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COMMON FIXED POINT THEOREM FOR TWO
PAIRS OF MAPPINGS SATISFYING A NEW TYPE

OF COMMON LIMIT RANGE PROPERTY IN
PARTIAL METRIC SPACES

VALERIU POPA AND ALINA-MIHAELA PATRICIU

Abstract. The purpose of this paper is to prove a general fixed
point theorem for two pairs of mappings involving altering distances
and satisfying a new type of common limit range property in partial
metric spaces. In the last part of the paper, as applications, some
fixed point results for a sequence of mappings, for mappings satisfying
contractive conditions of integral type and for φ - contractive mappings
is partial metric spaces are obtained.

1. Introduction

Let (X, d) be a metric space and S, T be two self mappings
of X. In [14], Jungck defined S and T to be compatible if
limn→∞ d(STxn, TSxn) = 0 whenever {xn} is a sequence in X such
that limn→∞ Sxn = limn→∞ Txn = t for some t ∈ X. The concept has
been frequently used to prove the existence theorems in fixed point
theory.
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Let f , g be self mappings of a nonempty set X. A point x ∈ X is
a coincidence point of f and g if fx = gx. The set of all coincidence
points of f and g is denoted by C (f, g).

In 1994, Pant [23] introduced the notion of pairwise R - weakly com-
muting mappings which is equivalent to commutativity in coincidence
points [25].

Jungck [15] defined f and g to be weakly compatible if fx = gx
implies fgx = gfx. Thus, f and g are weakly compatible if and only
if f and g are pairwise R - weakly commuting.

The study of common fixed points for noncompatible mappings is
also interesting. The work in this regard has been initiated by Pant
[24], [25], [26].

Aamri and El - Moutawakil [1] introduced a generalization of non-
compatible mappings.

Definition 1.1 ([1]). Let S and T be two self mappings of a metric
space (X, d). We say that S and T satisfy (E.A) - property if there
exists a sequence {xn} in X such that limn→∞ Sxn = limn→∞ Txn = t,
for some t ∈ X.

Remark 1.2. It is clear that two self mappings S and T of a metric
space (X, d) will be noncompatible if there exists {xn} in X such that

lim
n→∞

Sxn = lim
n→∞

Txn = t

for some t ∈ X but limn→∞ d(STxn, TSxn) is nonzero or nonexistent.
Therefore, noncompatible self mappings of a metric space (X, d) satisfy
property (E.A).

It is known [27], [28] that the notions of weakly compatible mappings
and mappings satisfying property (E.A) are independent.

Liu et al. [20] defined the notion of common (E.A) - property.

Definition 1.3 ([20]). Two pairs (A, S) and (B, T ) of self mappings
of a metric space (X, d) are said to satisfy common property (E.A) if
there exist two sequences {xn} and {yn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = t,

for some t ∈ X.

There exists a vast literature concerning the study of fixed points
for mappings satisfying (E.A) - property.

In 2011, Sintunavarat and Kumam [37] introduced the notion of
common limit range property.
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Definition 1.4 ([37]). A pair (A, S) of self mappings of a metric space
(X, d) is said to satisfy common limit range property with respect to
S, denoted CLR(S) - property, if there exists a sequence {xn} in X
such that limn→∞Axn = limn→∞ Sxn = t, for some t ∈ S(X).

Thus we can infer that a pair (A, S) satisfying (E.A) - property,
along with the closedness of the subspace S (X) always have CLR(S)

- property with respect to S.
Recently, Imdad et al. [11] introduced the notion of common limit

range property to two pairs of self mappings.

Definition 1.5 ([11]). Two pairs (A, S) and (B, T ) of self mappings of
a metric space (X, d) are said to satisfy common limit range property
with respect to S and T , denoted CLR(S,T ) - property, if there exist
two sequences {xn} and {yn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = t,

where t ∈ S(X) ∩ T (X).

Some results for pairs of mappings satisfying CLR(S) - and CLR(S,T )

- property are obtained in [10], [12], [13], [14] and in other papers.
Now we introduce a new type of limit range property.

Definition 1.6. Let A, S, T be self mappings of a metric space (X, d).
The pair (A, S) is said to satisfy common limit range property with
respect to T if there exists a sequence {xn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = t,

for some t ∈ S(X) ∩ T (X).

Example 1.7. Let R+ be the metric space with the usual metric, Ax =
x2+1
2

, Sx = x+1
2

, Tx = x+ 1
4
. Then S (X) =

[
1
2
,∞
)
, T (X) =

[
1
4
,∞
)
,

S (X) ∩ T (X) =
[
1
2
,∞
)
.

Let {xn} be a sequence with limn→∞ xn = 0. Then,

lim
n→∞

Axn = lim
n→∞

Sxn =
1

2
∈ S (X) ∩ T (X) .

Remark 1.8. Let A,B, S and T satisfying the common limit range
property with respect to S and T . Then (A, S) satisfy the common
limit range property with respect to T .

The converse is not true. Let Bx = x2 + 1
4

and {xn} a sequence
such that limn→∞ xn = 0, which implies

lim
n→∞

Bxn = lim
n→∞

Txn =
1

4
6= 1

2
.
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Hence, (A, S) and (B, T ) don’t satisfy CLR(S,T ) - property.

Definition 1.9 ([18]). An altering distance is a function ψ : [0,∞)→
[0,∞) satisfying:

(ψ1) : ψ is increasing and continuous,
(ψ2) : ψ (t) = 0 if and only if t = 0.

Fixed point theorems involving altering distances have been studied
in [32], [35], [36] and in other papers.

2. Preliminaries

In 1994, Matthews [22] introduced the concept of partial metric
space as a part of the study of denotional semantics of dataflow net-
works and proved the Banach contraction principle in such spaces.
Many authors studied some contractive conditions in complete partial
metric spaces. Recently, in [2] - [4], [7], [16], [17] and in other papers,
some fixed point theorems under various contractive conditions are
proved.

Definition 2.1 ([22]). Let X be a nonempty set. A function p :
X ×X → R+ is said to be a partial metric on X if for all x, y, z ∈ X,
the following conditions hold:

(P1) : p(x, x) = p(y, y) = p(x, y) if and only if x = y,
(P2) : p(x, x) ≤ p(x, y),
(P3) : p(x, y) = p(y, x),
(P4) : p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).
The pair (X, p) is called a partial metric space.

If p(x, y) = 0 then (P1) and (P2) implies x = y, but the converse
does not always hold.

Each partial metric p on X generates a T0 - topology τp which has
as base the family of open p - balls {Bp(x, ε) : x ∈ X, ε > 0}, where
Bp(x, ε) = {y ∈ X : p(x, y) ≤ p(x, x) + ε} for all x ∈ X and ε > 0.

A sequence {xn} of a partial metric space (X, p) converges to a
point x ∈ X (xn → x) with respect to the topology τp if and only if
p (x, x) = limn→∞ p (x, xn).

If p is a partial metric on X, then the function dp(x, y) = 2p(x, y)−
p(x, x) − p(y, y) defines a metric on X. Further, a sequence {xn} in
(X, p) converges in (X, dp) to a point x ∈ X if

lim
n,m→∞

p (xn, xm) = lim
n→∞

p (xn, x) = p (x, x) .
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Lemma 2.2 ([2], [17]). Let (X, p) be a partial metric space and {xn}
a sequence in (X, p) such that xn → z as n → ∞, where p (z, z) = 0.
Then, limn→∞ p (xn, y) = p (z, y) for every y ∈ X.

Definition 2.3 ([22]). Let (X, p) be a partial metric space. A se-
quence {xn} in X is a Cauchy sequence in (X, p) if and only if
limn,m→∞ p(xn, xm) exists and is finite.

Remark 2.4. Let p : R+×R+ → R+ be a partial metric defined
as p (x, y) = max{x, y}. Define {xn} a sequence in X as

xn =

{
0, n = 2k
1, n = 2k + 1, k ∈ N.

Then {xn} is a convergent sequence but limn,m→∞ p(xn, xm) does not
exists.

The notion of common limit range property for a pair of mappings
in partial metric spaces is defined in [33].

Definition 2.5. A pair (A, S) of self mappings of a partial metric
space (X, p) is said to satisfy common limit range property with re-
spect to S, denoted CLR(S) - property, if there exists a sequence {xn}
in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = t,

for some t ∈ S(X) with p (t, t) = 0.

We extend this property for three mappings.

Definition 2.6. Let A, S, T be three self mappings of a partial metric
space (X, p). The pair (A, S) and T satisfy the common limit range
property with respect to T , denoted CLR(A,S)T - property, if there
exists a sequence {xn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = t,

for t ∈ S(X) ∩ T (X) and p (t, t) = 0.

Example 2.7. Let X = [0, 4] be a particular metric space with

p (x, y) =

{
|x− y| , x ∈ [0, 2]
max{x, y}, x ∈ (2, 4]

and

Ax =

{
2− x, x ∈ [0, 1]
2−x
3
, x ∈ (1, 4] ,
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Sx =

{
3−x
2
, x ∈ [0, 1]

x
2
, x ∈ (1, 4] ,

Tx = x.

For an increasing sequence {xn} in X such that xn → 1, then

lim
n→∞

Axn = lim
n→∞

Sxn = 1.

Obviously, S (X) ∩ T (X) = S (X), t ∈ S (X) and p (t, t) = 0.

3. Implicit relations

Several fixed point theorems and common fixed point theorems have
been unified considering a general condition by an implicit function
[29], [30] and other papers. Recently, the method is used in the study
of fixed points in metric spaces, quasi - metric spaces, b - metric spaces,
ultra metric spaces, Hilbert spaces, convex metric spaces, reflexive
spaces, compact metric spaces, paracompact metric spaces, for single -
valued mappings, hybrid pairs of mappings and set - valued mappings.
Recently, the method is used in the study of fixed points for mappings
satisfying a contractive/extensive condition of integral type, in fuzzy
metric spaces, probabilistic metric spaces, intuitionistic metric spaces,
G - metric spaces and Gp - metric spaces.

With this method, the proofs of some fixed point theorems are more
simple. Also, the method allows the study of local and global proper-
ties of fixed point structures.

Some fixed point theorems for mappings satisfying implicit relations
in partial metric spaces are proved in [5], [8], [9], [38].

Recently, Imdad and Chauhan [12] employed common limit range
property to prove unified metrical common fixed point theorems in
metric spaces using implicit relations.

Definition 3.1. Let Fp be the family of all lower semi - continuous
functions F : R6

+ → R satisfying the following conditions:
(F1) : F is nonincreasing in variables t3, t4,
(F2) : F (t, 0, 0, t, t, 0) > 0, ∀t > 0,
(F3) : F (t, 0, t, 0, 0, t) > 0, ∀t > 0,
(F4) : F (t, t, 0, t, t, t) > 0, ∀t > 0,
(F5) : F (t, t, t, 0, t, t) > 0, ∀t > 0.

Example 3.2. F (t1, ..., t6) = t1 − kmax {t2, t3, t4, t5, t6}, where
k∈[0, 1).
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Example 3.3. F (t1, ..., t6) = t1 − kmax
{
t2, t3, t4,

t5+t6
2

}
, where

k∈[0, 1).

Example 3.4. F (t1, ..., t6) = t1 − kmax
{
t2,

t3+t4
2
, t5+t6

2

}
, where

k∈[0, 1).

Example 3.5. F (t1, ..., t6) = t1 − at2 − bt3 − ct4 − dt5 − et6, where
a, b, c, d, e ≥ 0 and a+ b+ c+ d+ e < 1.

Example 3.6. F (t1, ..., t6) = t1 − max {ct2, ct3, ct4, at5 + bt6}, where
c ∈ (0, 1) , a, b ≥ 0 and a+ b < 1.

Example 3.7. F (t1, ..., t6) = t1 − at2 − bmax{t3, t4} − cmax{t5, t6},
where a, b, c ≥ 0 and a+ b+ c < 1.

Example 3.8. F (t1, ..., t6) = t1 − αmax {t2, t3, t4}−
−(1− α) (at5 + bt6), where α ∈ (0, 1) , a, b ≥ 0 and a+ b < 1.

Example 3.9. F (t1, ..., t6) = t21 − at2t3 − bt3t4 − ct4t5 − dt5t6, where
a, b, c, d ≥ 0 and a+ b+ c+ d < 1.

The purpose of this paper is to prove a general fixed point theorem
involving altering distance and satisfying common limit range property
of type CLR(A,S)T . In the last part of the paper, as applications, some
fixed point results for mappings satisfying contractive conditions of
integral type and for ϕ - contractive mappings in partial metric spaces
are obtained.

4. Main results

Theorem 4.1. Let (X, p) be a partial metric space and A,B, S and
T be self mappings of X such that for all x, y ∈ X,

(4.1)
F (ψ (p(Ax,By)) , ψ (p(Sx, Ty)) , ψ (p(Sx,Ax)) ,
ψ (p(Ty,By)) , ψ (p(Sx,By)) , ψ (p(Ty,Ax))) ≤ 0,

where F ∈ Fp and ψ is an altering distance.
If (A, S) and T satisfy CLR(A,S)T - property, then
1) C (A, S) 6= ∅,
2) C (B, T ) 6= ∅.
Moreover, if (A, S) and (B, T ) are weakly compatible, then A,B, S

and T have a unique common fixed point.

Proof. Since (A, S) and T satisfy CLR(A,S)T - property, there exists a
sequence {xn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = z,
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z ∈ S(X) ∩ T (X) and p (z, z) = 0.
Since z ∈ T (X), there exists u ∈ X such that z = Tu. By (4.1) we

obtain

(4.2)
F (ψ (p(Axn, Bu)) , ψ (p(Sxn, Tu)) , ψ (p(Sxn, Axn)) ,
ψ (p(Tu,Bu)) , ψ (p(Sxn, Bu)) , ψ (p(Tu,Axn))) ≤ 0.

By (P4), p (Sxn, Axn) ≤ p (Sxn, z) + p (z, Axn). Letting n tends to
infinity, by Lemma 2.2 we obtain limn→∞ p (Sxn, Axn) = 0.

Letting n tends to infinity in (4.2), by Lemma 2.2 we obtain

F (ψ (p(z,Bu)) , 0, 0, ψ (p(z, Bu)) , ψ (p(z, Bu)) , 0) ≤ 0,

a contradiction of (F2) if p (z,Bu) > 0. Hence p (z,Bu) = 0 which
implies z = Bu = Tu. Therefore, C (B, T ) 6= ∅.

Also, since z ∈ S (X), there exists v ∈ X such that z = Sv.
By (4.1) we obtain

F (ψ (p(Av,Bu)) , ψ (p(Sv, Tu)) , ψ (p(Sv,Av)) ,
ψ (p(Tu,Bu)) , ψ (p(Sv,Bu)) , ψ (p(Tu,Av))) ≤ 0,

F (ψ (p(Av, z)) , 0, ψ (p(z, Av)) , 0, 0, ψ (p(z, Av))) ≤ 0,

a contradiction of (F3) if p (z, Av) > 0. Hence p (z, Av) = 0 which
implies z = Av = Sv. Hence, C (A, S) 6= ∅.

Therefore,

(4.3) z = Av = Sv = Bu = Tu.

Moreover, if (A, S) and (B, T ) are weakly compatible, then Sz =
SAv = ASv = Az and Tz = TBu = BTu = Bz. By (4.1) we obtain

F (ψ (p(Av,Bz)) , ψ (p(Sv, Tz)) , ψ (p(Sv,Av)) ,
ψ (p(Tz,Bz)) , ψ (p(Sv,Bz)) , ψ (p(Tz,Av))) ≤ 0,

(4.4)
F (ψ (p(z, Bz)) , ψ (p(z,Bz)) , 0,

ψ (p(Bz,Bz)) , ψ (p(z,Bz)) , ψ (p(z,Bz))) ≤ 0.

By (P2), p (Bz,Bz) ≤ p (z,Bz). By (F1) and (4.4) we obtain

F (ψ (p(z,Bz)) , ψ (p(z,Bz)) , 0,
ψ (p(z,Bz)) , ψ (p(z,Bz)) , ψ (p(z, Bz))) ≤ 0.

If p (z, Bz) > 0, we obtain a contradiction of (F4). Hence p (z,Bz) =
0 which implies z = Bz = Tz and z is a common fixed point of B and
T .
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Similarly, by (4.1) we obtain

F (ψ (p(Az,Bu)) , ψ (p(Sz, Tu)) , ψ (p(Sz,Az)) ,
ψ (p(Tu,Bu)) , ψ (p(Sz,Bu)) , ψ (p(Tu,Az))) ≤ 0,

(4.5)
F (ψ (p(Az, z)) , ψ (p(Az, z)) , ψ (p(Az,Az)) ,

0, ψ (p(Az, z)) , ψ (p(z, Az))) ≤ 0.

By (P2), p (Az,Az) ≤ p (Az, z). Then by (4.5) and (F1) we obtain

F (ψ (p(Az, z)) , ψ (p(Az, z)) , ψ (p(Az, z)) ,
0, ψ (p(Az, z)) , ψ (p(Az, z))) ≤ 0,

a contradiction of (F5) if p (Az, z) > 0. Hence p (Az, z) = 0 which
implies z = Az = Sz. Hence z is a common fixed point of A,B, S and
T .

Suppose that w is another fixed point of A,B, S and T . Then by
(4.1) we obtain

F (ψ (p(Az,Bw)) , ψ (p(Sz, Tw)) , ψ (p(Sz,Az)) ,
ψ (p(Tw,Bw)) , ψ (p(Sz,Bw)) , ψ (p(Tw,Az))) ≤ 0,

(4.6)
F (ψ (p(z, w)) , ψ (p(z, w)) , 0,

ψ (p(w,w)) , ψ (p(z, w)) , ψ (p(z, w))) ≤ 0.

By (P2), p (w,w) ≤ p (z, w). By (F1) and (4.6) we obtain

F (ψ (p(z, w)) , ψ (p(z, w)) , 0,
ψ (p(z, w)) , ψ (p(z, w)) , ψ (p(z, w))) ≤ 0,

a contradiction of (F4) if p (z, w) 6= 0. Hence p (z, w) = 0 which implies
z = w and z is the unique common fixed point of A,B, S and T . �

If ψ (t) = t we obtain

Theorem 4.2. Let (X, p) be a partial metric space and A,B, S and
T be self mappings of X such that for all x, y ∈ X

(4.7)
F (p(Ax,By), p(Sx, Ty), p(Sx,Ax),
p(Ty,By), p(Sx,By), p(Ty,Ax)) ≤ 0,

where F ∈ Fp.
If (A, S) and T satisfy CLR(A,S)T - property, then
1) C (A, S) 6= ∅,
2) C (B, T ) 6= ∅.
Moreover, if (A, S) and (B, T ) are weakly compatible, then A, B, S

and T have a unique common fixed point.
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Example 4.3. Let X = [0, 1] be a partial metric space with p (x, y) =
max{x, y}. We define the following mappings
Ax = 0, Sx = x

x+1
, Bx = x

3
, Tx = x. Then S (X) =

[
0, 1

2

]
, T (X) =

[0, 1], T (X)∩S (X) =
[
0, 1

2

]
. Let {xn} be a sequence such that xn → 0.

Then limn→∞Axn = limn→∞ Sxn = 0 ∈ S (X) ∩ T (X) → 2. Since
Ax = Sx implies x = 0, then AS0 = SA0 = 0 and (A, S) is weakly
compatible. Similarly, (B, T ) is weakly compatible. On the other hand,

p (Ax,By) = p
(
0, y

3

)
= y

3
,

p (Ty,By) = y.

Hence

p (Ax,By) ≤ kp (Ty,By)

if k ∈
[
1
3
, 1
2

)
, which implies

p (Ax,By) ≤ kmax{p (Sx, Ty) , p (Sx,Ax) ,

p (Ty,By) , p (Sx,By) , p (Ax, Ty)},

where k ∈
[
7
3
, 1
)
.

By Theorem 4.2, A, B, S and T have a unique common fixed point
x = 0.

For a function f : (X, p)→ (X, p) we denote

pF ix (f) = {x ∈ X : x = fx, p (x, x) = 0}.

Theorem 4.4. Let A,B, S and T be self mappings of a partial metric
space (X, p). If the inequality (4.1) holds for all x, y ∈ X and F ∈ Fp,
then

[pF ix (S) ∩ pF ix (T )] ∩ pF ix (A) = [pF ix (S) ∩ pF ix (T )] ∩ pF ix (B) .

Proof. Let x ∈ [pF ix (S) ∩ pF ix (T )] ∩ pF ix (A). Then x = Sx =
Tx = Ax and p (x, x) = 0. By (4.1) we have

F (ψ (p(Ax,Bx)) , ψ (p(Sx, Tx)) , ψ (p(Sx,Ax)) ,
ψ (p(Tx,Bx)) , ψ (p(Sx,Bx)) , ψ (p(Tx,Ax))) ≤ 0,

F (ψ (p(x,Bx)) , 0, 0, ψ (p(x,Bx)) , ψ (p(x,Bx)) , 0) ≤ 0,

a contradiction of (F2) if p (x,Bx) > 0. Hence, x = Bx and p (x, x) =
0. Hence,

[pF ix (S) ∩ pF ix (T )] ∩ pF ix (A) ⊂ [pF ix (S) ∩ pF ix (T )] ∩ pF ix (B) .
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Similarly, if x ∈ [pF ix (S)∩pF ix (T )]∩pF ix (B), then by (4.1) and
(F3) we obtain x = Ax and p (x, x) = 0. Hence,

[pF ix (S) ∩ pF ix (T )] ∩ pF ix (B) ⊂ [pF ix (S) ∩ pF ix (T )] ∩ pF ix (A) .

�

Theorems 4.1 and 4.4 imply the following one.

Theorem 4.5. Let S, T and {Ai}i∈N∗ be self mappings of a partial
metric space (X, p) satisfying the inequality

F (ψ (p(Aix,Ai+1y)) , ψ (p(Sx, Ty)) , ψ (p(Sx,Aix)) ,
ψ (p(Ty,Ai+1y)) , ψ (p(Sx,Ai+1y)) , ψ (p(Ty,Aix))) ≤ 0,

for all x, y ∈ X, F ∈ Fp and ψ is an altering distance, i ∈ N∗. If
(A1, S) and T satisfy CLR(A,S)T - property and (A1, S) , (A2, T ) are
weakly compatible, then S, T and {Ai}i∈N∗ have a unique fixed point z
with p (z, z) = 0.

If ψ (t) = t, by Theorem 4.5 we obtain

Theorem 4.6. Let S, T and {Ai}i∈N∗ be self mappings of a partial
metric space (X, p) satisfying the inequality

F (p(Aix,Ai+1y), p(Sx, Ty), p(Sx,Aix),
p(Ty,Ai+1y), p(Sx,Ai+1y), p(Ty,Aix)) ≤ 0,

for all x, y ∈ X and F ∈ Fp.
If (A1, S) and T satisfy CLR(A,S)T - property and (A1, S) and

(A2, T ) are weakly compatible, then S, T and {Ai}i∈N∗ have a unique
fixed point z with p (z, z) = 0.

5. Applications

5.1. Fixed points for mappings satisfying contractive condi-
tions of integral type. In [6], Branciari established the following
theorem which opened the way to the study of fixed points for map-
pings satisfying contractive conditions of integral type.

Theorem 5.1 ([6]). Let (X, d) be a complete metric space, c ∈ (0, 1)
and f : X → X such that for all x, y ∈ X∫ d(fx,fy)

0

h(t)dt ≤ c

∫ d(x,y)

0

h(t)dt

where h : [0,∞)→ [0,∞) is a Lebesgue measurable mapping which is
summable (i.e., with finite integral) on each compact subset of [0,∞),
such that

∫ ε

0
h(t)dt > 0, for all ε > 0.
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Then, f has a unique fixed point z such that for all x ∈ X, z =
limn→∞ f

nx.

Theorem 5.1 has been extended to a pair of compatible mappings
in [19]. Some fixed point results for mappings satisfying contractive
condition of integral type are obtained in [31], [32], [34] and in other
papers.

Lemma 5.2 ([32]). Let h : [0,∞)→ [0,∞) as in Theorem 5.1. Then

ψ(t) =
∫ t

0
h(x)dx is an altering distance.

Theorem 5.3. Let (X, p) be a partial metric space and A,B, S and
T be self mappings of X such that

(5.1)
F (
∫ p(Ax,By)

0
h(t)dt,

∫ p(Sx,Ty)

0
h(t)dt,

∫ p(Sx,Ax)

0
h(t)dt,∫ p(Ty,By)

0
h(t)dt,

∫ p(Sx,By)

0
h(t)dt,

∫ p(Ty,Ax)

0
h(t)dt) ≤ 0,

for all x, y ∈ X, where F ∈ Fp and h (t) is as in Theorem 5.1.
If (A, S) and T satisfy CLR(A,S)T - property, then
1) C (A, S) 6= ∅,
2) C (B, T ) 6= ∅.
Moreover, if (A, S) and (B, T ) are weakly compatible, then A,B, S

and T have a unique common fixed point.

Proof. As in Lemma 5.2,∫ p(Ax,By)

0

h(t)dt = ψ (p(Ax,By)) ,

∫ p(Sx,Ty)

0

h(t)dt = ψ (p(Sx, Ty)) ,∫ p(Sx,Ax)

0

h(t)dt = ψ (p(Sx,Ax)) ,

∫ p(Ty,By)

0

h(t)dt = ψ (p(Ty,By)) ,∫ p(Sx,By)

0

h(t)dt = ψ (p(Sx,By)) ,

∫ p(Ty,Ax)

0

h(t)dt = ψ (p(Ty,Ax)) .

By (5.1) we obtain

F (ψ (p(Ax,By)) , ψ (p(Sx, Ty)) , ψ (p(Sx,Ax)) ,
ψ (p(Ty,By)) , ψ (p(Sx,By)) , ψ (p(Ty,Ax))) ≤ 0,

which is inequality (4.1). Hence the conditions of Theorem 4.1 are
satisfied and Theorem 5.1 follows by Theorem 4.1. �

By Theorem 5.3 and Example 3.2 we obtain
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Theorem 5.4. Let (X, p) be a partial metric space and A,B, S and
T be self mappings of X such that

(5.2)

∫ p(Ax,By)

0
h(t)dt ≤ kmax{

∫ p(Sx,Ty)

0
h(t)dt,

∫ p(Sx,Ax)

0
h(t)dt,∫ p(Ty,By)

0
h(t)dt,

∫ p(Sx,By)

0
h(t)dt,

∫ p(Ty,Ax)

0
h(t)dt}

for all x, y ∈ X, k ∈ [0, 1) and h (t) is as in Theorem 5.1.
If (A, S) and T satisfy CLR(A,S)T - property, then
1) C (A, S) 6= ∅,
2) C (B, T ) 6= ∅.
Moreover, if (A, S) and (B, T ) are weakly compatible, then A,B, S

and T have a unique common fixed point.

Remark 5.5. By Theorem 5.3 and Examples 3.3 - 3.9 we obtain new
particular results.

Similarly, by Theorems 4.5 and 5.3 we obtain

Theorem 5.6. Let S, T and {Ai}i∈N∗ be self mappings of a partial
metric space (X, p) satisfying

F (
∫ p(Aix,Ai+1y)

0
h(t)dt,

∫ p(Sx,Ty)

0
h(t)dt,

∫ p(Sx,Aix)

0
h(t)dt,∫ p(Ty,Ai+1y)

0
h(t)dt,

∫ p(Sx,Ai+1y)

0
h(t)dt,

∫ p(Ty,Aix)

0
h(t)dt) ≤ 0,

for all x, y ∈ X, F ∈ Fp and h (t) is as in Theorem 5.1, i ∈ N∗.
If (A1, S) and T satisfy CLR(A,S)T - property and (A1, S) and

(A2, T ) are weakly compatible, then S, T and {Ai}i∈N∗ have a unique
fixed point z with p (z, z) = 0.

Remark 5.7. By Theorem 5.6 and Examples 3.2 - 3.9 we obtain new
particular results.

5.2. Fixed points for mappings satisfying a ϕ - contractive
condition. As in [21], let Φ be the set of all real nondecreasing lower
semi - continuous functions ϕ : [0,∞)→ [0,∞) with limn→∞ ϕ

n (t) =
0 for all t ∈ [0,∞). If ϕ ∈ Φ, then

1) ϕ (t) < t for all t ∈ (0,∞),
2) ϕ (0) = 0.
The following functions F (t1, ..., t6) : R6

+ → R satisfy conditions
(F1), (F2), (F3), (F4), (F5).

Example 5.8. F (t1, ..., t6) = t1 − ϕ (max {t2, t3, t4, t5, t6}).

Example 5.9. F (t1, ..., t6) = t1 − ϕ
(
max

{
t2, t3, t4,

t5+t6
2

})
.

Example 5.10. F (t1, ..., t6) = t1 − ϕ
(
max

{
t2,

t3+t4
2
, t5+t6

2

})
.
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Example 5.11. F (t1, ..., t6) = t1−ϕ
(
max

{
t2,
√
t3t4,
√
t5t6,
√
t4t6
})

.

Example 5.12. F (t1, ..., t6) = t1 − ϕ (at2 + bt3 + ct4 + dt5 + et6),
where a, b, c, d, e ≥ 0 and a+ b+ c+ d+ e ≤ 1.

Example 5.13.

F (t1, ..., t6) = t1 − ϕ (at2 + bmax{t3, t4}+ cmax{t5, t6}) ,

where a, b, c ≥ 0 and a+ b+ c ≤ 1.

By Theorem 4.1 and Example 5.8 we obtain

Theorem 5.14. Let (X, p) be a partial metric space and A, B, S, T
be self mappings of X such that

ψ(p(Ax,By)) ≤ ϕ(max{ψ(p(Sx, Ty)), ψ(p(Sx,Ax)),
ψ(p(Ty,By)), ψ(p(Sx,By)), ψ(p(Ty,Ax))}),

for all x, y ∈ X, ϕ ∈ Φ and ψ is an altering distance.
If (A, S) and T satisfy CLR(A,S)T - property, then
1) C (A, S) 6= ∅,
2) C (B, T ) 6= ∅.
Moreover, if (A, S) and (B, T ) are weakly compatible, then A,B, S

and T have a unique common fixed point.

By Example 5.8 and Theorem 5.14 we obtain

Theorem 5.15. Let A,B, S and T be self mappings of partial metric
space (X, p) such that∫ p(Ax,By)

0
h(t)dt ≤ ϕ(max{

∫ p(Sx,Ty)

0
h(t)dt,

∫ p(Sx,Ax)

0
h(t)dt,∫ p(Ty,By)

0
h(t)dt,

∫ p(Sx,By)

0
h(t)dt,

∫ p(Ty,Ax)

0
h(t)dt}),

for all x, y ∈ X, ϕ ∈ Φ and h (t) is as in Theorem 5.1.
If (A, S) and T satisfy CLR(A,S)T - property, then
1) C (A, S) 6= ∅,
2) C (B, T ) 6= ∅.
Moreover, if (A, S) and (B, T ) are weakly compatible, then A,B, S

and T have a unique common fixed point.

Remark 5.16. Similarly, by Examples 5.9 - 5.13 and Theorem 5.14
we obtain new particular results.
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