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Abstract. In this paper, a new type of fuzzy multifunction is in-
troduced between a set having minimal structure [15, 16] and a fuzzy
topological space (fts, for short) in the sense of Chang [6] which gener-
alizes fuzzy contra continuous multifunction. It is also shown that the
image of an m-compact space [15, 16] under this fuzzy multifunction
is fuzzy s-closed [20] under certain conditions.

1. INTRODUCTION

In [15, 16], minimal structure (m-structure, for short) on a
non-empty set is introduced and in [14], Papageorgiou introduced
fuzzy multifunction between an ordinary topological space and
an fts. In this paper, we define a fuzzy multifunction between a
non-empty set having minimal structure, called an m-space and an fts.
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2. PRELIMINARIES

A fuzzy set [21] A is a mapping from a nonempty set Y into the
closed interval I = [0,1], i.e., A € IY. The support of a fuzzy set A in
Y will be denoted as suppA [21] and is defined by suppA = {y € Y :
A(y) # 0}. A fuzzy point [18] with the singleton support y € Y and
the value t (0 < ¢ < 1) at y will be denoted by y;. Oy and 1y are the
constant fuzzy sets taking respectively the constant values 0 and 1 on
Y. The complement of a fuzzy set A in Y will be denoted by 1y\ A [21]
and is defined by (1y \ A)(y) =1 — A(y), for all y € Y. For two fuzzy
sets A and B in Y, we write A < B iff A(y) < B(y), for each y € Y,
while we write AgB to mean A is quasi-coincident (qg-coincident, for
short) with B [18] if there exists y € Y such that A(y) + B(y) > 1;
the negation of AqB is written as A /gB. clA and intA of a set
A in X (respectively, a fuzzy set A [21] in Y') respectively stand for
the closure and interior of A in X (respectively, in Y). A fuzzy set
A in Y is called fuzzy regular open [1] (resp., fuzzy semiopen [1],
fuzzy [-open [2], fuzzy a-open [5], fuzzy preopen [13)) if intclA = A
(resp., A < clintA, A < clintclA, A < intclintA, A < intclA). The
complement of a fuzzy regular open (resp., fuzzy semiopen, fuzzy S-
open, fuzzy a-open, fuzzy preopen) set is called fuzzy regular closed
[1] (resp., fuzzy semiclosed [1], fuzzy [-closed [2], fuzzy a-closed [5],
fuzzy preclosed [13]). The union of all fuzzy semiopen sets contained
in a fuzzy set A in Y is called fuzzy semi-interior of A and is denoted
by sintA [1]. The intersection of all fuzzy semiclosed (resp., fuzzy
p-closed, fuzzy a-closed, fuzzy preclosed) sets containing a fuzzy set
A in Y is called a fuzzy semiclosure [1] (resp., fuzzy [-closure [2],
fuzzy a-closure [5], fuzzy preclosure [13]) of A and is denoted by sclA
(resp., BclA, aclA, pclA). A fuzzy set A is fuzzy semiclosed (resp.,
fuzzy B-closed, fuzzy a-closed, fuzzy preclosed) if A = sclA [1] (resp.,
A= fBcA 2], A= acA [5], A= pclA [13]).

A fuzzy set B is called a quasi-neighbourhood (q-nbd, for short) [18]
of a fuzzy set A if there is a fuzzy open set U in Y such that AqU < B.
If, in addition, B is fuzzy regular open, then B is called a fuzzy regular
open g-nbd of A. A fuzzy point z,, is said to be a fuzzy J-cluster point
of a fuzzy set A in an fts Y if every fuzzy regular open g-nbd U of z,,
is g-coincident with A [7]. The union of all fuzzy J-cluster points of A
is called the fuzzy d-closure of A and is denoted by dclA [7]. A fuzzy
set A is called fuzzy o-closed if A = dclA [7]. The complement of a
fuzzy d-closed set is called fuzzy §-open [7]. A fuzzy point y, is called
a fuzzy O-cluster point of a fuzzy set A in Y if clUgA for every fuzzy
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open set U in Y with y,qU [12]. The union of all fuzzy 6-cluster points
of A is called fuzzy #-closure of A, denoted by 6clA [12]. A fuzzy set
A is called fuzzy O-closed if A = 6clA [12]. The complement of a fuzzy
-closed set is called fuzzy 6-open [12].

3. SOME WELL KNOWN DEFINITIONS, LEMMAS AND THEOREMS

In this section, we recall some definitions, lemmas and theorems
for ready references.

Definition 3.1 [15, 16]. A subfamily mx of the power set P(X)
of a non empty set X is called a minimal structure (m-structure, for
short) on X if ) € myx and X € mx. (X, my) is called an m-space.
The members of mx are called mx-open (m-open, for short) and the
complement of an mx-open set is called mx-closed (m-closed, for
short).

Definition 3.2 [10]. Let (X, mx) be an m-space. For a subset A
of X, the mx-closure and mx-interior of A are defined as follows :

mCIA=({F:F>AX\F €my}

mIntA=| {U:U C AU € mx}

Remark 3.3. From Definition 3.1 and Definition 3.2, it is to be
noted that for a subset A of (X, mx), mIntA may not be m-open as
well as mClA may not be m-closed.

Lemma 3.4 [10]. Let (X,mx) be an m-space. For two subsets
A, B of X, the following properties hold :
() mCl(X \A) = X\ mIntA, mInt(X \ A) = X \ mCIA,
(ii) If X\ A € mx, then mCIA = A and if A € mx, then mintA = A,
(iii) mCU(D) = 0, mInt(D) = 0, mCl(X) = X, mInt(X) = X,
(iv) If A C B, then mCIl(A) C mCI(B) and m]nt(A) C miInt(B),
(v) AcC mC’l(A) and mInt(A) C A
(vi) mCl(mClA) = mCIlA and mInt(mIntA) = mIntA.

Lemma 3.5 [15]. Let (X, mx) be an m-space and A, a subset of
X. Then x € mCIlA if and only if U A # 0 for every U € my

containing x.
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Definition 3.6 [10]. An m-structure myx on a non empty set X
is said to have property (B) if the union of every family of subsets
belonging to mx belongs to mx.

Lemma 3.7 [17]. Let (X, mx) be an m-space where mx satisfying
the property (B). For a subset A of X, the following properties hold :
(i) A e mx iff mint(A) = A
(ii) A is m-closed iff mCIl(A) = A
(iii) mInt(A) € mx and mCI(A) is m-closed.

Definition 3.8 [15, 16]. An m-space (X,my) is said to be
m~compact if every cover of X by m-open sets has a finite subcover.

Definition 3.9 [6]. Let A be a fuzzy set in an fts (Y,7). A
collection U of fuzzy sets of Y is called a fuzzy cover of A if
sup{U(x) : U € U} =1 for each x € suppA. In particular, if A = IV,
we get the definition of fuzzy cover of Y.

Definition 3.10 [6, 8]. A fuzzy cover U of a fuzzy set A in an fts
(Y, 7) is said to have a finite subcover U, if Uy is a finite subcollection
of U such that (JUy > A, ie., Uy is also a fuzzy cover of A. In
particular, if A =1y, we get | JUy = 1y.

Definition 3.11 [20]. An fts (Y, 7) is said to be fuzzy s-closed if
every cover of Y by fuzzy regular closed sets has a finite subcover.

Definition 3.12 [1]. An fts (Y, 7) is said to be fuzzy semi-regular
if for each fuzzy open set U in Y and each fuzzy point z, with x,qU,
there exists V' € 7 such that x,qV <int(clV) < U.

Theorem 3.13 [1]. An fts (Y,7) is fuzzy semi-regular iff
dclA = clA, for all A e IY.
So in a fuzzy semi-regular space, if A € 7¢, then A = dclA. Similarly,
if A€ 7, then A = dintA.

Definition 3.14 [9]. An fts (Y,7) is said to be fuzzy regular if
every fuzzy open set V' can be expressed as union of fuzzy open sets
U,’s such that clU, <V for each a € A.
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Theorem 3.15 [19]. An fts (Y, 7) is fuzzy regular iff clA = 6clA,
for every A € IV.

Definition 3.16 [14]. Let (X,7) and (Y, 7y) be respectively an
ordinary topological space and an fts. We say that FF: X — Y is a
fuzzy multifunction if corresponding to each = € X, F(z) is a unique
fuzzy set in Y.

Henceforth by F': X — Y we shall mean a fuzzy multifunction in the
above sense.

Definition 3.17 [14, 11]. For a fuzzy multifunction F : X — Y,
the upper inverse F't and lower inverse F'~ are defined as follows :
For any fuzzy set Ain Y, FT(A) ={x € X : F(z) < A} and F~(A)
= {z € X : F(x)qA}.

There is the following relationship between the upper and the lower
inverses of a fuzzy multifunction.

Theorem 3.18 [11]. For a fuzzy multifunction F : X — Y, we
have F~(1y \ A) = X \ FT(A), for any fuzzy set A in Y.

4. Fuzzy CONTRA m-CONTINUOUS MULTIFUNCTIONS : SOME
CHARACTERIZATIONS

In this section we have introduced fuzzy upper and lower contra
m-continuous multifunctions between a set having minimal structure
and an fts. Several characterizations are made of these fuzzy multi-
functions.

Definition 4.1. A fuzzy multifunction F' : (X, my) — (Y, 7) is
called fuzzy
(i) upper contra m-continuous (f.u.c.m.c., for short) at =z € X if for
each fuzzy closed set A in Y with « € FT(A), there exists U € mx
containing x such that F(U) C A,
(ii) lower contra m-continuous (fl.c.m.c., for short) at x € X if for
each fuzzy closed set A in Y with x € F~(A), there exists U € mx
containing x such that F(u)gA, for all u € U,
(iii) upper (lower) contra m-continuous on X if F' has this property
at each point of X.
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Theorem 4.2. For a fuzzy multifunction F' : (X,mx) — (Y, 7),
the following statements are equivalent :
(i) Fis fu.cm.c. on X,
(il) FT(K) = mInt(FT(K)), for all K € 7,
(iii) F~ (V) =mCIl(F~(V)), for all V € 7.

Proof (i) = (ii). Let K € 7¢ and x € F*(K). Then F(z) < K. By
(i), there exists U € mx containing x such that F(U) < K implies that
U C FY(K). Since mint(F*(K)) = | J{G : G C F*(K),G € mx}
and U € myx with U C FH(K), z € U C mInt(F*(K)) implies that
x € mInt(F*(K)) and so F*(K) C mInt(F*(K)). Again by Lemma
3.4(v), mInt(FH(K)) C F(K). Hence F*(K) = mInt(F*(K)).

(i) = (ii). Let V € 7. Then 1y \ V € 7° By (i),
Fry \V) =X\ F (V) =mInt(F*(1y \ V)) = X \ mCl(F~(V))
and so '~ (V) = mCIl(F~(V)).

(iii) = (ii). Retracing (ii) = (iii), we get the result.

(i) = (i). Let x € X and K € 7¢ with F(z) < K. Then
x € FH(K)=mInt(F*(K)) =J{U : U C F"(K),U € mx} implies
that x € U where U € myx and U C F*(K) and so F(U) < K.

Corollary 4.3. For a fuzzy multifunction F' : (X,mx) — (Y, 7),
where mx has the property (B), the following statements are equiva-
lent :

(i) Fis fu.cm.c. on X,
(ii) F*(K) is m-open for every K € 7,
(iii) F~ (V) is m-closed for every V € 7.

Theorem 4.4. For a fuzzy multifunction F' : (X,mx) — (Y, 1),
the following statements are equivalent:
(i) Fis flc.m.c. on X,
(ii) F~(K) = mint(F~(K)), for all K € 7€,
(iii) FH(V) = mCUFT(V)), for all V € 7.

Proof (i) = (ii). Let 2z € F~(K) where K € 7¢. Then F(z)qK. By
(1), there exists U € mx containing x such that F'(u)¢K, for allu € U
implies that U C F~(K) and so x € U = mInt(U) C mInt(F~(K))
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hence x € mInt(F~(K)). Consequently, F~(K) = miInt(F~(K)).

(i) = (iii). Let K € 7. Then 1y \ K € 7° By (i),
F-(Iy\K) =X\ F"(K)=mInt(F~(1y \ K)) = X \ mCIl(F*(K))
implies that F't(K) = mCIl(FT(K)).

(ili) = (ii). Retracing (ii) = (iii), we get the result.

(i)= (i). Let z € X and K € 7°¢ with F(z)¢K implies
re F(K)=mint(F(K))=U{U:U C F~(K),U € mx} and so
xeUUemyx and U C F~(K) and hence F(u)gK, for all u € U.

Corollary 4.5. For a fuzzy multifunction F' : (X,mx) — (Y, 7)
where mx has the property (B), the following statements are equiva-
lent:

(i) Fis flcm.c. on X,
(ii) F~(K) is m-open for every K € 7¢,
(iii) F*(V) is m-closed for every V' € 7.

Definition 4.6. For any fuzzy set A in an fts (Y, 7), we define
ker(A) = N{Uer: A<U}

Lemma 4.7. For any two fuzzy sets A, B in an fts (Y, 7), the
following statements are true :
(i) xo € ker(A) iff AgF for all F' € 7¢ with z,qF,
(i) if A € 7, then A = ker(A),
(iii) if A < B, then ker(A) < ker(B).

Proof (i). Let z, € ker(A). Let F € 7¢ with z,qF. Then
a > 1—F(z) ... (1). We have to show that Ag¢F. If not, then
A <1y \ F where 1y \ F' € 7. Then by definition, z, € 1y \ F which
implies that 1 — F'(z) > «, which contradicts (1).
Conversely, let AgF for all F' € 7¢ with x,qF. Let U € 7 with A < U
... (2). We have to show that xz, € U. If not, then U(z) < a implies
that 1 — U(xz) > 1 — a and so z,q(ly \ U) where 1y \ U € 7¢. By
hypothesis, Ag(ly \ U) which implies that there exists y € Y such
that A(y) > U(y), which contradicts (2).

(i) and (iii) are obvious.
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Theorem 4.8. A fuzzy multifunction F' : (X,mx) — (Y,7) is
fu.cm.c. on X if mCIU(F~(V)) C F~(ker(V)), for all V e I'.

Proof. Let mCl(F~(V)) C F~(ker(V)), for all V. € IV. Let
V € 7. By Lemma 4.7, mCI(F~(V)) € F~(V) implies that
F~(V)=mCIl(F~(V)). By Theorem 4.2, F is f.u.c.m.c. on X.

Theorem 4.9. A fuzzy multifunction F' : (X,mx) — (Y,7) is
flcm.c. on X if mCIU(FT(V)) C Ft(ker(V)), for all V € IY.

Proof. The proof follows from Theorem 4.4 and Lemma 4.7.

Theorem 4.10. For a fuzzy multifunction F' : (X,mx) — (Y, 7)
where mx has the property (B) and (Y, 7) is fuzzy semi-regular, then
the following statements are equivalent :

(i) Fis fu.cm.c. on X,

(ii) F*(éclB) is m-open for all B € I",

(iii) F*(K) is m-open for all fuzzy 5—closed set K of Y,
(iv) F~(V) is m-closed for all fuzzy d-open set V' of Y.

Proof (i)= (ii). Let B € IV. Then éclB € 7¢ (by Theorem 3.13).
By Corollary 4.3, F"(dclB) is m-open.

(ii)= (i ) Let K be fuzzy d-closed in Y. Then K = dclK. By (ii),
FH(K) = F*(6clK) is m-open.

(ii)= (iv). Let V be any fuzzy d-open set in Y. Then 1y \ V is
fuzzy d-closed in Y. By (iii), F*(1y \ V) = X \ F~ (V) is m-open in
X and so F~ (V) is m-closed in X.

(iv)= (i). Let V € 7. By Theorem 3.13, V is fuzzy d-open in Y.
By (iv), F~(V) is m-closed in X and hence by Corollary 4.3, F' is
fu.cm.c. on X.

Theorem 4.11. For a fuzzy multifunction F' : (X,mx) — (Y, 7)
where my has the property (B) and (Y, 7) is fuzzy semi-regular, then
the following statements are equivalent :

(i) F'is f.lem.c. on X,
(ii) F~(6cIB) is m-open for all B € IY,
(iii) F~(K) is m-open for all fuzzy d-closed set K of Y,
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(iv) FT(V) is m-closed for all fuzzy d-open set V of Y.

Proof (i)= (ii). Let B € I. Then éclB € 7¢ (by Theorem 3.13).
By Corollary 4.5, F~(d¢lB) is m-open.

(i)= (11 ). Let K be fuzzy d-closed in Y. Then K = 6clK. By (ii),
F~(K) = F~(6clK) is m-open.

(ii)= (iv). Let V be any fuzzy d-open set in Y. Then 1y \ V is
fuzzy d-closed in Y. By (iii), F~(1y \ V) = X \ F'*(V) is m-open in
X and so F* (V) is m-closed in X.

(iv)= (i). Let V € 7. By Theorem 3.13, V is fuzzy d-open in Y.
By (iv), F"(V) is m-closed in X and hence by Corollary 4.5, F' is
flcm.c. on X.

Theorem 4.12. For a fuzzy multifunction F' : (X,mx) — (Y, 7)
where mx has the property (B) and (Y, 7) is fuzzy regular, then the
following statements are equivalent :

(i) Fis fu. (L)cm.c. on X,

(ii) F+(QCZB) (F~(OclB)) is m-open, for all B € IV,

(i) FY(K) (F~(K)) is m-open for every fuzzy 6-closed set K of Y,
(iv) F~ (V) (F*(V)) is m~closed for every fuzzy 6-open set V of Y.

Proof (i)= (ii). Let B € IY. By Theorem 3.15, fclA € 7. By (i),
F*(0clA) is m-open in X by Corollary 4.3.

(i)= (i ) Let K be fuzzy 6-closed in Y. Then K = fclK. By (ii),
Ft(K) = F"(fclK) is m-open in X.

(iii)= (iv). Let V be any fuzzy #-open set in Y. Then 1y \ V is
fuzzy O-closed in Y. By (iii), F"(1y \ V) = X \ F~(V) is m-open in
X and so F~ (V) is m-closed in X.

(iv)= (iii). obvious.

(ii)= (i). Let K € 7°. By Theorem 3.15, K = clK = 0clK. By
(iii), F*(K) is m-open in X. By Corollary 4.3, F' is f.u.c.m.c. on X.
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Similarly we can prove the theorem for f.l.c.m.c. multifunction.

Definition 4.13. A net {S,, : n € (D, >)} in an m-space (X, mx)
with the directed set (D,>) as the domain, is said to m-converge to
a point x € X if for each U € mx containing x, there exists m € D
such that S, € U, for alln > m (n € D).

Theorem 4.14. A fuzzy multifunction F' : (X,mx) — (Y,7) is
fau.cm.c. on X iff for each point z € X, if {x, : n € (D,>)} is a net
in X, m-converges to x, there exists V € 7¢ with z € F*(V), the net
is eventually in F* (V).

Proof. Let {z, :n € (D,>)} be a net in X, m-converge to z € X

and V € 7¢ be such that x € F*(V). As F is fucm.c. at x € X,
there exists U € myx containing x such that U C F* (V). Since the
net m-converges to r and U € my containing x, there exists m € D
such that z, € U, for alln > m (n € D) = x, € F*(V), for all
n > m. Hence the net is eventually in F* (V).
Conversely, let the given condition hold, but F' be not fu.c.m.c. at
some point z € X. Then there exists V € 7¢ with x € F* (V) such
that for each U € my containing x such that F(zy) £ V, for some
xy € U. Let (D, >) be the directed set consisting of all pairs (z¢, U)
with (zy,U) > (zy,V) it U C V (U,V € mx containing z) and
consider the net S(zy,U) = zy in X. Then the net {S,, : n € (D, >)}
m-converges to x, but F(S,) £V, ie., S, & F*(V), for each n € D,
contradicting our hypothesis.

Theorem 4.15. A fuzzy multifunction F' : (X,mx) — (Y,7) is
flcm.c. on X iff for each point z € X, if {S, : n € (D,>)} is a
net in an m-space (X, my) m-converges to x, then for each V' € ¢
with F(x)qV, there exists m € D such that F(S,)qV, for all n > m
(n € D).

Proof. Let {S, : n € (D,>)} be a net in (X.mx) m-converge
tox € X and V € 7¢ with F(x)qV. Then as F is flcm.c. at z,
there exists U € mx containing x such that U C F~ (V). Since the
net m-converges to x and U € my containing x, by Definition 4.13,
there exists m € D such that S,, € U, for all n > m (n € D) and so
Sp C F~(V), for all n > m and hence F(S,,)qV, for all n > m.
Conversely assume that the given condition holds, but F is not
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fl.cm.c. at some point x € X. Then there exists V € 7¢ with
F(x)qV such that for each U € myx containing = we have F'(zy) 4V,
for some xy; € U. Let (D, >) be the directed set consisting of all pairs
(xy,U) with (zg,U) > (zw, W) it U CW (U,W € myx containing x
and F(zy) AU, F(xw) W) and consider the net S(xy,U) = zy in
X. Then evidently the net {S,, : n € (D,>)} m-converges to x but
F(S,) 4V, for each n € D contradicting our hypothesis.

5. APPLICATIONS

Definition 5.1. For a fuzzy multifunction F : X — Y,
cdF :+ X — Y [3] (resp., sclF' : X — Y [3], pdFF : X — Y
[4], aclFF : X — Y [4], BdF : X — Y) is defined by
(clF)(z) = clF(x) (resp., (sclF)(x) = sclF(x), (pclF)(x) = pclF(z),
(el F)(z) = aclF(z), (Bl F)(x) = BelF(z)) for all z € X

Lemma 5.2. For a fuzzy multifunction F': (X,mx) — (Y, 7), the
following statements are true :
(i) (cddF)~(U)=F-(U), forallU € T,
(i) (cdF)*(U) = FT(U), for all U € 7°.

Proof (i). Let U € 7 and o € (clF)~(U). Then (cIF)(x)qU ...
(1). We claim that F(z)qU. If not, then F(z) /U where U € 7
implies that (clF)(z) /qU, which contradicts (1). Hence F(x)qU
and so x € F~(U) and then (cIF)~(U) € F~(U). Obviously,
F~(U) C (cdF)=(U). So F~(U) = (cIF)~(U).

(ii). Let z € (cdF)™(U) for U € 7¢ Then (clF)(z) < U
and so F(zx) < U implies that € F*(U) which implies that
(dF)*(U) € F*(U).

Conversely, let y € F*(U). Then F(y) < U and then
clF(y) < ¢lU = U which implies that y € (cIF)*(U) and hence
FH(U) C (clF)*(U). Consequently,(clF)"(U) = F*(U), for U € 7°.

In a similar manner we can easily state the following lemma.
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Lemma 5.3. For a fuzzy multifunction F': (X, myx) — (Y, 7), the
following statements are true :
(i) (G)~(U)=F~(U), for each U € T,
(ii) (G)T(U) = F*(U), for each U € 7°,
where G stands for sclF', pclF, aclF', BclF.

Theorem 5.4. Let F': (X,mx) — (Y, 7) be a fuzzy multifunction
where mx has the property (B). Then the following statements are
equivalent :

(i) Fis fu.cm.c. on X,
(ii) G is fu.cm.c. on X where G stands for clF, scF, pclF, aclF,
BelF.

Proof (i)= (ii). Let K € 7¢. By Lemma 5.2 and Lemma 5.3,
Gt (K) = F*(K). By Corollary 4.3, F™(K) is m-open and so G*(K)
is m-open. Hence G is f.u.c.m.c. on X.

(i)= (i). Let K € 7° By Lemma 52 and Lemma 5.3,
FH(K)=G"(K). As G is fu.cm.c. on X, by Corollary 4.3, G*(K)
is m-open in X and so F*(K) is m-open in X. Hence F is f.u.c.m.c.
on X.

Theorem 5.5. Let F': (X,mx) — (Y,7) be f.u.c.am.c. surjective
multifunction and F(z) is fuzzy s-closed for each x € X. If (X, my)
is m-compact, then (Y, 7) is fuzzy s-closed.

Proof. Let {A, : a € A} be a fuzzy cover of Y by fuzzy
regular closed sets of Y. Now for each x € X, F(z) is fuzzy
s-closed in Y and so there exists a finite subset A, of A such that
F(z) < H{Aa : @ € Ay} Let A, = J{As : @ € A,}. Then A,
being fuzzy regular closed in Y is fuzzy closed in Y with F(x) < A,.
As F is fu.c.m.c. surjective multifunction, there exists U € my
containing = such that F(U,) < A,. Then {U, : z € X} is an
m-open cover of X, As X is m-compact, there exist finitely many
members 1, xg, ..., x, of X such that X = (J{U,, : i = 1,2,...,n}.
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As F is surJectlve ly = F(X) = F(UW{U,, : i = 1,2,...,n})
U Usg,) < UA < U U A,. Hence Y is fuzzy s-closed.
i=1 = i=la€Ay;

Definition 5.6 [17]. Let (X, mx) be an m-space and A, a subset
of X. Then mx-frontier of A, denoted by mFr(A), is defined by
mFr(A) =mCIA\ mIntA.

Theorem 5.7. Let (X, mx) be an m-space and (Y, 7) be an fts and
F:(X,mx) — (Y,7) be a fuzzy multifunction. Let A ={z € X : F
is not fu.(l.)cm.c. at x}, B=J{mFr(F*(K)): F(z) < K,K € ¢}
(resp. B = J{mFr(F (K)): F(x)¢K,K € 7¢}). Then A = B.

Proof. Let x € A. Then F is not f.u.c.m.c. at x. Then there exists

K € ¢ with F(z) < K, but for all U € mx containing z, U € F*(K).
Then X \ U 2 X \ F*(K) implies that U(X \ FT(K)) # 0
and so x € mClUX \ FT(K)) = X \ mInt(F*(K)) and hence
x & mInt(FT(K)). Now as x € FT(K), x € mCI(F*(K)) and so
x € mFr(Ft(K)), where F(z) < K,K € 7° and so z € B and
consequently A C B.
Conversely, let x ¢ A. Then F is fu.cm.c. at z. Then
for any K € 71°¢ containing F(z), there exists U € mx con-
taining = such that F(U) < K implies U C F*(K). Since
U € my,v € U = mIntU C mInt(F"(K)) implies that
x & mFr(FT(K)) and hence x ¢ B. Contrapositively, z € B
implies that x € A and so B C A. Combing these two, we get A = B.
Similarly we can prove the theorem for f.l.c.m.c. multifunction.

Definition 5.8 [3]. For a fuzzy multifunction F' : X — Y, the
fuzzy graph multifunction Gp : X — X X Y of F is defined as
Gr(x) = the fuzzy set x1 x F(z) of X x Y where x; is the fuzzy set
in X whose value is 1 at x € X and 0 at other points of X. We shall
write {z} x F(z) for zy x F(x).
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Lemma 5.9 [3]. The following hold for a fuzzy multifunction
F:X—=Y:
(a) (Gr)T(Ax B)= A F*(B) and
(b) (Gr) (A x B) = A(F~(B) for every subset A of X and every
Bel".

Theorem 5.10. Let X be product related to Y. Then a fuzzy mul-
tifunction F: (X,mx) — (Y,7) isflem.c. on X if Gp: X - X xY

18 SO.

Proof. Let Gr be fl.c.m.c. on X. Let + € X and
V e 7¢ with F(z)¢gV. Then there exists y € Y such that
[F(z)](y) + V(y) > 1. Now 1x x V is closed in X x Y such that
{z} x F(z)|(z,y) + (1x x V)(z,y) > 1 and so Gp(z)q(lx x V).
By hypothesis there exists U €& mx containing = such that
UC(Gp) (1x xV)=1xNF (V) = F~ (V) which shows that F is
flcm.c. on X.

Theorem 5.11. Let X be product related to Y. Then a fuzzy mul-
tifunction F : (X,mx) — (Y, 7) isfucm.c. on X if Gp: X - X xY
is so.

Proof. Let Gp be fucm.c. on X. Let z € X and V € 7°
with F(x) < V. Then Gp(z) < 1y x V and 1y x V is closed in
X xY. By hypothesis, there exists U € myx containing x such that
Gr(U) <1x x V. Now for any z € U and for any y € Y, [F(2)](y) =
[Gr(2)](z,y) < (1x X V)(2,y) = V(y) implies that [F(2)](y) < V(y),
forall y € Y and so F(Z) <V, for all z € U. Hence F(U) <V
implies that F'is f.u.c.m.c. on X.
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