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Abstract. The purpose of this paper is to prove a general fixed
point theorem for two pairs of mappings satisfying a new type of com-
mon limit range property. In the last part of the paper, as applications,
some fixed point results for mappings satisfying contractive conditions
of integral type, for ¢ - contractive mappings and v - weak contrac-
tive mappings generalizing Theorem 2 [27] and other known results
are obtained.

1. INTRODUCTION

Let (X,d) be a metric space and S,T be two self map-
pings of X. Jungck [11] defined S and T to be compatible
iflim,, o d(STx,, T'Sx,) = 0 whenever {z,} is a sequence in X, such
that lim,,_o Sz, = lim,_,o T'x, = t, for some ¢t € X. This concept
has been frequently used to prove the existence theorem in fixed point
theory.
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Let f, g be self mappings of a nonempty set X. A point x € X is
a coincidence point of f and g if fr = gr = w and w is a point of
coincidence of f and g.

By C(f,g) we denote the set of all coincidence points of f and g.

f and g are said to be weakly compatible if fgr = gfz for all
z € C(f,9).

The study of noncompatible mappings in metric spaces is also in-
teresting. The work in this regard has been initiated by Pant in [15] -
[17] and in other papers.

Aamri and El - Moutawakil [1] introduced a generalization of non-
compatible mappings.

Definition 1.1 ([1]). Let S and T be self mappings of a metric space
(X,d). S and T satisfy (E.A) property if there exists a sequence {z,,}
in X such that lim,_, T'x,, = lim,_,o, Sz, = t, for some t € X.

Remark 1.2. [t is clear that two self mappings S and T' of a metric
space (X, d) will be noncompatible if there exists a sequence {x,} in
X such that lim,,_o Sx,, = lim, oo Tx, = t, for some t € X but
lim,, o d(STx,, T'Sx,) is non zero or non existent.

Therefore, two noncompatible mappings of a metric space satisfy
(E.A) - property.

Liu et al. [13] introduced the notion of common (E.A) - property.

Definition 1.3 ([13]). Two pairs (A, S) and (B, T) of self mappings
of a metric space (X, d) are said to satisfy common (E.A) - property
if there exist two sequences {z,} and {y,} in X such that

lim Az, = lim Sz, = lim By, = lim Ty, =t,
n—oo n—o00 n—o00 n—00

for some t € X.

In 2011, Sintunawarat and Kumam introduced the notion of com-
mon limit range property.

Definition 1.4 ([26]). A pair of mappings (A, S) of a metric space
(X, d) is said to satisfy the common limit range property with respect
to S, denoted C'LR gy - property, if there exists a sequence {xz, } in X
such that lim,,_,o, Az, = lim,_,, Sz, = t, for some t € S(X).

Thus we can infer that a pair (A,S) satisfying (F.A) - property
along with the closedness of the subspace S (X) always have CLRg)
- property.

Recently, Imdad et al. [8] introduced the concept of common limit
range property for two pairs of mappings.
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Definition 1.5 ([8]). Two pairs (A, S) and (B,T") of mappings de-
fined on a metric space (X, d) are said to satisfy common limit range
property with respect to S and 7', denoted CLR(sr) - property, if
there exist two sequences {z,} and {y,} in X such that

lim Az, = lim Sz, = lim By, = lim Ty, =t,
n—oo n—oo n—oo n—o0

where t € S(X)NT (X).

Some results for mappings satisfying CLR(s) - property and
CLRs 1) - property are obtained in [7], [9] and in other papers.
Now, we introduce a new type of limit range property.

Definition 1.6. Let A, S and T be self mappings of a metric space
(X, d). The pair (A, 5) is said to satisfy common limit range property
with respect to T', denoted CLR(4 s 1 - property, if there exists a
sequence {z,} in X such that lim, ,., Az, = lim, . Sz, = t, for
some t € S(X)NT (X).

Example 1.7. Let R, be the metric space with the usual metric, Ax =

241 1 1 1
v - (de:)s:$—|—Z. Then S (X) = {§,oo>,T(X):

5 St =

1 1
lz, oo) and S (X)NT(X) = [—, oo) Let {x,} be a sequence in X

2
1
such that lim,_, x, = 0. Then, lim,_, Az, = lim, . Sz, = 5 €
S(X)NT(X).
Remark 1.8. Let A, B,S and T be self mappings of a metric space
(X,d). If (A,S) and (B,T) satisfy CLR(sr) - property, then (A,S)
and T satisfy CLRa.s) 1 - property. The converse is not true. In

1
Example 1.7, let By = x° + 1 and let {y,} be a sequence in X such

1 1
that lim,, oo ¥y, = 0. Then lim,_, By, = lim, o Ty, = 1 #* 3"
Hence (A, S) and (B,T) don’t satisfy CLRsr) - property.

The notion of weak contractive condition in Hilbert spaces is intro-
duced in [3] by Alber and Guerre - Delabriere.

Rhoades [22] extends this concept in metric spaces.

Other results are obtained in [5], [10] and in other papers.

Definition 1.9. Let ® be the set of all functions ¢ : [0,00) — [0, c0)
such that
1) ¢ is lower semi - continuous,
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2)  ¢(0)=0,
3) o(t) >0, vt >0.

In [6], Branciari established the following theorem, which opened the
way to the study of fixed points for mappings satisfying contractive
conditions of integral type.

Theorem 1.10 ([6]). Let (X, d) be a complete metric space, ¢ € (0, 1)
and f: X — X such that for all x,y € X

/ h(t)dt < / h(t)dt
0 0

whenever h : [0,00) — [0,00) is a Lebesque measurable mapping
which is summable (i.e., with finite integral) on each compact subset
of [0,00), such that [ h(t)dt >0, Ve > 0.

Then, f has a unique fixed point z € X such that for all v € X,
z = lim, o fMx.

Some fixed point results for mappings satisfying contractive con-
ditions of integral type are obtained in [20], [21], [23] and in other
papers.

The following theorem is proved in [27].

Theorem 1.11 (Theorem 2 [27]). Let A, S, B and T be self mappings
of a metric space (X,d) such that for all x,y € X, there exists ¢ € ®
such that

d(Az,By)
/0 h(t)dt < M (z,y) — ¢ (M (2,)),

where h (t) is as in Theorem 1.10 and

d(Sz,By)+d(Ty,Az) }
2

M (

max{d(Sz,Ty),d(S:ﬂ,A:v) ,d(Ty,By),
T, y) = / h(t)dt.
0

A
2) C (B, 0.
Moreover, if (A,S) and (B,T) are weakly compatible, then A, B,S
and T have a unique common fized point.

The purpose of this paper is to prove a general fixed point theorem
for two pairs of mappings (A, S) and (B,T') such that (A,S) and T'
satisfy CLR4,s)r - property, using implicit relations. As applications,
some fixed point results for mappings satisfying contractive conditions
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of integral type, for ¢ - contractive mappings and ¢ - weak contractive
mappings generalizing Theorem 1.11, are obtained and also we obtain
other known results.

2. IMPLICIT RELATIONS

Several classical fixed point theorems and common fixed point the-
orems have been unified considering a general condition by an implicit
function in [18], [19] and in other papers. Recently, this method is
used in the study of the existence of fixed points in metric spaces,
symmetric spaces, quasi - metric spaces, b - metric spaces, convex
metric spaces, ultra - metric spaces, compact metric spaces, Hilbert
spaces, in two and three metric spaces, for single - valued functions,
hybrid pairs of mappings and set - valued mappings.

Quite recently, the method is used in the study of fixed points for
mappings satisfying a contractive condition of integral type, in fuzzy
metric spaces, intuitionistic metric spaces, probabilistic metric spaces,
G - metric spaces, G, - metric spaces, partial metric spaces.

With this method the proofs of some fixed point theorems are more
simple. Also, the method allows the study of local and global proper-
ties of fixed point structures.

In 2008, Ali and Imdad [4] introduced a new class of implicit re-
lations. Recently, Imdad and Chauhan [9] employed common limit
range property to prove unified metrical common fixed point theorems
in metric spaces. We introduce a new form of implicit relation.

Definition 2.1. Let F5 be the family of lower semi - continuous func-
tions F'(t1,...,t5) : R} — R such that:

(Fy): F(t,0,0,t,t) >0, Vt > 0;

(Fy) : F(t,0,t,0,t) > 0, VYt > 0;

(F3) : F(t,t,0,0,2t) > 0, Vt > 0.

t
Example 2.2. F(tl,...,t5) = 11 — ]{ZmaX{tQ,t37t4,§5}, where
kel0,1).
Example 2.3. F(t1,..,t5) = t1 — kmax{ty, t3,t4,t5}, where
1

ke |0, = ).

")
Example 2.4. F(ty,....t5) = t; — max{aty,bts, cty,dts}, where

a,b,c,d>0anda+b+c+2d < 1.
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Example 2.5. F(ty,...,t5) = t; —aty—btg+cty—dts, where a,b,c,d > 0
and a+b+c+2d < 1.

Example 2.6. F(t,...,t5) = t; —amax {ts, t3,t4} —bts, where a,b >0
and a + 2b < 1.

Example 2.7. F(ty,....t5) = 12 — t; (aty + bt3 + cty) — dt2, where
a,b,e,d>0anda+b+c+4d < 1.

1

Example 2.8. F(ty,...,t5) = t? + RS

a,b,c>0anda+b+c<1.

Example 2.9. F(ty,...,t5) = ato—bts—cmax {2t4,t5}, where a,b,c >
0anda+b+2c<1.

— (at3 + bt3 + ct3) , where

3. MAIN RESULTS

Lemma 3.1 ([2]). Let f and g be two weakly compatible self mappings
of a nonempty set X. If f and g have a unique point of coincidence
w = for = gx, for some v € X, then w is the unique common fixed
point of f and g.
Theorem 3.2. Let (X, d) be a metric space and A, B, S and T be self
mappings of X satisfying the inequality

F(d(Az, By),d(Sz,Ty),d(Sz, Az),
d(Ty, By),d(Sz, By) + d(Ty, Az)) < 0,
for all x,y € X and some F satisfying property (F3).

If there exist u,v € X such that Au = Su and Tv = Bv, then there

exists t € X such that t is the unique point of coincidence of A and S,
as well the unique point of coincidence of B and T.

(3.1)

Proof. First we prove that Su = Twv. By (3.1) for z = v and y = v we
get
F(d(Au, Bv),d(Su,Tv),d(Su, Au),
d(Tv, Bv),d(Su, Bv) + d(Tv, Au)) < 0,
F(d(Su,Tv),d(Su,Tv),0,0,2d(Su, Tv)) <0,

a contradiction of (F3) if d(Su,Tv) > 0. Hence d(Su,Tv) = 0, which
implies Su = Twv. Hence, Au = Su = Tv = Bv =t for some t € X
and t is a point of coincidence of A and S and for B and T

Suppose that there exists w # u such that Sw = Aw. Then, by
(3.1) for z = w and y = v we have

F(d(Aw, Bv),d(Sw,Tv),d(Sw, Aw),
d(Tv, Bv),d(Sw, Bv) + d(Tv, Aw)) <0,
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F(d(Sw,Tv),d(Sw,Tv),0,0,2d(Sw,Tv)) <0,
a contradiction of (F3) if d(Sw,Tv) > 0. Hence, d(Sw,Tv) = 0, which
implies Sw = T'v = t. Therefore t is the unique point of coincidence
of A and S.

Similarly, ¢ is the unique point of coincidence of B and T ([l

Theorem 3.3. Let (X, d) be a metric space and A, B,S and T be self
mappings of X satisfying inequality (3.1) for all z,y € X and some
FeFs. If (AS) and T satisfy CLR.s)r - property, then

(1) C(A,5)#0,

(i1) C(B,T) # 0.

Moreover, if (A,S) and (B,T) are weakly compatible, then A, B, S

and T have a unique common fized point.

Proof. Since (A, S) and T satisfy CLR(4s)r - property, then there
exists a sequence {z,} in X such that

lim Az, = lim Sz, = z,
n—oo n—o0

where z € S(X)NT (X).
Since z € T'(X), there exists u € X such that z = Tu.
By (3.1) for x = z,, and y = u we have

F(d(Ax,, Bu),d(Sx,, Tu),d(Sz,, Az,),
d(Tu, Bu),d(Sx,, Bu) + d(Tu, Az,)) < 0.
Letting n tends to infinity we obtain
F(d(z, Bu),0,0,d(z, Bu),d(z, Bu)) <0,
a contradiction of (Fy) if d(z, Bu) > 0. Hence, d(z, Bu) = 0, which
implies z = Bu = Twu and C (B, T) # 0.
On the other hand z € S (X)), which implies z = Sv for some v € X.
Again, by (3.1) for x = v and y = u we obtain
F(d(Av, Bu),d(Sv,Tu),d(Sv, Av),
d(Tu, Bu),d(Sv, Bu) + d(Tu, Av)) < 0,
F(d(Av, 2),0,d (Av, z),0,d(z, Av)) <0,
a contradiction of (F3) if d(Av,z) > 0. Hence, d(Av,z) = 0, which
implies z = Av = Sv and C(A,S) # 0. Then z = Av = Sv = Tu =
Bu.
By Theorem 3.2, z is the unique point of coincidence for A and S
and for B and T'.
Moreover, if (A,S) and (B,T) are weakly compatible, by Lemma
3.1, z is the unique common fixed point for A, B, S and T 0
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By Theorem 3.3 and Example 2.2 we obtain

Theorem 3.4. Let (X, d) be a metric space and A, B,S and T be self
mappings of X such that for all x,y € X

d(Az, By) < kmax{d(Sz, Ty),d(Sz, Az),d(Ty, By),
B Ty, A
d(Sz, y);d( Y, x>}§0.

If (A, S) and T satisfy CLRa,s)r - property, then

(1) C(AS)#0,

(i1) C(B,T) # 0.

Moreover, if (A,S) and (B,T) are weakly compatible, then A, B, S
and T have a unique common fized point.

Example 3.5. Let X = [0,1] be and d be the usual metric on X.
Consider the following mappings:

Axr =0,5z = Br=2% Tz =z

x
x+2 3’

Then

S(X) = [0,1} T(X)=1[0,1,5(X)NT(X) = {0%]

Let {x,} be a sequence in X such that lim, ,.ox, = 0. Then,
lim,, o Az, = lim, o Sz, =0 € S(X)NT (X). Hence (A,S) and
T satisfy CLRas) 7 - property.

On the other hand Sz = Ax implies C (A, S) = {0}. Hence ASO =
SA0 =0 and hence A and S are weakly compatible.

Bx = Tx implies C (B,T) = {0} and BT0 = TB0 = 0, hence B
and T are weakly compatible. As

9
d(Azx, By) = % and d (Ty, By) = gy

then
d (Az, By) < kd (Ty, By),

1
where k € [5, 1) , which implies

d(Az,By) < kmax{d(Sz,Ty),d(Sz, Az),

d(Sz,By) +d(Azx,Ty)
2 b

By Theorem 3.4, A, B,S and T have a unique common fized point
= 0.

d(Ty, By),
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4. APPLICATIONS

4.1. Fixed points for mappings satisfying a contractive condi-
tions of integral type.

Definition 4.1. An altering distance is a function 6 : [0, 00) — [0, 00)
satisfying

(61) : 6 is increasing and continuous,

(02) : 6(t) = 0 if and only if £ = 0.

Fixed point theorems involving altering distances are proved in [21],
[24], [25] and in other papers.

Lemma 4.2 ([21]). Let h : [0,00) — [0,00) as in Theorem 1.10. Then
6(t) = f(f h(x)dx is an altering distance.

The following functions using altering distance satisfy properties
(F1) — (F3).

Example 4.3.
t
F(ty, ..., ts) = 0 (t;) — kmax {e (ta) 0 (t3),0 (ts) 0 (55) } ,
where k € [0,1).
Example 4.4.
F(tl, ...,t5) =40 (t1> —ab (tg) — bl (t3) —cl (t4) — df (%) s
where a,b,c,d >0 anda+b+c+d < 1.
Example 4.5.
0 (t1)
F (ty, ... ts) = [0 ()] + ——2— — 0 (t1) [af (t2) + 0O (¢ 0 (t
(t1, s t5) [<1)]+1+0(t5) (1) [ab (t2) + b0 (t3) + b ()],
where a,b,c >0 and a+b+c < 1.
Example 4.6.
F(ty,ts) = 0(t1) — kmax {6 (82) , /0 (£) 0 (), /0 ()0 (1) |
where k € [0, 1)
2
Example 4.7.

F(ty, ... t5) =0 (t1)—k (\/9 (t3) 0 (ta) + /0 (t2) 0 (ts) + /0 (t4)9(t5)> |

L+ /0 (t3) 0 (ta)
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where k € [0,1).
Example 4.8.

F(ty,.ts) =0(t,) — k;max{ \é%((’;?)@e(&))l\/e ()0 (), } |

where k € [0,1).

By Theorem 3.2 and Example 4.3 we obtain

Theorem 4.9. Let A, B, S and T be self mappings of a metric space
(X, d) such that for all x,y € X

0 (d(Ax, By)) < kmax{0 (d(Sz,Ty)),0 (d(Sx, Az)),

0 (d(Ty, By)) ,0 <d(sx’ By) ; 4Ty, Ax))} <0,

where k € [0,1) and 0 is an altering distance.

If (A, S) and T satisfy CLRa.s)r - property, then

(i) C(A,9) £,

(1) C(B,T) # 0.

Moreover, if (A,S) and (B,T) are weakly compatible, then A, B, S
and T have a unique common fized point.

By Theorem 4.9 and Lemma 4.2 we obtain

Theorem 4.10. Let A, B, S and T be self mappings of a metric space
(X,d) such that for all x,y € X
JARBD () dt < kmax{ SO0 b (t) dt, (20N B(t) dt,

0 0
d(Sz,By)+d(Ty,Ax)

ST b1y at, |, 2 h(t)dt} <0,

where k € [0,1) and h(t) as in Theorem 1.10.

If (A, S) and T satisfy CLR.s)r - property, then

(1) C(A5)#0,

(i1) C(B,T) # 0.

Moreover, if (A,S) and (B,T) are weakly compatible, then A, B, S
and T have a unique common fized point.

Remark 4.11. This theorem is a generalization of Theorem 1.11.

4.2. Fixed points for mappings satisfying ¢ - contractive con-
ditions. As in [14], let ® be the set of all real nondecreasing contin-
uous functions ¢ : [0,00) — [0,00) with lim, . ¢™ (t) = 0, for all
t €[0,00).

If o € &, then
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1) @ (t) < tforall t >0,

2) ¢ (0)=0.
The following functions F (ti,...,t5) : R%. — R satisfy conditions

(F1) — (F3).

Example 4.12. F (t1,...,t5) =t — ¢ (max {tz,tg, ty, %5})
Example 4.13.
F(ty,....,t5) = t1 — @ (aty + bts + cty + dts5),
where a,b,c,d >0 and a+ b+ c+ 2d < 1.
Example 4.14. F (t,....t5) =t; — ¢ (max {tg, V1sts, \/@})
Example 4.15.
F(ty,...,t5) =t1 — ¢ (aty + bmax{ts + t5,t4 — t5}),
where a,b >0 and a + 2b < 1.
Example 4.16.
F (t1,..t5) =t1 —p(aL(x,y) + (1 —a) M (z,y)),
where a € (0,1),
L (z,y) = max{ty, t5,t4}, M (x,y) = [max{t, tots, tsty, tats}]*/2.
Example 4.17.
F (t1,....t5) = (t1 + ata) t1 — ¢ (max{t3, tats, tsts, tats}) .
By Theorem 3.3 and Example 4.12 we obtain

Theorem 4.18. Let A, B, S and T be self mappings of a metric space
(X,d) such that for all x,y € X

d(Az, By) < p(max{d(Sz,Ty),d(Sz, Az),
d(Sxz, By) + d(Ty, Ax
a1y, y), A3 B0 AT A0)

If A, S and T satisfy CLR 4,57 - property, then

(i)  C(AS)#0,

(ii)  C(B,T)#0.

Moreover, if (A,S) and (B,T) are weakly compatible, then A, B,S

and T have a unique common fized point.

Remark 4.19. By Theorem 3.3 and Examples 4.13 - 4.17 we obtain
new particular results.
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4.3. Fixed point theorems for mappings satisfying ¢ - weak
contractive conditions. The following functions F (ty,...,t5)
R — R satisfy conditions (F}) — (F5).

Example 4.20.

t t
F(ty,...,t5) = t; — max {t27t37t47 55} +0 (max {tz,tg,t4, 55}) )

Example 4.21.

/ Ve t

Example 4.22.

t t
F(ty, .. ts5) =t — (at2 + bts + cty — df) +¢ (max {tQ,tg, t, 55}) :
where a,b,c,d >0 and a+b+ c+2d < 1.
Example 4.23.
F(ty,...,t5) = t3 —t; (aty + bts + cty) — ¢ (max {ts,t3,14}) .
Example 4.24.

t
F (tb "'7t5) = tl — kmax {t27t37 t47 55} + (b (maX {t27t37t4}) )

where k € [0,1).
Example 4.25.

Vists + V/tats + V/tals
F(ty,.. t5) =t,— +¢ (max {ta, Vists, Vials ) -
(t1 5) =11 N ¢ ( {t2, Vtsts, Vists })

By Theorem 3.3 and Example 4.20 we obtain

Theorem 4.26. Let A, B, S and T be self mappings of a metric space
(X, d) such that for all x,y € X

d(Az, By) < max{d(Sx,Ty),d(Sz, Ax),
d(Sz, By) + d(Ty, Ax)

d(Ty, By), 5 =
d(Sz,Ty),d(Sx, Ax),

If A, S and T satisfy CLRa,s)r - property, then
(i) C(AS)#0,
(ii)  C(B,T) #0.
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Moreover, if (A,S) and (B,T) are weakly compatible, then A, B, S
and T have a unique common fized point.

Remark 4.27. 1) If A,B,S and T satisfy CLR.s) 1 - property
in symmetric spaces, a similar result with Theorem 2 [10] is obtained.

2) By Theorem 3.3 and FExamples 4.21 - 4}.25 new particular
results are obtained.

4.4. Fixed point theorems for mappings satisfying (6,¢) -
weak contractive conditions. The following functions F' (¢4, ..., 5) :
R’ — R satisfy conditions (F}) — (F3).

Example 4.28.
F(t,....t5) = 0 (t1)—0 (max {t2, t3, 14, 2 })+¢ (6 (max {2, 15,14, 2 })) .
Example 4.29.

F(ty,.ots) = 0(t) — 0 (max{t, ta, 5,82, 2 }) +

+¢ (max {0 (t1),0 (t2),6 (t3), 0 (ts) ,0 (%) }) -

Example 4.30.
F (t1,....,ts) = 0 (t1) — 0 (max {t2, Vists, Vists }) + ¢ (max{ts, t3,ts}) .
Example 4.31.

F (ty,....,ts) = 0 (t1) — 0 (max {ta, t3,t4}) + ¢ (max {ta, 3,14, % }).
Example 4.32.

F(ty,ots) = 0(t) —0 (Wwﬁwﬁ) + ¢ (max {ta, t3,ta}) .

1+/t3ty
Example 4.33.
F (ty,....,ts) = 0 (t1)—0 (max {ts + t3,t5 + ts, 2 })+0¢ (max{ts, 3, ts}) .
By Theorem 3.3 and Example 4.28 we obtain

Theorem 4.34. Let A, B, S and T be self mappings of a metric space
(X, d) such that for all x,y € X

0 (d(Azx, By)) < 0(max{d(Sz,Ty),d(Sz, Az),
d(Sz, By) + d(Ty, Ax)

ATy By). : -
max{d (Sz,Ty),d (Sz, Ax),
—¢ (0 ( d(Ty. By). d(Sxz, By) —;— d(Ty,Ax)} )) :

where 0 is an altering distance and ¢ € .
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If (A, S) and T satisfy CLRa.s)r - property, then

(i) C(AS)#0,

(ii)  C(B,T)#0.

Moreover, if (A,S) and (B,T) are weakly compatible, then A, B,S
and T have a unique common fized point.

By Theorem 4.34 and Lemma 4.2 we obtain

Theorem 4.35. Let A, B, S and T be self mappings of a metric space
(X,d) such that for all x,y € X

d(Sz,By)+d(Ty,Ax)

x max{d(Sz d(Sz,Ax),d , , :
d(A ,By) ht)dt < {d(Sz,Ty),d( ),d(T'y,By) 5] }h(t)dt—
d(Sz,By)+d(Ty,Ax)
max{d(Sz,Ty),d(Sz,Ax),d(Ty,By), }
4 ( I ? oran

where h(t) is as in Theorem 1.10 and ¢ € ®.
If (A, S) and T satisfy CLRa.s)r - property, then
() C(AS)£0,
(i) C(B.T)£0.
Moreover, if (A,S) and (B,T) are weakly compatible, then A, B, S
and T have a unique common fized point.

Remark 4.36. 1) This theorem is a generalization of Theorem
1.11.
2) By Examples 4.29 - .33 we obtained new particular results.
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