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Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 26(2016), No. 2, 163-184

GROWTH RATES OF COMPOSITE ENTIRE AND
MEROMORPHIC FUNCTIONS IN THE DIRECTION

OF THEIR RELATIVE L∗-ORDERS

SANJIB KUMAR DATTA AND TANMAY BISWAS

Abstract. In this paper we establish some newly developed re-
sults regarding the growth rates of composite entire and meromorphic
functions on the basis of their relative L∗ -order and relative L∗ -
lower order.

1. Introduction and Preliminaries.

We denote by C the set of all finite complex numbers. Let f be
an entire function defined on C. The maximum modulus function cor-
responding to entire f is defined as M (r, f) = max {|f (z)| : |z| = r}.
When f is meromorphic, Mf (r) can not be defined as f is not ana-
lytic. In this case one may define another function Tf (r) known as
Nevanlinna’s Characteristic function of f, playing the same role as
maximum modulus function in the following manner:
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Tf (r) = Nf (r) +mf (r) ,

where the function Nf (r) and mf (r) are respectively the enumerative
function and the proximity function corresponding to f. For further
details, one may see [17]. If f is an entire function, then the Nevan-
linna’s Characteristic Tf (r) of f reduces to mf (r) .

For a non-constant entire function f, Tf (r) is strictly increasing
and continuous and its inverse T−1f : (Tf (0) ,∞) → (0,∞) exists and

is such that lim
s→∞

T−1f (s) =∞.
In this connection we just recall the following definition which

is relevant:

Definition 1. {[2]} A non-constant entire function f is said have
the Property (A) if for any σ > 1 and for all sufficiently large r,
[Mf (r)]2 ≤ Mf (rσ) holds. For examples of functions with or without
the Property (A), one may see [2].

In the sequel we use the following notation : log[k] x =

log
(

log[k−1] x
)

for k = 1, 2, 3, .... and log[0] x = x.

Taking this into account the following definition is well known:

Definition 2. The order ρf and lower order λf of an entire function
f are defined as

ρf = lim sup
r→∞

log[2]Mf (r)

log r
and λf = lim inf

r→∞

log[2]Mf (r)

log r
.

When f is meromorphic, one can easily verify that

ρf = lim sup
r→∞

log Tf (r)

log r
and λf = lim inf

r→∞

log Tf (r)

log r
.

Let L ≡ L (r) be a positive continuous function increasing
slowly i.e., L (ar) ∼ L (r) as r → ∞ for every positive constant a.
Singh and Barker [16] defined it in the following way:

Definition 3. [16] A positive continuous function L (r) is called a
slowly changing function if for ε (> 0) ,

1

kε
≤ L (kr)

L (r)
≤ kε for r ≥ r (ε) and

uniformly for k (≥ 1) .
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Somasundaram and Thamizharasi [17] introduced the notions
of L-order and L-lower order for entire functions. The more general-
ized concept for L-order and L-lower order for entire and meromorphic
functions are L∗-order and L∗−lower order respectively. Their defini-
tions are as follows:

Definition 4. [17] The L∗-order ρL
∗

f and the L∗-lower order λL
∗

f of an
entire function f are defined as

ρL
∗

f = lim sup
r→∞

log[2]Mf (r)

log [reL(r)]
and λL

∗

f = lim inf
r→∞

log[2]Mf (r)

log [reL(r)]
.

When f is meromorphic, one can easily verify that

ρL
∗

f = lim sup
r→∞

log Tf (r)

log [reL(r)]
and λL

∗

f = lim inf
r→∞

log Tf (r)

log [reL(r)]
.

Bernal [2] introduced the definition of relative order of an entire
function f with respect to an entire function g , denoted by ρg (f) as
follows:

ρg (f) = inf {µ > 0 : Mf (r) < Mg (rµ) for all r > r0 (µ) > 0}

= lim sup
r→∞

logM−1
g Mf (r)

log r
.

For g (z) = exp z, the above definition coincides with the classical
one {cf. [18]}.

Similarly, one can define the relative lower order of an entire
function f with respect to another entire function g denoted by λg (f)
as follows :

λg (f) = lim inf
r→∞

logM−1
g Mf (r)

log r
.

Along the lines of of Somasundaram and Thamizharasi { cf.
[17] }, one can define the relative L∗-order of an entire function in the
following manner:

Definition 5. {[3],[4]} The relative L∗-order of an entire function f
with respect to another entire function g , denoted by ρL

∗
g (f) is defined

in the following wa

ρL
∗

g (f) = inf
{
µ > 0 : Mf (r) < Mg

{
reL(r)

}µ
for all r > r0 (µ) > 0

}
= lim sup

r→∞

logM−1
g Mf (r)

log [reL(r)]
.
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Analogously, one may define the relative L∗-lower order of an entire
function f with respect to another entire function g denoted by λL

∗
g (f)

as follows

λL
∗

g (f) = lim inf
r→∞

logM−1
g Mf (r)

log [reL(r)]
.

Extending the notion of Bernal [2], Lahiri and Banerjee [14]
introduced the definition of relative order of a meromorphic function
with respect to an entire function which is as follows:

Definition 6. [14] Let f be meromorphic and g be entire. The relative
order of f with respect to g denoted by ρg (f) is defined as

ρg (f) = inf {µ > 0 : Tf (r) < Tg (rµ) for all sufficiently large r}

= lim sup
r→∞

log T−1g Tf (r)

log r
.

The definition coincides with the classical one [14] if g (z) =
exp z.

Similarly one can define the relative lower order of a meromor-
phic function f with respect to an entire g denoted by λg (f) in the
following manner :

λg (f) = lim inf
r→∞

log T−1g Tf (r)

log r
.

Further along the lines of Somasundaram and Thamizharasi
[17] and Lahiri and Banerjee [14], one may define the relative L∗-order
and relative L∗-lower order of a meromorphic function f with respect
to an entire function g in the following manner:

Definition 7. The relative L∗-order ρL
∗

g (f) and the relative L∗-lower

order λL
∗

g (f) of a meromorphic function f with respect to an entire
function g are defined by

ρL
∗

g (f) = lim sup
r→∞

log T−1g Tf (r)

log [reL(r)]
and λL

∗

g (f) = lim inf
r→∞

log T−1g Tf (r)

log [reL(r)]
.

For entire and meromorphic functions, the notions of their
growth indicators such as order is classical in complex analysis and
during the past decades, several researchers have already been ex-
ploring their studies in the area of comparative growth properties of
composite entire and meromorphic functions in different directions us-
ing the classical growth indicators. But at that time, the concepts of
relative orders and consequently the relative L∗-orders of entire and
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meromorphic functions with respect to another entire function and as
well as their technical advantages of not comparing with the growths
of exp z are not at all known to the researchers of this area. Therefore
the growth of composite entire and meromorphic functions needs to
be modified on the basis of their relative order as well as relative L∗-
orders some of which has been explored in [5], [6], [7], [8], [9], [10] and
[11]. In this paper we establish some newly developed results related
to the growth rates of composite entire and meromorphic functions on
the basis of their relative L∗-orders ( respectively relative L∗- lower
orders). We have used the standard notations and definitions in the
theory of entire and meromorphic functions which are available in [12]
and [19].

2. Lemmas.

In this section we present some lemmas which will be needed
in the sequel.

Lemma 1. [1] If f be meromorphic and g be entire then for all suffi-
ciently large values of r,

T (r, f ◦ g) ≤ {1 + o (1)} T (r, g)

logM (r, g)
T (M (r, g) , f) .

Lemma 2. [15] Let f and g be any two entire functions. Then for all
r > 0,

T (r, f ◦ g) ≥ 1

3
logM

{
1

8
M
(r

4
, g
)

+ o (1) , f

}
.

Lemma 3. [11] Let f be an entire function which satisfies the Property
(A), β > 0, δ > 1 and α > 2. Then

βTf (r) < Tf
(
αrδ
)
.

3. Theorems.

In this section we present the main results of the paper.

Theorem 1. Let f be a meromorphic function and g, h and k be any
three entire functions such that ρL

∗
g < ρL

∗

h (f) < ∞ and ρL
∗

k (g) < ∞.
If h satisfy the Property (A), then

lim inf
r→∞

log T−1h Tf◦g (r) + logM−1
k Mg (r)

T−1h Tf (r) ·K (r, g;L)
= 0 ,
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where K (r, g;L) =

 1 if L (Mg (r)) = o
{[
reL(r)

]α}
as r →∞

and for some α < ρL
∗

h (f)
L (Mg (r)) otherwise.

Proof. Let us consider that β > 2 and δ > 1. Since T−1h (r) is an
increasing function of r, it follows from Lemma 1, Lemma 3 and the
inequality Tg(r) ≤ logMg(r) {cf. [12] } for all sufficiently large values
of r that

T−1h Tf◦g (r) 6 T−1h [{1 + o(1)}Tf (Mg (r))]

i.e., T−1h Tf◦g (r) 6 β
[
T−1h Tf (Mg (r))

]δ
i.e., log T−1h Tf◦g (r) 6 δ log T−1h Tf (Mg (r)) +O(1)

log T−1h Tf◦g (r) 6 δ
(
ρL

∗

h (f) + ε
)

(logMg (r) + L (Mg (r)))

+O(1) .(1)

Now from the definition of ρL
∗

g , we obtain for all sufficiently large
positive numbers of r that

(2) log[2]Mg (r) ≤
(
ρL

∗

g + ε
)

[log r + L (r)] .

Also from the definition of ρL
∗

k (g) , we get for all sufficiently large
positive numbers of r that

(3) logM−1
k Mg (r) ≤

(
ρL

∗

k (g) + ε
)

[log r + L (r)] .

Therefore from (1) and in view of (2) , we get for all sufficiently large
positive numbers of r that

log T−1h Tf◦g (r)

≤ O(1) + δ
(
ρL

∗

h (f) + ε
)
·
[
exp

(
reL(r)

)(ρL∗
g +ε)

+ L (Mg (r))

]
.(4)

Now from (3) and (4) , it follows for all sufficiently large positive num-
bers of r that

log T−1h Tf◦g (r) + logM−1
k Mg (r)

≤ δ
(
ρL

∗

h (f) + ε
)
·
[
exp

(
reL(r)

)(ρL∗
g +ε)

+ L (Mg (r))

]
O(1) +

(
ρL

∗

k (g) + ε
)

[log r + L (r)] .(5)
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Also from the definition of ρL
∗

h (f), we obtain for a sequence of positive
numbers of r tending to infinity that

log T−1h Tf (r) ≥
(
ρL

∗

h (f)− ε
)

log
[
reL(r)

]
i.e., T−1h Tf (r) ≥

[
reL(r)

](ρL∗
h (f)−ε)

.(6)

Now from (5) and (6) , we get for a sequence of positive numbers of r
tending to infinity that

log T−1h Tf◦g (r) + logM−1
k Mg (r)

T−1h Tf (r)

≤
O(1) +

(
ρL

∗

k (g) + ε
)

[log r + L (r)]

T−1h Tf (r)

(7) +

δ
(
ρL

∗

h (f) + ε
)
·
[
exp

(
reL(r)

)(ρL∗
g +ε)

+ L (Mg (r))

]
[reL(r)](

ρL
∗

h (f)−ε)
.

Since ρL
∗

g < ρL
∗

h (f), we can choose ε (> 0) in such a way that

(8) ρL
∗

g + ε < ρL
∗

h (f)− ε .

Case I. Let L (Mg (r)) = o
{[
reL(r)

]α}
as r → ∞ and for some α <

ρL
∗

h (f) .
As α < ρL

∗

h (f) , we can choose ε (> 0) in such a way that

(9) α < ρL
∗

h (f)− ε .

Since L (Mg (r)) = o
{[
reL(r)

]α}
as r →∞, we get on using (9) that

L (Mg (r))

[reL(r)]
α → 0 as r →∞

i.e.,
L (Mg (r))

[reL(r)](
ρL

∗
h (f)−ε)

→ 0 as r →∞ .(10)

Now in view of (7), (8) and (10) , we get that

(11) lim inf
r→∞

log T−1h Tf◦g (r) + logM−1
k Mg (r)

T−1h Tf (r)
= 0 .

Case II. If L (Mg (r)) 6= o
{[
reL(r)

]α}
as r → ∞ and for some α <

ρL
∗

h (f) then we get from (7) for a sequence of positive numbers of r
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tending to infinity that

log T−1h Tf◦g (r) + logM−1
k Mg (r)

T−1h Tf (r) · L (Mg (r))

≤
O(1) +

(
ρL

∗

k (g) + ε
)

[log r + L (r)]

[r exp[p] L (r)]

(
(m)
(p)

ρL
∗

f −ε
)
· L (Mg (r))

(12) +

δ
(
ρL

∗

h (f) + ε
)
·
[
exp

(
reL(r)

)(ρL∗
g +ε)

+ L (Mg (r))

]
[reL(r)](

ρL
∗

h (f)−ε) · L (Mg (r))
.

Now using (8), it follows from (12) that

(13) lim inf
r→∞

log T−1h Tf◦g (r) + logM−1
k Mg (r)

T−1h Tf (r) · L (Mg (r))
= 0 .

Combining (11) and (13) , we obtain that

lim inf
r→∞

log T−1h Tf◦g (r) + logM−1
k Mg (r)

T−1h Tf (r) ·K (r, g;L)
= 0 ,

where K (r, g;L) =

 1 if L (Mg (r)) = o
{[
reL(r)

]α}
as r →∞

and for some α < ρL
∗

h (f)
L (Mg (r)) otherwise.

Thus the theorem is established.

Theorem 2. Let f be a meromorphic function and g, h and k be any
three entire functions such that ρL

∗
g < λL

∗

h (f) < ∞ and ρL
∗

k (g) < ∞.
If h satisfy the Property (A), then

lim inf
r→∞

log T−1h Tf◦g (r) + logM−1
k Mg (r)

T−1h Tf (r) ·K (r, g;L)
= 0 ,

where K (r, g;L) =

 1 if L (Mg (r)) = o
{[
reL(r)

]α}
as r →∞

and for some α < λL
∗

h (f)
L (Mg (r)) otherwise.

Theorem 3. Let f be a meromorphic function and g, h and k be any
three entire functions such that λL

∗
g < λL

∗

h (f) ≤ ρL
∗

h (f) < ∞ and

ρL
∗

k (g) <∞. If h satisfy the Property (A), then

lim inf
r→∞

log T−1h Tf◦g (r) + logM−1
k Mg (r)

T−1h Tf (r) ·K (r, g;L)
= 0 ,
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where K (r, g;L) =

 1 if L (Mg (r)) = o
{[
reL(r)

]α}
as r →∞

and for some α < λL
∗

h (f)
L (Mg (r)) otherwise.

Theorem 4. Let f be a meromorphic function and g, h and k be any
three entire functions such that ρL

∗
g < λL

∗

h (f) ≤ ρL
∗

h (f) < ∞ and

ρL
∗

k (g) <∞. If h satisfies the Property (A), then

lim inf
r→∞

log T−1h Tf◦g (r) + logM−1
k Mg (r)

T−1h Tf (r) ·K (r, g;L)
= 0 ,

where K (r, g;L) =

 1 if L (Mg (r)) = o
{[
reL(r)

]α}
as r →∞

and for some α < λL
∗

h (f)
L (Mg (r)) otherwise.

The proofs of Theorem 2, Theorem 3 and Theorem 4 are omit-
ted because those can be carried out along the lines of Theorem 1.

Theorem 5. Let f, g and h be any three entire functions such that
0 < λL

∗

h (f) ≤ ρL
∗

h (f) < ∞, 0 < λL
∗

g < ∞. Also let h satisfy the
Property (A). Then for every constant A and for any real number x,

lim
r→∞

log T−1h Tf◦g (r){
log T−1h Tf (rA)

}1+x =∞ .

Proof. If x is such that 1 + x ≤ 0, then the theorem is obvious. So
we suppose that 1 + x > 0. Let us consider that β > 2 and δ > 1.
Since T−1h (r) is an increasing function of r, it follows from Lemma
2, Lemma 3 and the inequality Tg(r) ≤ logMg(r) {cf. [12] } for all
sufficiently large positive numbers of r that

T−1h Tf◦g (r) ≥ T−1h

[
1

3
Tf

{
1

8
Mg

(r
4

)
+ o (1)

}]
i.e., T−1h Tf◦g (r) ≥

[
1

β
T−1h Tf

{
1

8
Mg

(r
4

)
+ o (1)

}] 1
δ

i.e., log T−1h Tf◦g (r) ≥ log

[
1

β
T−1h Tf

{
1

8
Mg

(r
4

)
+ o (1)

}] 1
δ

i.e., log T−1h Tf◦g (r) ≥ O (1) +
1

δ
log T−1h Tf

{
1

8
Mg

(r
4

)
+ o (1)

}
.

(14)
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i.e., log T−1h Tf◦g (r) ≥ O (1)+
1

δ

(
λL

∗

h (f)− ε
) [

log

{
1

8
Mg

(r
4

)
+ o (1)

}
+ expL

(
1

8
Mg

(r
4

))]

i.e., log T−1h Tf◦g (r) ≥ O (1) +
1

δ

(
λL

∗

h (f)− ε
) [

logMg

(r
4

)
+ o (1)

+L

(
1

8
Mg

(r
4

))]
i.e., log T−1h Tf◦g (r)

≥ O (1) +
1

δ

(
λL

∗

h (f)− ε
) [[(r

4

)
expL (r)

]λL∗
g −ε

+ o (1)

(15) +L

(
1

8
Mg

(r
4

))]
where we choose 0 < ε < min

{
λL

∗

h (f) , λL
∗

g

}
.

Also for all sufficiently large positive numbers of r, we get that

log T−1h Tf
(
rA
)
≤
(
ρL

∗

h (f) + ε
)

log
[
rA expL

(
rA
)]

i.e.,
{

log T−1h Tf
(
rA
)}1+x ≤

(16)
(
ρL

∗

h (f) + ε
)1+x (

log
[
rA expL

(
rA
)])1+x

.

Therefore from (15) and (16) , it follows for all sufficiently large positive
numbers of r that

log T−1h Tf◦g (r){
log T−1h Tf (rA)

}1+x
≥
O (1) + 1

δ

(
λL

∗

h (f)− ε
) [[(

r
4

)
expL (r)

]λL∗
g −ε + L

(
1
8
Mg

(
r
4

))
+ o (1)

]
(ρL

∗
h (f) + ε)

1+x
(log [rA expL (rA)])1+x

.

Thus from above the theorem follows.

Theorem 6. Let f, g, h and k be any four entire functions such that
0 < λL

∗

h (f) ≤ ρL
∗

h (f) < ∞, 0 < λL
∗

g < ∞, 0 < ρL
∗

k (g) < ∞. Also
let h satisfy the Property (A). Then for every constant A and for any
real number x,

lim
r→∞

log T−1h Tf◦g (r){
log T−1k Tg (rA)

}1+x =∞ .
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The proof of Theorem 6 is omitted as it can be carried out
along the lines of Theorem 5.

Theorem 7. Let f be a meromorphic function and g and h be any
two entire functions satisfying the conditions that (i) 0 < ρL

∗

h (f) <∞,
(ii) ρL

∗
g is non zero finite and (iii) h satisfy the Property (A). Then

for each α ∈ (−∞,∞) ,

lim inf
r→∞

{
log T−1h Tf◦g (r)

}1+α
log T−1h Tf (exp rA)

= 0

where A > (1 + α) · ρL∗
g .

Proof. If 1 +α < 0, then the theorem is trivial. So we take 1 +α > 0.
Now from (4) , we obtain for all sufficiently large positive numbers of
r that

log T−1h Tf◦g (r)

≤ O(1) + δ
(
ρL

∗

h (f) + ε
)
·
[
exp

(
reL(r)

)(ρL∗
g +ε)

+ L (Mg (r))

]
.

log T−1h Tf◦g (r) ≤ exp
(
reL(r)

)(ρL∗
g +ε) · δ

(
ρL

∗

h (f) + ε
)

+

O(1) + δ
(
ρL

∗

h (f) + ε
)
· L (Mg (r))

i.e.,
{

log T−1h Tf◦g (r)
}1+α

≤
[
exp

(
reL(r)

)(ρL∗
g +ε) · δ

(
ρL

∗

h (f) + ε
)

+O(1)

+δ
(
ρL

∗

h (f) + ε
)
· L (Mg (r))

]1+α
.(17)

Again we have for a sequence of positive numbers of r tending to
infinity and for ε(> 0) ,

log T−1h Tf
(
exp rA

)
≥
(
ρL

∗

h (f)− ε
)

log
[
exp

(
rA
) {

expL
(
exp

(
rA
))}]

i.e., log T−1h Tf
(
exp rA

)
≥

(
ρL

∗

h (f)− ε
) [
rA + L

(
exp

(
rA
))]

.(18)

Now let

δ
(
ρL

∗

h (f) + ε
)

= k1, δ
(
ρL

∗

h (f) + ε
)
· L (Mg (r)) +O(1) = k2,(

ρL
∗

h (f)− ε
)

= k3 and
(
ρL

∗

h (f)− ε
)
L
(
exp

(
rA
))

= k4.
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Then from (17), (18) and above, we get for a sequence of positive
numbers of r tending to infinity that

{
log T−1h Tf◦g (r)

}1+α
log T−1h Tf (exp rA)

≤

[
exp

(
reL(r)

)(ρL∗
g +ε)

k1 + k2

]1+α
k3rA + k4

i.e.,

{
log T−1h Tf◦g (r)

}1+α
log T−1h Tf (exp rA)

≤
exp

(
reL(r)

)(ρL∗
g +ε)(1+α)

[
k1 + k2

exp(reL(r))(
ρL

∗
g +ε)

]1+α
k3rA + k4

where k1, k2,k3 and k4 are all finite.
Since

(
ρL

∗
g + ε

)
(1 + α) < A, we obtain from above that

lim inf
r→∞

{
log T−1h Tf◦g (r)

}1+α
log T−1h Tf (exp rA)

= 0

where we choose ε(> 0) in such a way that

0 < ε < min

{
ρL

∗

h (f) ,
A

1 + α
− ρL∗

g

}
.

This proves the theorem.

Along the lines of Theorem 7, the following theorem may be
proved and therefore its proof is omitted:

Theorem 8. Let f be a meromorphic function and g and h be any
two entire functions satisfying the conditions that (i) 0 < λL

∗

h (f) ≤
ρL

∗

h (f) <∞, (ii) ρL
∗

g is non zero finite and (iii) h satisfy the Property
(A). Then for each α ∈ (−∞,∞) ,

lim
r→∞

{
log T−1h Tf◦g (r)

}1+α
log T−1h Tf (exp rA)

= 0

where A > (1 + α) · ρL∗
g .

Theorem 9. Let f be a meromorphic function and g, h and k be any
three entire functions satisfying the conditions that (i) ρL

∗

h (f) < ∞,
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(ii) ρL
∗

g is non zero finite (iii) λL
∗

k (g) > 0 and (iv) h satisfy the
Property (A). Then for each α ∈ (−∞,∞) ,

lim
r→∞

{
log T−1h Tf◦g (r)

}1+α
log T−1k Tg (exp rA)

= 0

where A > (1 + α) · ρL∗
g .

Theorem 10. Let f be a meromorphic function and g, h and k be any
three entire functions satisfying the conditions that (i) ρL

∗

h (f) < ∞,
(ii) 0 < ρL

∗
g < ∞, (iii) ρL

∗

k (g) > 0 and (iv) h satisfy the Property
(A). Then for each α ∈ (−∞,∞) ,

lim inf
r→∞

{
log T−1h Tf◦g (r)

}1+α
log T−1k Tg (exp rA)

= 0 where A > (1 + α) · ρL∗

g .

The proof of Theorem 9 and Theorem 10 are omitted because
those can be carried out along the lines of Theorem 8 and Theorem 7
respectively.

Theorem 11. Let f be a meromorphic function and g, h and k be any
three entire functions satisfying the conditions that (i) ρL

∗

h (f) < ∞,
(ii) 0 < ρL

∗
g <∞, (iii) 0 < λL

∗

k (g) <∞ and (iv) h satisfy the Property
(A). Then
(a) if L (Mg (r)) = o

{
log T−1k Tg (r)

}
then

lim sup
r→∞

log[2] T−1h Tf◦g (r)

log T−1k Tg (r) + L (Mg (r))
≤

ρL
∗

g

λL
∗

k (g)

and (b) if log T−1k Tg (r) = o {L (Mg (r))} then

lim
r→∞

log[2] T−1h Tf◦g (r)

log T−1k Tg (r) + L (Mg (r))
= 0 .

Proof. Using log
[
1 + L(Mg(r))+O(1)

logMg(r)

]
∼ L(Mg(r))+O(1)

logMg(r)
, we obtain from (1)

for all sufficiently large positive numbers of r that

log T−1h Tf◦g (r) 6 δ
(
ρL

∗

h (f) + ε
)

logMg (r)

[
1 +

L (Mg (r)) +O(1)

logMg (r)

]

i.e., log[2] T−1h Tf◦g (r) ≤ log δ
(
ρL

∗

h (f) + ε
)

+ log[2]Mg (r)

+ log

[
1 +

L (Mg (r)) +O(1)

logMg (r)

]
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i.e., log[2] T−1h Tf◦g (r) ≤ log δ
(
ρL

∗

h (f) + ε
)
+
(
ρL

∗

g + ε
)

log [r expL(r)]

+ log

[
1 +

L (Mg (r)) +O(1)

logMg (r)

]
i.e., log[2] T−1h Tf◦g (r) ≤

(19) O(1)+
(
ρL

∗

g + ε
)

[log r + L(r)]+
L (Mg (r)) +O(1)

logMg (r)
.

Again from the definition of relative L∗-lower order, we get for all
sufficiently large positive numbers of r that

log T−1k Tg (r) ≥
(
λL

∗

k (g)− ε
)

log [r expL (r)]

i.e., [log r + L (r)] ≤ log T−1k Tg (r)

(λL
∗

k (g)− ε)
.(20)

Hence from (19) and (20) , it follows for all sufficiently large positive
numbers of r that

log[2] T−1h Tf◦g (r) ≤ O(1)+

(
ρL

∗
g + ε

λL
∗

k (g)− ε

)
·log T−1k Tg (r)+

L (Mg (r)) +O(1)

logMg (r)

i.e,
log[2] T−1h Tf◦g (r)

log T−1k Tg (r) + L (Mg (r))

≤ O(1)

log T−1k Tg (r) + L (Mg (r))
+

(
ρL

∗
g + ε

λL
∗

k (g)− ε

)
· log T−1k Tg (r)

log T−1k Tg (r) + L (Mg (r))

+
L (Mg (r)) +O(1)[

log T−1k Tg (r) + L (Mg (r))
]

logMg (r)

i.e,
log[2] T−1h Tf◦g (r)

log T−1k Tg (r) + L (Mg (r))

≤
O(1)

L(Mg(r))

log T−1
k Tg(r)

L(Mg(r))
+ 1

+

(
ρL

∗
g +ε

λL
∗

k (g)−ε

)
1 + L(Mg(r))

log T−1
k Tg(r)

+
1[

1 +
log T−1

k Tg(r)

L(Mg(r))

]
logMg (r)

.(21)

Since L (Mg (r)) = o
{

log T−1k Tg (r)
}

as r → ∞ and ε (> 0) , is arbi-
trary we obtain from (21) that

(22) lim sup
r→∞

log[2] T−1h Tf◦g (r)

log T−1k Tg (r) + L (Mg (r))
≤

ρL
∗

g

λL
∗

k (g)
.
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Again if log T−1k Tg (r) = o {L (Mg (r))} then from (21) , we get that

(23) lim
r→∞

log[2] T−1h Tf◦g (r)

log T−1k Tg (r) + L (Mg (r))
= 0 .

Thus from (22) and (23) the theorem is established.

Along the lines of Theorem 11, the following theorem may be
proved and therefore its proof is omitted:

Theorem 12. Let f be a meromorphic function and g, h and k be
any three entire functions satisfying the conditions (i) ρL

∗

h (f) < ∞,
(ii) ρL

∗
g < ∞ and (iii) ρL

∗

k (g) > 0. Also h satisfy the Property (A).
Then
(a) if L (Mg (r)) = o

{
log T−1k Tg (r)

}
then

lim inf
r→∞

log[2] T−1h Tf◦g (r)

log T−1k Tg (r) + L (Mg (r))
≤

ρL
∗

g

ρL
∗

k (g)

and (b) if log T−1k Tg (r) = o {L (Mg (r))} then

lim inf
r→∞

log[2] T−1h Tf◦g (r)

log T−1k Tg (r) + L (Mg (r))
= 0 .

Now we state the following three theorems without their proofs
as those can be carried out along the lines of Theorem 11 and Theorem
12:

Theorem 13. Let f be a meromorphic function and g and h be any
two entire functions satisfying the conditions (i) 0 < λL

∗

h (f) ≤ ρL
∗

h (f)
<∞ and (ii) ρL

∗
g <∞. Also h satisfy the Property (A). Then

(a) if L (Mg (r)) = o
{

log T−1h Tf (r)
}

then

lim sup
r→∞

log[2] T−1h Tf◦g (r)

log T−1h Tf (r) + L (Mg (r))
≤

ρL
∗

g

λL
∗

h (f)

and (b) if log T−1h Tf (r) = o {L (Mg (r))} then

lim
r→∞

log[2] T−1h Tf◦g (r)

log T−1h Tf (r) + L (Mg (r))
= 0 .

Theorem 14. Let f be a meromorphic function and g and h be any
two entire functions satisfying the conditions (i) 0 < ρL

∗

h (f) <∞ and
(ii) ρL

∗
g <∞. Also h satisfy the Property (A). Then
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(a) if L (Mg (r)) = o
{

log T−1h Tf (r)
}

then

lim inf
r→∞

log[2] T−1h Tf◦g (r)

log T−1h Tf (r) + L (Mg (r))
≤

ρL
∗

g

ρL
∗

h (f)

and (b) if log T−1h Tf (r) = o {L (Mg (r))} then

lim inf
r→∞

log[2] T−1h Tf◦g (r)

log T−1h Tf (r) + L (Mg (r))
= 0 .

Theorem 15. Let f be a meromorphic function and g and h be any
two entire functions satisfying the conditions (i) 0 < λL

∗

h (f) ≤ ρL
∗

h (f)
<∞ and (ii) λL

∗
g <∞. Also h satisfy the Property (A). Then

(a) if L (Mg (r)) = o
{

log T−1h Tf (r)
}

then

lim inf
r→∞

log[2] T−1h Tf◦g (r)

log T−1h Tf (r) + L (Mg (r))
≤

λL
∗

g

λL
∗

h (f)

and (b) if log T−1h Tf (r) = o {L (Mg (r))} then

lim inf
r→∞

log[2] T−1h Tf◦g (r)

log T−1h Tf (r) + L (Mg (r))
= 0 .

Theorem 16. Let f, g and h be any three entire functions such that
0 < λL

∗

h (f) ≤ ρL
∗

h (f) <∞ and ρL
∗

g > 0. Also let h satisfy the Property
(A). Then

lim sup
r→∞

log[2] T−1h Tf◦g (r)

log T−1h Tf (r) + L
(
1
8
Mg

(
r
4

)) ≥ ρL
∗

g

ρL
∗

h (f)
.

Proof. Now from (14) , we have for all sufficiently large positive num-
bers of r that

log T−1h Tf◦g (r) ≥ O (1) +
1

δ

(
λL

∗

h (f)− ε
) [

log

{
1

8
Mg

(r
4

)
+ o (1)

}
+L

(
1

8
Mg

(r
4

))]

i.e., log T−1h Tf◦g (r) ≥ O (1) +
1

δ

(
λL

∗

h (f)− ε
)

[
log

{
1

8
Mg

(r
4

)(
1 +

o (1)
1
8
Mg

(
r
4

))}+ L

(
1

8
Mg

(r
4

))]
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i.e., log T−1h Tf◦g (r) ≥ 1

δ

(
λL

∗

h (f)− ε
)

logMg

(r
4

)
·

logMg

(
r
4

)
+ log

(
1 + o(1)

1
8
Mg( r4)

)
+ L

(
1
8
Mg

(
r
4

))
logMg

(
r
4

)


i.e., log[2] T−1h Tf◦g (r) ≥ log[2]Mg

(r
4

)
+

log

{
logMg

(
r
4

)
+ L

(
1
8
Mg

(
r
4

))
+ o(1)

logMg

(
r
4

) }

i.e., log[2] T−1h Tf◦g (r) ≥ log[2]Mg

(r
4

)
+(

ρL
∗

g − ε
ρL

∗
h (f) + ε

)
L

(
1

8
Mg

(r
4

))

− log

[
exp

{(
ρL

∗
g − ε

ρL
∗

h (f) + ε

)
· L
(

1

8
Mg

(r
4

))}]

+ log

{
logMg( r4)+L( 1

8
Mg( r4))+o(1)

logMg( r4)

}

i.e., log[2] T−1h Tf◦g (r) ≥ log[2]Mg

(r
4

)
+(
ρL

∗
g − ε

ρL
∗

h (f) + ε

)
L

(
1

8
Mg

(r
4

))

+ log

 logMg( r4)+L( 1
8
Mg( r4))+o(1)

exp

{(
ρL

∗
g −ε

ρL
∗

h
(f)+ε

)
·L( 1

8
Mg( r4))

}
·logMg( r4)


i.e., log[2] T−1h Tf◦g (r) ≥ log[2]Mg

(r
4

)
+(
ρL

∗
g − ε

ρL
∗

h (f) + ε

)
L

(
1

8
Mg

(r
4

))
.
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Now from above, it follows for a sequence of positive numbers of r
tending to infinity that

log[2] T−1h Tf◦g (r) ≥
(
ρL

∗

g − ε
)

log
[r

4
expL

(r
4

)]
+

(
ρL

∗
g − ε

ρL
∗

h (f) + ε

)
L

(
1

8
Mg

(r
4

))
.(24)

Further, we get for all sufficiently large positive numbers of r that

log T−1h Tf (r) ≤
(
ρL

∗

h (f) + ε
)

log [r expL (r)]

i.e., log T−1h Tf (r)

≤
(
ρL

∗

h (f) + ε
)

log
[r

4
expL

(r
4

)]
+ log 4.(25)

Hence from (24) and (25) , it follows for a sequence of positive numbers
of r tending to infinity that

i.e., log[2] T−1h Tf◦g (r) ≥

(
ρL

∗
g − ε

ρL
∗

h (f) + ε

)(
log T−1h Tf (r)− log 4

)
+

(
ρL

∗
g − ε

ρL
∗

h (f) + ε

)
L

(
1

8
Mg

(r
4

))

i.e., log[2] T−1h Tf◦g (r)

≥

(
ρL

∗
g − ε

ρL
∗

h (f) + ε

)[
log T−1h Tf (r) + L

(
1

8
Mg

(r
4

))]

−

(
ρL

∗
g − ε

ρL
∗

h (f) + ε

)
log 4

i.e.,
log[2] T−1h Tf◦g (r)

log T−1h Tf (r) + L
(
1
8
Mg

(
r
4

))
≥

(
ρL

∗
g − ε

ρL
∗

h (f) + ε

)
−

(
ρL

∗
g −ε

ρL
∗

h (f)+ε

)
log 4

log T−1h Tf (r) + L
(
1
8
Mg

(
r
4

)) .
Since ε (> 0) is arbitrary, it follows from above that

lim sup
r→∞

log[2] T−1h Tf◦g (r)

log T−1h Tf (r) + L
(
1
8
Mg

(
r
4

)) ≥ ρL
∗

g

ρL
∗

h (f)
.
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This proves the theorem.

Along the lines of Theorem 16, the following two theorems may
be proved and therefore their proofs are omitted:

Theorem 17. Let f, g and h be any three entire functions such that
0 < λL

∗

h (f) < ∞ and λL
∗

g > 0. Also let h satisfy the Property (A).
Then

lim sup
r→∞

log[2] T−1h Tf◦g (r)

log T−1h Tf (r) + L
(
1
8
Mg

(
r
4

)) ≥ λL
∗

g

λL
∗

h (f)
.

Theorem 18. Let f, g, h and k be any four entire functions such
that 0 < λL

∗

h (f) ≤ ρL
∗

h (f) < ∞ and λL
∗

g > 0. Also let h satisfy the
Property (A). Then

lim inf
r→∞

log[2] T−1h Tf◦g (r)

log T−1h Tf (r) + L
(
1
8
Mg

(
r
4

)) ≥ λL
∗

g

ρL
∗

h (f)
.

Now we state the following three theorems without their proofs
as those can be carried out along the lines of Theorem 16 and Theorem
18:

Theorem 19. Let f, g, h and k be any four entire functions such that
λL

∗

h (f) > 0, 0 < ρL
∗

g <∞ and 0 < ρL
∗

k (g) <∞. Also let h satisfy the
Property (A). Then

lim sup
r→∞

log[2] T−1h Tf◦g (r)

log T−1k Tg (r) + L
(
1
8
Mg

(
r
4

)) ≥ ρL
∗

g

ρL
∗

k (g)
.

Theorem 20. Let f, g, h and k be any four entire functions such that
λL

∗

h (f) > 0, 0 < λL
∗

g <∞ and 0 < λL
∗

k (g) <∞. Also let h satisfy the
Property (A). Then

lim sup
r→∞

log[2] T−1h Tf◦g (r)

log T−1k Tg (r) + L
(
1
8
Mg

(
r
4

)) ≥ λL
∗

g

λL
∗

k (g)
.

Theorem 21. Let f, g, h and k be any four entire functions such that
λL

∗

h (f) > 0, 0 < λL
∗

g <∞ and 0 < ρL
∗

k (g) <∞. Also let h satisfy the
Property (A). Then

lim inf
r→∞

log[2] T−1h Tf◦g (r)

log T−1k Tg (r) + L
(
1
8
Mg

(
r
4

)) ≥ λL
∗

g

ρL
∗

k (g)
.
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