)− b) and for all sufficiently large r, we have

(10.8) (1− o(1)) (log r)µ(1,2)(As)−ε ≤ (s+ 2) (1 + o(1))T (r, f).

Since ε (0 < 2ε < µ(1,2)(As)− b) is arbitrary and (10.8), we obtain

σ(1,2)(f) ≥ µ(1,2)(f) ≥ µ(1,2)(As) > 1.

Suppose that all solutions of (1.1) are meromorphic and that (1.1) has
a meromorphic solution base {f1, f2, · · · , fk}. By Lemma 3.13, we get

m(r, As) = O

{
log

(
max
1≤n≤k

T (r, fn)

)}
.

By (10.3) for all sufficiently large r, we have

T (r, As) = N(r, As) +m(r, As) = o (T (r, As)) +m(r, As).

It follows that for all sufficiently large r

(1− o (1))T (r, As) = m(r, As).
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Hence, we obtain

T (r, As) = O

{
log

(
max
1≤n≤k

T (r, fn)

)}
.

This means that there exists one of {f1, f2, · · · , fk}, say f1, satisfying
T (r, As) = O {log T (r, f1)}. Hence, we have

σ(2,2)(f1) ≥ µ(2,2)(f1) ≥ µ(1,2)(As) > 1.

11. Proof of Theorem 2.8

By Theorem 2.4, we have σ(2,2)(f) ≥ σ(1,2)(A0) ≥ 1. Set g(z) = f(z)−
z. Clearly, we have λ̄(2,2)(f − z) = λ̄(2,2)(g) and σ(2,2)(f) = σ(2,2)(g).
Equation (1.1) gets

g(k) + Ak−1(z)g(k−1) + · · ·+ A1(z)g′ + A0(z)g = −(A1(z) + zA0(z)).

If σ(1,2)(A0) > 1, then σ(1,2)(A1(z) + zA0(z)) = σ(1,2)(A0) > 1 and
thus A1(z) + zA0(z) 6≡ 0. Then, by Lemma 3.10, we have λ̄(2,2)(g) =
σ(2,2)(g). Therefore, we have λ̄(2,2)(f − z) = σ(2,2)(f) ≥ σ(1,2)(A0) > 1.

12. Proof of Theorem 2.9

By Theorem 2.6, we have σ(1,2)(f) ≥ σ(1,2)(As) > 1. Suppose that
f is a transcendental meromorphic solution of (1.1) with σ(1,2)(f) >
σ(1,2)(As) > 1. Set g(z) = f(z)−z. Then, we have σ(1,2)(f) = σ(1,2)(g).
Equation (1.1) gets

g(k) + Ak−1(z)g(k−1) + · · ·+ A1(z)g′ + A0(z)g = −(A1(z) + zA0(z)).

Since σ(1,2)(f) > σ(1,2)(As) > 1, then

max{σ(1,2)(Aj) (j = 0, 1, · · · , k − 1), σ(1,2)(−A1 − zA0)} ≤ σ(1,2)(As)

< σ(1,2)(f).

Suppose that A1(z) + zA0(z) 6≡ 0. Then, by Lemma 3.10 we have
that λ̄(1,2)(g) = σ(1,2)(g) and thus λ̄(1,2)(f − z) = σ(1,2)(f). Again by
Theorem 2.6, there exists at least one solution f1 satisfying σ(2,2)(f1)
≥ σ(1,2)(As) > 1 and thus again by applying Lemma 3.10, we obtain
λ̄(2,2)(f1 − z) = σ(2,2)(f1) ≥ σ(1,2)(As) > 1.
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13. Conclusion

Throughout this article, by using the concept of logarithmic order
due to Chern [9] , we study the growth and oscillation of solutions
of complex higher order linear differential equations with entire or
meromorphic coefficients of finite logarithmic order. We obtain some
results which improve and extend results due to Kinnunen; Beläıdi;
Liu, Tu and Shi; Hu, Zheng; Cao, Liu and Wang and others.
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