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CONTRA m-CONTINUOUS MULTIFUNCTIONS IN
FUZZY SET THEORY
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Abstract. In this paper, a new type of fuzzy multifunction is in-
troduced between a set having minimal structure [15, 16] and a fuzzy
topological space (fts, for short) in the sense of Chang [6] which gener-
alizes fuzzy contra continuous multifunction. It is also shown that the
image of an m-compact space [15, 16] under this fuzzy multifunction
is fuzzy s-closed [20] under certain conditions.

1. Introduction

In [15, 16], minimal structure (m-structure, for short) on a
non-empty set is introduced and in [14], Papageorgiou introduced
fuzzy multifunction between an ordinary topological space and
an fts. In this paper, we define a fuzzy multifunction between a
non-empty set having minimal structure, called an m-space and an fts.

————————————–
Keywords and phrases: m-compact space, fuzzy regular space,
fuzzy δ-closed set, fuzzy θ-closed set, m-frontier of a set.
(2010) Mathematics Subject Classification: 54A40, 54C99

5



6 ANJANA BHATTACHARYYA

2. Preliminaries

A fuzzy set [21] A is a mapping from a nonempty set Y into the
closed interval I = [0, 1], i.e., A ∈ IY . The support of a fuzzy set A in
Y will be denoted as suppA [21] and is defined by suppA = {y ∈ Y :
A(y) 6= 0}. A fuzzy point [18] with the singleton support y ∈ Y and
the value t (0 < t ≤ 1) at y will be denoted by yt. 0Y and 1Y are the
constant fuzzy sets taking respectively the constant values 0 and 1 on
Y . The complement of a fuzzy set A in Y will be denoted by 1Y \A [21]
and is defined by (1Y \A)(y) = 1−A(y), for all y ∈ Y . For two fuzzy
sets A and B in Y , we write A ≤ B iff A(y) ≤ B(y), for each y ∈ Y ,
while we write AqB to mean A is quasi-coincident (q-coincident, for
short) with B [18] if there exists y ∈ Y such that A(y) + B(y) > 1;
the negation of AqB is written as A 6 qB. clA and intA of a set
A in X (respectively, a fuzzy set A [21] in Y ) respectively stand for
the closure and interior of A in X (respectively, in Y ). A fuzzy set
A in Y is called fuzzy regular open [1] (resp., fuzzy semiopen [1],
fuzzy β-open [2], fuzzy α-open [5], fuzzy preopen [13]) if intclA = A
(resp., A ≤ clintA, A ≤ clintclA, A ≤ intclintA, A ≤ intclA). The
complement of a fuzzy regular open (resp., fuzzy semiopen, fuzzy β-
open, fuzzy α-open, fuzzy preopen) set is called fuzzy regular closed
[1] (resp., fuzzy semiclosed [1], fuzzy β-closed [2], fuzzy α-closed [5],
fuzzy preclosed [13]). The union of all fuzzy semiopen sets contained
in a fuzzy set A in Y is called fuzzy semi-interior of A and is denoted
by sintA [1]. The intersection of all fuzzy semiclosed (resp., fuzzy
β-closed, fuzzy α-closed, fuzzy preclosed) sets containing a fuzzy set
A in Y is called a fuzzy semiclosure [1] (resp., fuzzy β-closure [2],
fuzzy α-closure [5], fuzzy preclosure [13]) of A and is denoted by sclA
(resp., βclA, αclA, pclA). A fuzzy set A is fuzzy semiclosed (resp.,
fuzzy β-closed, fuzzy α-closed, fuzzy preclosed) if A = sclA [1] (resp.,
A = βclA [2], A = αclA [5], A = pclA [13]).
A fuzzy set B is called a quasi-neighbourhood (q-nbd, for short) [18]
of a fuzzy set A if there is a fuzzy open set U in Y such that AqU ≤ B.
If, in addition, B is fuzzy regular open, then B is called a fuzzy regular
open q-nbd of A. A fuzzy point xα is said to be a fuzzy δ-cluster point
of a fuzzy set A in an fts Y if every fuzzy regular open q-nbd U of xα
is q-coincident with A [7]. The union of all fuzzy δ-cluster points of A
is called the fuzzy δ-closure of A and is denoted by δclA [7]. A fuzzy
set A is called fuzzy δ-closed if A = δclA [7]. The complement of a
fuzzy δ-closed set is called fuzzy δ-open [7]. A fuzzy point yt is called
a fuzzy θ-cluster point of a fuzzy set A in Y if clUqA for every fuzzy
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open set U in Y with ytqU [12]. The union of all fuzzy θ-cluster points
of A is called fuzzy θ-closure of A, denoted by θclA [12]. A fuzzy set
A is called fuzzy θ-closed if A = θclA [12]. The complement of a fuzzy
θ-closed set is called fuzzy θ-open [12].

3. Some Well Known Definitions, Lemmas and Theorems

In this section, we recall some definitions, lemmas and theorems
for ready references.

Definition 3.1 [15, 16]. A subfamily mX of the power set P(X)
of a non empty set X is called a minimal structure (m-structure, for
short) on X if ∅ ∈ mX and X ∈ mX . (X,mX) is called an m-space.
The members of mX are called mX-open (m-open, for short) and the
complement of an mX-open set is called mX-closed (m-closed, for
short).

Definition 3.2 [10]. Let (X,mX) be an m-space. For a subset A
of X, the mX-closure and mX-interior of A are defined as follows :

mClA =
⋂
{F : F ⊃ A,X \ F ∈ mX}

mIntA =
⋃
{U : U ⊂ A,U ∈ mX}

.

Remark 3.3. From Definition 3.1 and Definition 3.2, it is to be
noted that for a subset A of (X,mX), mIntA may not be m-open as
well as mClA may not be m-closed.

Lemma 3.4 [10]. Let (X,mX) be an m-space. For two subsets
A,B of X, the following properties hold :
(i) mCl(X \ A) = X \mIntA, mInt(X \ A) = X \mClA,
(ii) If X \A ∈ mX , then mClA = A and if A ∈ mX , then mIntA = A,
(iii) mCl(∅) = ∅, mInt(∅) = ∅, mCl(X) = X, mInt(X) = X,
(iv) If A ⊂ B, then mCl(A) ⊂ mCl(B) and mInt(A) ⊂ mInt(B),
(v) A ⊂ mCl(A) and mInt(A) ⊂ A
(vi) mCl(mClA) = mClA and mInt(mIntA) = mIntA.

Lemma 3.5 [15]. Let (X,mX) be an m-space and A, a subset of
X. Then x ∈ mClA if and only if U

⋂
A 6= ∅ for every U ∈ mX

containing x.
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Definition 3.6 [10]. An m-structure mX on a non empty set X
is said to have property (B) if the union of every family of subsets
belonging to mX belongs to mX .

Lemma 3.7 [17]. Let (X,mX) be an m-space where mX satisfying
the property (B). For a subset A of X, the following properties hold :
(i) A ∈ mX iff mInt(A) = A
(ii) A is m-closed iff mCl(A) = A
(iii) mInt(A) ∈ mX and mCl(A) is m-closed.

Definition 3.8 [15, 16]. An m-space (X,mX) is said to be
m-compact if every cover of X by m-open sets has a finite subcover.

Definition 3.9 [6]. Let A be a fuzzy set in an fts (Y, τ). A
collection U of fuzzy sets of Y is called a fuzzy cover of A if
sup{U(x) : U ∈ U} = 1 for each x ∈ suppA. In particular, if A = IY ,
we get the definition of fuzzy cover of Y .

Definition 3.10 [6, 8]. A fuzzy cover U of a fuzzy set A in an fts
(Y, τ) is said to have a finite subcover U0 if U0 is a finite subcollection
of U such that

⋃
U0 ≥ A, i.e., U0 is also a fuzzy cover of A. In

particular, if A = 1Y , we get
⋃
U0 = 1Y .

Definition 3.11 [20]. An fts (Y, τ) is said to be fuzzy s-closed if
every cover of Y by fuzzy regular closed sets has a finite subcover.

Definition 3.12 [1]. An fts (Y, τ) is said to be fuzzy semi-regular
if for each fuzzy open set U in Y and each fuzzy point xα with xαqU ,
there exists V ∈ τ such that xαqV ≤ int(clV ) ≤ U .

Theorem 3.13 [1]. An fts (Y, τ) is fuzzy semi-regular iff
δclA = clA, for all A ∈ IY .
So in a fuzzy semi-regular space, if A ∈ τ c, then A = δclA. Similarly,
if A ∈ τ , then A = δintA.

Definition 3.14 [9]. An fts (Y, τ) is said to be fuzzy regular if
every fuzzy open set V can be expressed as union of fuzzy open sets
Uα’s such that clUα ≤ V for each α ∈ Λ.
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Theorem 3.15 [19]. An fts (Y, τ) is fuzzy regular iff clA = θclA,
for every A ∈ IY .

Definition 3.16 [14]. Let (X, τ) and (Y, τY ) be respectively an
ordinary topological space and an fts. We say that F : X → Y is a
fuzzy multifunction if corresponding to each x ∈ X, F (x) is a unique
fuzzy set in Y .
Henceforth by F : X → Y we shall mean a fuzzy multifunction in the
above sense.

Definition 3.17 [14, 11]. For a fuzzy multifunction F : X → Y ,
the upper inverse F+ and lower inverse F− are defined as follows :
For any fuzzy set A in Y , F+(A) = {x ∈ X : F (x) ≤ A} and F−(A)
= {x ∈ X : F (x)qA}.

There is the following relationship between the upper and the lower
inverses of a fuzzy multifunction.

Theorem 3.18 [11]. For a fuzzy multifunction F : X → Y , we
have F−(1Y \ A) = X \ F+(A), for any fuzzy set A in Y .

4. Fuzzy Contra m-Continuous Multifunctions : Some
Characterizations

In this section we have introduced fuzzy upper and lower contra
m-continuous multifunctions between a set having minimal structure
and an fts. Several characterizations are made of these fuzzy multi-
functions.

Definition 4.1. A fuzzy multifunction F : (X,mX) → (Y, τ) is
called fuzzy
(i) upper contra m-continuous (f.u.c.m.c., for short) at x ∈ X if for
each fuzzy closed set A in Y with x ∈ F+(A), there exists U ∈ mX

containing x such that F (U) ⊆ A,
(ii) lower contra m-continuous (f.l.c.m.c., for short) at x ∈ X if for
each fuzzy closed set A in Y with x ∈ F−(A), there exists U ∈ mX

containing x such that F (u)qA, for all u ∈ U ,
(iii) upper (lower) contra m-continuous on X if F has this property
at each point of X.
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Theorem 4.2. For a fuzzy multifunction F : (X,mX) → (Y, τ),
the following statements are equivalent :
(i) F is f.u.c.m.c. on X,
(ii) F+(K) = mInt(F+(K)), for all K ∈ τ c,
(iii) F−(V ) = mCl(F−(V )), for all V ∈ τ .

Proof (i)⇒ (ii). Let K ∈ τ c and x ∈ F+(K). Then F (x) ≤ K. By
(i), there exists U ∈ mX containing x such that F (U) ≤ K implies that
U ⊆ F+(K). Since mInt(F+(K)) =

⋃
{G : G ⊆ F+(K), G ∈ mX}

and U ∈ mX with U ⊆ F+(K), x ∈ U ⊆ mInt(F+(K)) implies that
x ∈ mInt(F+(K)) and so F+(K) ⊆ mInt(F+(K)). Again by Lemma
3.4(v), mInt(F+(K)) ⊆ F+(K). Hence F+(K) = mInt(F+(K)).

(ii) ⇒ (iii). Let V ∈ τ . Then 1Y \ V ∈ τ c. By (ii),
F+(1Y \ V ) = X \ F−(V ) = mInt(F+(1Y \ V )) = X \mCl(F−(V ))
and so F−(V ) = mCl(F−(V )).

(iii) ⇒ (ii). Retracing (ii) ⇒ (iii), we get the result.

(ii) ⇒ (i). Let x ∈ X and K ∈ τ c with F (x) ≤ K. Then
x ∈ F+(K) = mInt(F+(K)) =

⋃
{U : U ⊆ F+(K), U ∈ mX} implies

that x ∈ U where U ∈ mX and U ⊆ F+(K) and so F (U) ≤ K.

Corollary 4.3. For a fuzzy multifunction F : (X,mX) → (Y, τ),
where mX has the property (B), the following statements are equiva-
lent :
(i) F is f.u.c.m.c. on X,
(ii) F+(K) is m-open for every K ∈ τ c,
(iii) F−(V ) is m-closed for every V ∈ τ .

Theorem 4.4. For a fuzzy multifunction F : (X,mX) → (Y, τ),
the following statements are equivalent:
(i) F is f.l.c.m.c. on X,
(ii) F−(K) = mInt(F−(K)), for all K ∈ τ c,
(iii) F+(V ) = mCl(F+(V )), for all V ∈ τ .

Proof (i)⇒ (ii). Let x ∈ F−(K) where K ∈ τ c. Then F (x)qK. By
(i), there exists U ∈ mX containing x such that F (u)qK, for all u ∈ U
implies that U ⊆ F−(K) and so x ∈ U = mInt(U) ⊆ mInt(F−(K))
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hence x ∈ mInt(F−(K)). Consequently, F−(K) = mInt(F−(K)).

(ii) ⇒ (iii). Let K ∈ τ . Then 1Y \ K ∈ τ c. By (ii),
F−(1Y \K) = X \ F+(K) = mInt(F−(1Y \K)) = X \mCl(F+(K))
implies that F+(K) = mCl(F+(K)).

(iii) ⇒ (ii). Retracing (ii) ⇒ (iii), we get the result.

(ii)⇒ (i). Let x ∈ X and K ∈ τ c with F (x)qK implies
x ∈ F−(K) = mInt(F−(K)) =

⋃
{U : U ⊆ F−(K), U ∈ mX} and so

x ∈ U,U ∈ mX and U ⊆ F−(K) and hence F (u)qK, for all u ∈ U .

Corollary 4.5. For a fuzzy multifunction F : (X,mX) → (Y, τ)
where mX has the property (B), the following statements are equiva-
lent:
(i) F is f.l.c.m.c. on X,
(ii) F−(K) is m-open for every K ∈ τ c,
(iii) F+(V ) is m-closed for every V ∈ τ .

Definition 4.6. For any fuzzy set A in an fts (Y, τ), we define
ker(A) =

∧
{U ∈ τ : A ≤ U}.

Lemma 4.7. For any two fuzzy sets A,B in an fts (Y, τ), the
following statements are true :
(i) xα ∈ ker(A) iff AqF for all F ∈ τ c with xαqF ,
(ii) if A ∈ τ , then A = ker(A),
(iii) if A ≤ B, then ker(A) ≤ ker(B).

Proof (i). Let xα ∈ ker(A). Let F ∈ τ c with xαqF . Then
α > 1 − F (x) ... (1). We have to show that AqF . If not, then
A ≤ 1Y \ F where 1Y \ F ∈ τ . Then by definition, xα ∈ 1Y \ F which
implies that 1− F (x) > α, which contradicts (1).
Conversely, let AqF for all F ∈ τ c with xαqF . Let U ∈ τ with A ≤ U
... (2). We have to show that xα ∈ U . If not, then U(x) < α implies
that 1 − U(x) > 1 − α and so xαq(1Y \ U) where 1Y \ U ∈ τ c. By
hypothesis, Aq(1Y \ U) which implies that there exists y ∈ Y such
that A(y) > U(y), which contradicts (2).

(ii) and (iii) are obvious.
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Theorem 4.8. A fuzzy multifunction F : (X,mX) → (Y, τ) is
f.u.c.m.c. on X if mCl(F−(V )) ⊆ F−(ker(V )), for all V ∈ IY .

Proof. Let mCl(F−(V )) ⊆ F−(ker(V )), for all V ∈ IY . Let
V ∈ τ . By Lemma 4.7, mCl(F−(V )) ⊆ F−(V ) implies that
F−(V ) = mCl(F−(V )). By Theorem 4.2, F is f.u.c.m.c. on X.

Theorem 4.9. A fuzzy multifunction F : (X,mX) → (Y, τ) is
f.l.c.m.c. on X if mCl(F+(V )) ⊆ F+(ker(V )), for all V ∈ IY .

Proof. The proof follows from Theorem 4.4 and Lemma 4.7.

Theorem 4.10. For a fuzzy multifunction F : (X,mX) → (Y, τ)
where mX has the property (B) and (Y, τ) is fuzzy semi-regular, then
the following statements are equivalent :
(i) F is f.u.c.m.c. on X,
(ii) F+(δclB) is m-open for all B ∈ IY ,
(iii) F+(K) is m-open for all fuzzy δ-closed set K of Y ,
(iv) F−(V ) is m-closed for all fuzzy δ-open set V of Y .

Proof (i)⇒ (ii). Let B ∈ IY . Then δclB ∈ τ c (by Theorem 3.13).
By Corollary 4.3, F+(δclB) is m-open.

(ii)⇒ (iii). Let K be fuzzy δ-closed in Y . Then K = δclK. By (ii),
F+(K) = F+(δclK) is m-open.

(iii)⇒ (iv). Let V be any fuzzy δ-open set in Y . Then 1Y \ V is
fuzzy δ-closed in Y . By (iii), F+(1Y \ V ) = X \ F−(V ) is m-open in
X and so F−(V ) is m-closed in X.

(iv)⇒ (i). Let V ∈ τ . By Theorem 3.13, V is fuzzy δ-open in Y .
By (iv), F−(V ) is m-closed in X and hence by Corollary 4.3, F is
f.u.c.m.c. on X.

Theorem 4.11. For a fuzzy multifunction F : (X,mX) → (Y, τ)
where mX has the property (B) and (Y, τ) is fuzzy semi-regular, then
the following statements are equivalent :
(i) F is f.l.c.m.c. on X,
(ii) F−(δclB) is m-open for all B ∈ IY ,
(iii) F−(K) is m-open for all fuzzy δ-closed set K of Y ,
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(iv) F+(V ) is m-closed for all fuzzy δ-open set V of Y .

Proof (i)⇒ (ii). Let B ∈ IY . Then δclB ∈ τ c (by Theorem 3.13).
By Corollary 4.5, F−(δclB) is m-open.

(ii)⇒ (iii). Let K be fuzzy δ-closed in Y . Then K = δclK. By (ii),
F−(K) = F−(δclK) is m-open.

(iii)⇒ (iv). Let V be any fuzzy δ-open set in Y . Then 1Y \ V is
fuzzy δ-closed in Y . By (iii), F−(1Y \ V ) = X \ F+(V ) is m-open in
X and so F+(V ) is m-closed in X.

(iv)⇒ (i). Let V ∈ τ . By Theorem 3.13, V is fuzzy δ-open in Y .
By (iv), F+(V ) is m-closed in X and hence by Corollary 4.5, F is
f.l.c.m.c. on X.

Theorem 4.12. For a fuzzy multifunction F : (X,mX) → (Y, τ)
where mX has the property (B) and (Y, τ) is fuzzy regular, then the
following statements are equivalent :
(i) F is f.u. (l.)c.m.c. on X,
(ii) F+(θclB) (F−(θclB)) is m-open, for all B ∈ IY ,
(iii) F+(K) (F−(K)) is m-open for every fuzzy θ-closed set K of Y ,
(iv) F−(V ) (F+(V )) is m-closed for every fuzzy θ-open set V of Y .

Proof (i)⇒ (ii). Let B ∈ IY . By Theorem 3.15, θclA ∈ τ c. By (i),
F+(θclA) is m-open in X by Corollary 4.3.

(ii)⇒ (iii). Let K be fuzzy θ-closed in Y . Then K = θclK. By (ii),
F+(K) = F+(θclK) is m-open in X.

(iii)⇒ (iv). Let V be any fuzzy θ-open set in Y . Then 1Y \ V is
fuzzy θ-closed in Y . By (iii), F+(1Y \ V ) = X \ F−(V ) is m-open in
X and so F−(V ) is m-closed in X.

(iv)⇒ (iii). obvious.

(iii)⇒ (i). Let K ∈ τ c. By Theorem 3.15, K = clK = θclK. By
(iii), F+(K) is m-open in X. By Corollary 4.3, F is f.u.c.m.c. on X.
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Similarly we can prove the theorem for f.l.c.m.c. multifunction.

Definition 4.13. A net {Sn : n ∈ (D,≥)} in an m-space (X,mX)
with the directed set (D,≥) as the domain, is said to m-converge to
a point x ∈ X if for each U ∈ mX containing x, there exists m ∈ D
such that Sn ∈ U , for all n ≥ m (n ∈ D).

Theorem 4.14. A fuzzy multifunction F : (X,mX) → (Y, τ) is
f.u.c.m.c. on X iff for each point x ∈ X, if {xn : n ∈ (D,≥)} is a net
in X, m-converges to x, there exists V ∈ τ c with x ∈ F+(V ), the net
is eventually in F+(V ).

Proof. Let {xn : n ∈ (D,≥)} be a net in X, m-converge to x ∈ X
and V ∈ τ c be such that x ∈ F+(V ). As F is f.u.c.m.c. at x ∈ X,
there exists U ∈ mX containing x such that U ⊆ F+(V ). Since the
net m-converges to x and U ∈ mX containing x, there exists m ∈ D
such that xn ∈ U , for all n ≥ m (n ∈ D) ⇒ xn ∈ F+(V ), for all
n ≥ m. Hence the net is eventually in F+(V ).
Conversely, let the given condition hold, but F be not f.u.c.m.c. at
some point x ∈ X. Then there exists V ∈ τ c with x ∈ F+(V ) such
that for each U ∈ mX containing x such that F (xU) 6≤ V , for some
xU ∈ U . Let (D,≥) be the directed set consisting of all pairs (xU , U)
with (xU , U) ≥ (xV , V ) iff U ⊆ V (U, V ∈ mX containing x) and
consider the net S(xU , U) = xU in X. Then the net {Sn : n ∈ (D,≥)}
m-converges to x, but F (Sn) 6≤ V , i.e., Sn 6∈ F+(V ), for each n ∈ D,
contradicting our hypothesis.

Theorem 4.15. A fuzzy multifunction F : (X,mX) → (Y, τ) is
f.l.c.m.c. on X iff for each point x ∈ X, if {Sn : n ∈ (D,≥)} is a
net in an m-space (X,mX) m-converges to x, then for each V ∈ τ c

with F (x)qV , there exists m ∈ D such that F (Sn)qV , for all n ≥ m
(n ∈ D).

Proof. Let {Sn : n ∈ (D,≥)} be a net in (X.mX) m-converge
to x ∈ X and V ∈ τ c with F (x)qV . Then as F is f.l.c.m.c. at x,
there exists U ∈ mX containing x such that U ⊆ F−(V ). Since the
net m-converges to x and U ∈ mX containing x, by Definition 4.13,
there exists m ∈ D such that Sn ∈ U , for all n ≥ m (n ∈ D) and so
Sn ⊆ F−(V ), for all n ≥ m and hence F (Sn)qV , for all n ≥ m.
Conversely assume that the given condition holds, but F is not
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f.l.c.m.c. at some point x ∈ X. Then there exists V ∈ τ c with
F (x)qV such that for each U ∈ mX containing x we have F (xU) 6 qV ,
for some xU ∈ U . Let (D,≥) be the directed set consisting of all pairs
(xU , U) with (xU , U) ≥ (xW ,W ) iff U ⊆ W (U,W ∈ mX containing x
and F (xU) 6 qU , F (xW ) 6 qW ) and consider the net S(xU , U) = xU in
X. Then evidently the net {Sn : n ∈ (D,≥)} m-converges to x but
F (Sn) 6 qV , for each n ∈ D contradicting our hypothesis.

5. Applications

Definition 5.1. For a fuzzy multifunction F : X → Y ,
clF : X → Y [3] (resp., sclF : X → Y [3], pclF : X → Y
[4], αclF : X → Y [4], βclF : X → Y ) is defined by
(clF )(x) = clF (x) (resp., (sclF )(x) = sclF (x), (pclF )(x) = pclF (x),
(αclF )(x) = αclF (x), (βclF )(x) = βclF (x)) for all x ∈ X.

Lemma 5.2. For a fuzzy multifunction F : (X,mX) → (Y, τ), the
following statements are true :
(i) (clF )−(U) = F−(U), for all U ∈ τ ,
(ii) (clF )+(U) = F+(U), for all U ∈ τ c.

Proof (i). Let U ∈ τ and x ∈ (clF )−(U). Then (clF )(x)qU ...
(1). We claim that F (x)qU . If not, then F (x) 6 qU where U ∈ τ
implies that (clF )(x) 6 qU , which contradicts (1). Hence F (x)qU
and so x ∈ F−(U) and then (clF )−(U) ⊆ F−(U). Obviously,
F−(U) ⊆ (clF )−(U). So F−(U) = (clF )−(U).

(ii). Let x ∈ (clF )+(U) for U ∈ τ c. Then (clF )(x) ≤ U
and so F (x) ≤ U implies that x ∈ F+(U) which implies that
(clF )+(U) ⊆ F+(U).
Conversely, let y ∈ F+(U). Then F (y) ≤ U and then
clF (y) ≤ clU = U which implies that y ∈ (clF )+(U) and hence
F+(U) ⊆ (clF )+(U). Consequently,(clF )+(U) = F+(U), for U ∈ τ c.

In a similar manner we can easily state the following lemma.
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Lemma 5.3. For a fuzzy multifunction F : (X,mX) → (Y, τ), the
following statements are true :
(i) (G)−(U) = F−(U), for each U ∈ τ ,
(ii) (G)+(U) = F+(U), for each U ∈ τ c,
where G stands for sclF , pclF , αclF , βclF .

Theorem 5.4. Let F : (X,mX)→ (Y, τ) be a fuzzy multifunction
where mX has the property (B). Then the following statements are
equivalent :
(i) F is f.u.c.m.c. on X,
(ii) G is f.u.c.m.c. on X where G stands for clF , scF , pclF , αclF ,
βclF .

Proof (i)⇒ (ii). Let K ∈ τ c. By Lemma 5.2 and Lemma 5.3,
G+(K) = F+(K). By Corollary 4.3, F+(K) is m-open and so G+(K)
is m-open. Hence G is f.u.c.m.c. on X.

(ii)⇒ (i). Let K ∈ τ c. By Lemma 5.2 and Lemma 5.3,
F+(K) = G+(K). As G is f.u.c.m.c. on X, by Corollary 4.3, G+(K)
is m-open in X and so F+(K) is m-open in X. Hence F is f.u.c.m.c.
on X.

Theorem 5.5. Let F : (X,mX) → (Y, τ) be f.u.c.m.c. surjective
multifunction and F (x) is fuzzy s-closed for each x ∈ X. If (X,mX)
is m-compact, then (Y, τ) is fuzzy s-closed.

Proof. Let {Aα : α ∈ Λ} be a fuzzy cover of Y by fuzzy
regular closed sets of Y . Now for each x ∈ X, F (x) is fuzzy
s-closed in Y and so there exists a finite subset Λx of Λ such that
F (x) ≤

⋃
{Aα : α ∈ Λx}. Let Ax =

⋃
{Aα : α ∈ Λx}. Then Ax

being fuzzy regular closed in Y is fuzzy closed in Y with F (x) ≤ Ax.
As F is f.u.c.m.c. surjective multifunction, there exists U ∈ mX

containing x such that F (Ux) ≤ Ax. Then {Ux : x ∈ X} is an
m-open cover of X, As X is m-compact, there exist finitely many
members x1, x2, ..., xn of X such that X =

⋃
{Uxi : i = 1, 2, ..., n}.
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As F is surjective, 1Y = F (X) = F (
⋃
{Uxi : i = 1, 2, ..., n})

=
n⋃
i=1

F (Uxi) ≤
n⋃
i=1

Axi ≤
n⋃
i=1

⋃
α∈Λxi

Aα. Hence Y is fuzzy s-closed.

Definition 5.6 [17]. Let (X,mX) be an m-space and A, a subset
of X. Then mX-frontier of A, denoted by mFr(A), is defined by
mFr(A) = mClA \mIntA.

Theorem 5.7. Let (X,mX) be an m-space and (Y, τ) be an fts and
F : (X,mX) → (Y, τ) be a fuzzy multifunction. Let A = {x ∈ X : F
is not f.u.(l.)c.m.c. at x}, B =

⋃
{mFr(F+(K)) : F (x) ≤ K,K ∈ τ c}

(resp. B =
⋃
{mFr(F−(K)) : F (x)qK,K ∈ τ c}). Then A = B.

Proof. Let x ∈ A. Then F is not f.u.c.m.c. at x. Then there exists
K ∈ τ c with F (x) ≤ K, but for all U ∈ mX containing x, U 6⊆ F+(K).
Then X \ U 6⊇ X \ F+(K) implies that U

⋂
(X \ F+(K)) 6= ∅

and so x ∈ mCl(X \ F+(K)) = X \ mInt(F+(K)) and hence
x 6∈ mInt(F+(K)). Now as x ∈ F+(K), x ∈ mCl(F+(K)) and so
x ∈ mFr(F+(K)), where F (x) ≤ K,K ∈ τ c and so x ∈ B and
consequently A ⊆ B.
Conversely, let x 6∈ A. Then F is f.u.c.m.c. at x. Then
for any K ∈ τ c containing F (x), there exists U ∈ mX con-
taining x such that F (U) ≤ K implies U ⊆ F+(K). Since
U ∈ mX , x ∈ U = mIntU ⊆ mInt(F+(K)) implies that
x 6∈ mFr(F+(K)) and hence x 6∈ B. Contrapositively, x ∈ B
implies that x ∈ A and so B ⊆ A. Combing these two, we get A = B.
Similarly we can prove the theorem for f.l.c.m.c. multifunction.

Definition 5.8 [3]. For a fuzzy multifunction F : X → Y , the
fuzzy graph multifunction GF : X → X × Y of F is defined as
GF (x) = the fuzzy set x1 × F (x) of X × Y where x1 is the fuzzy set
in X whose value is 1 at x ∈ X and 0 at other points of X. We shall
write {x} × F (x) for x1 × F (x).
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Lemma 5.9 [3]. The following hold for a fuzzy multifunction
F : X → Y :
(a) (GF )+(A×B) = A

⋂
F+(B) and

(b) (GF )−(A × B) = A
⋂
F−(B) for every subset A of X and every

B ∈ IY .

Theorem 5.10. Let X be product related to Y . Then a fuzzy mul-
tifunction F : (X,mX)→ (Y, τ) is f.l.c.m.c. on X if GF : X → X × Y
is so.

Proof. Let GF be f.l.c.m.c. on X. Let x ∈ X and
V ∈ τ c with F (x)qV . Then there exists y ∈ Y such that
[F (x)](y) + V (y) > 1. Now 1X × V is closed in X × Y such that
[{x} × F (x)](x, y) + (1X × V )(x, y) > 1 and so GF (x)q(1X × V ).
By hypothesis there exists U ∈ mX containing x such that
U ⊆ (GF )−(1X × V ) = 1X

⋂
F−(V ) = F−(V ) which shows that F is

f.l.c.m.c. on X.

Theorem 5.11. Let X be product related to Y . Then a fuzzy mul-
tifunction F : (X,mX)→ (Y, τ) is f.u.c.m.c. on X if GF : X → X×Y
is so.

Proof. Let GF be f.u.c.m.c. on X. Let x ∈ X and V ∈ τ c

with F (x) ≤ V . Then GF (x) ≤ 1X × V and 1X × V is closed in
X × Y . By hypothesis, there exists U ∈ mX containing x such that
GF (U) ≤ 1X × V . Now for any z ∈ U and for any y ∈ Y , [F (z)](y) =
[GF (z)](z, y) ≤ (1X × V )(z, y) = V (y) implies that [F (z)](y) ≤ V (y),
for all y ∈ Y and so F (Z) ≤ V , for all z ∈ U . Hence F (U) ≤ V
implies that F is f.u.c.m.c. on X.
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