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OF COMMON LIMIT RANGE PROPERTY IN
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VALERIU POPA AND ALINA-MIHAELA PATRICIU

Abstract. The purpose of this paper is to prove a general fixed
point theorem for two pairs of mappings involving altering distances
and satisfying a new type of common limit range property in partial
metric spaces. In the last part of the paper, as applications, some
fixed point results for a sequence of mappings, for mappings satisfying
contractive conditions of integral type and for ¢ - contractive mappings
is partial metric spaces are obtained.

1. INTRODUCTION

Let (X,d) be a metric space and S, T be two self mappings
of X. In [14], Jungck defined S and T to be compatible if
lim, o d(STx,,TSz,) = 0 whenever {z,} is a sequence in X such
that lim,, o Sx,, = lim,,_,o T'x,, = t for some t € X. The concept has
been frequently used to prove the existence theorems in fixed point
theory.
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Let f, g be self mappings of a nonempty set X. A point z € X is
a coincidence point of f and ¢ if fo = gx. The set of all coincidence
points of f and g is denoted by C (f, g).

In 1994, Pant [23] introduced the notion of pairwise R - weakly com-
muting mappings which is equivalent to commutativity in coincidence
points [25].

Jungck [15] defined f and g to be weakly compatible if fr = gz
implies fgr = gfx. Thus, f and g are weakly compatible if and only
if f and g are pairwise R - weakly commuting.

The study of common fixed points for noncompatible mappings is
also interesting. The work in this regard has been initiated by Pant
[24], [25], [26].

Aamri and El - Moutawakil [1] introduced a generalization of non-
compatible mappings.

Definition 1.1 ([1]). Let S and T" be two self mappings of a metric
space (X, d). We say that S and T satisfy (E.A) - property if there
exists a sequence {z,} in X such that lim,,_,., Sz, = lim,_,, Tz, = t,
for some t € X.

Remark 1.2. [t is clear that two self mappings S and T' of a metric
space (X, d) will be noncompatible if there exists {x,} in X such that

lim Sz, = lim Tx, =1
n—oo n—oo

for some t € X but lim,,_,, d(STx,,TSx,) is nonzero or nonexistent.
Therefore, noncompatible self mappings of a metric space (X, d) satisfy
property (E.A).

It is known [27], [28] that the notions of weakly compatible mappings
and mappings satisfying property (E.A) are independent.
Liu et al. [20] defined the notion of common (E.A) - property.

Definition 1.3 ([20]). Two pairs (4, S) and (B, T') of self mappings
of a metric space (X, d) are said to satisfy common property (F.A) if
there exist two sequences {z,} and {y,} in X such that

lim Az, = lim Sz, = lim By, = lim Ty, =t,
n—o00 n—o0 n—o0 n—o0

for some t € X.

There exists a vast literature concerning the study of fixed points
for mappings satisfying (F.A) - property.

In 2011, Sintunavarat and Kumam [37] introduced the notion of
common limit range property.
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Definition 1.4 ([37]). A pair (A, S) of self mappings of a metric space
(X, d) is said to satisfy common limit range property with respect to
S, denoted CLR(s) - property, if there exists a sequence {z,} in X
such that lim,,_,o, Az, = lim,_,,, Sz, = t, for some t € S(X).

Thus we can infer that a pair (A,S) satisfying (E.A) - property,
along with the closedness of the subspace S (X) always have CLRg)
- property with respect to S.

Recently, Imdad et al. [11] introduced the notion of common limit
range property to two pairs of self mappings.

Definition 1.5 ([11]). Two pairs (A, S) and (B, T) of self mappings of
a metric space (X, d) are said to satisfy common limit range property
with respect to S and T', denoted C'LR(s 1) - property, if there exist
two sequences {x,} and {y,} in X such that

lim Az, = lim Sz, = lim By, = lim Ty, =t,
n—00 n—00 n—00 n—00

where t € S(X)NT (X).

Some results for pairs of mappings satisfying C LR ) - and C LR s 1)
- property are obtained in [10], [12], [13], [14] and in other papers.
Now we introduce a new type of limit range property.

Definition 1.6. Let A, S, T be self mappings of a metric space (X, d).
The pair (A, S) is said to satisfy common limit range property with
respect to T if there exists a sequence {x,} in X such that

lim Az, = lim Sx, =t,
n—oo n—oo

for some t € S(X)NT (X).

Example 1.7. Let R, be the metric space with the usual metric, Ax =
’”22“, Sx = ””TH, Tr=x+ }1. Then S (X) = [%,oo), T(X)= [i,oo),
S(X)NT(X)=[4,00).

Let {x,} be a sequence with lim,_,., x, = 0. Then,

lim Az, = lim an:%GS(X)ﬂT(X).

n—oo n—00

Remark 1.8. Let A, B,S and T satisfying the common limit range
property with respect to S and T. Then (A,S) satisfy the common
limit range property with respect to T'.

The converse is not true. Let Bx = z* + %1 and {x,} a sequence
such that lim,,_, x,, = 0, which implies

#

lim Bz, = lim Tz, =
n—oo n—oo

e
N | —
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Hence, (A, S) and (B,T) don't satisfy CLR ) - property.

Definition 1.9 ([18]). An altering distance is a function ¢ : [0, 00) —
[0, 00) satisfying:

(11) : 7 is increasing and continuous,

(1) = (t) = 0 if and only if t = 0.

Fixed point theorems involving altering distances have been studied
in [32], [35], [36] and in other papers.

2. PRELIMINARIES

In 1994, Matthews [22] introduced the concept of partial metric
space as a part of the study of denotional semantics of dataflow net-
works and proved the Banach contraction principle in such spaces.
Many authors studied some contractive conditions in complete partial
metric spaces. Recently, in [2] - [4], [7], [16], [17] and in other papers,
some fixed point theorems under various contractive conditions are
proved.

Definition 2.1 ([22]). Let X be a nonempty set. A function p :
X x X — R, is said to be a partial metric on X if for all z,y,z € X,
the following conditions hold:
(P) :p(x,z) = ply,y) = p(x,y) if and only if x =y,
(P2) : p(x, ) < p(z,y),
(Py) : ple.y) = ply. ),
(P1) : p(, 2) < plx,y) +py, 2) — py,y)-
The pair (X, p) is called a partial metric space.

If p(x,y) = 0 then (P) and (P) implies x = y, but the converse
does not always hold.

Each partial metric p on X generates a T - topology 7, which has
as base the family of open p - balls {B,(z,¢) : x € X, ¢ > 0}, where
B,(x,e) ={y e X :p(x,y) < p(z,z)+¢c} for all z € X and ¢ > 0.

A sequence {z,} of a partial metric space (X,p) converges to a
point x € X (x, — ) with respect to the topology 7, if and only if
p(x,z) =lim, o p (2, x,).

If p is a partial metric on X, then the function d,(z,y) = 2p(x,y) —
p(z,x) — p(y,y) defines a metric on X. Further, a sequence {z,} in
(X, p) converges in (X,d,) to a point z € X if

n}égloop(:cn,xm) = ILm p(xn,x) =p(z,z).
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Lemma 2.2 ([2], [17]). Let (X,p) be a partial metric space and {x,}
a sequence in (X,p) such that x, — z as n — oo, where p(z,z) = 0.
Then, lim,, oo p (Tn,y) = p(z,y) for every y € X.

Definition 2.3 ([22]). Let (X,p) be a partial metric space. A se-
quence {z,} in X is a Cauchy sequence in (X,p) if and only if
limy, 100 P(Tn, Tm) exists and is finite.

Remark 2.4. Letp: R, xR, — R, be a partial metric defined
as p(z,y) = max{z,y}. Define {x,} a sequence in X as

| 0, n=2k
=11, n=2k+1keN.

Then {z,} is a convergent sequence but lim,, oo P(Zn, Tp,) does not
exists.

The notion of common limit range property for a pair of mappings
in partial metric spaces is defined in [33].

Definition 2.5. A pair (A, S) of self mappings of a partial metric
space (X, p) is said to satisfy common limit range property with re-
spect to S, denoted C'LRg) - property, if there exists a sequence {x,}
in X such that

lim Az, = lim Sx, =t,
n—oo n—o0

for some t € S(X) with p(¢,t) = 0.
We extend this property for three mappings.

Definition 2.6. Let A, S, T be three self mappings of a partial metric
space (X, p). The pair (A,S) and T satisfy the common limit range
property with respect to 7', denoted C'LR(4,5)r - property, if there
exists a sequence {x,} in X such that

lim Az, = lim Sx, =t,
n—oo n—oo

fort € S(X)NT (X) and p (t,t) = 0.
Example 2.7. Let X = [0,4] be a particular metric space with

_ |$—y|,$€[0,2]
p””"{nmﬂayhxe<zq
and

f2—2, 2€]0,1]
Am_{gﬁ,xEOAL
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iz xel0,1]
— 2 Y
Sx_{ L w € (1,4],

b
x ,4]

M

Ty =x.
For an increasing sequence {x,} in X such that x, — 1, then

lim Az, = lim Sx, = 1.
n—oo n—oo

Obviously, S(X)NT(X)=5(X),t€ S(X) and p(t,t) = 0.

3. IMPLICIT RELATIONS

Several fixed point theorems and common fixed point theorems have
been unified considering a general condition by an implicit function
[29], [30] and other papers. Recently, the method is used in the study
of fixed points in metric spaces, quasi - metric spaces, b - metric spaces,
ultra metric spaces, Hilbert spaces, convex metric spaces, reflexive
spaces, compact metric spaces, paracompact metric spaces, for single -
valued mappings, hybrid pairs of mappings and set - valued mappings.
Recently, the method is used in the study of fixed points for mappings
satisfying a contractive/extensive condition of integral type, in fuzzy
metric spaces, probabilistic metric spaces, intuitionistic metric spaces,
G - metric spaces and G, - metric spaces.

With this method, the proofs of some fixed point theorems are more
simple. Also, the method allows the study of local and global proper-
ties of fixed point structures.

Some fixed point theorems for mappings satisfying implicit relations
in partial metric spaces are proved in [5], [8], [9], [38].

Recently, Imdad and Chauhan [12] employed common limit range
property to prove unified metrical common fixed point theorems in
metric spaces using implicit relations.

Definition 3.1. Let F, be the family of all lower semi - continuous
functions F : RS — R satisfying the following conditions:

(Fy) : F is nonincreasing in variables t3, t4,

(Fy) : F(t,0,0,t,¢,0) >0, Vt >0,

(F3) : F(t,0,t,0,0,t) >0, Vt >0,

(Fy): F(t,t,0,t,t,t) >0, Vt >0,

(Fs): F(t,t,t,0,t,t) >0, ¥Vt > 0.

Example 3.2. F(tl,...,tﬁ) = tl — kmax{tg,tg,t4,t5,t6}, where
kel0,1).
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Example 3.3. F(t1,...,ts) = t1 — kmax {ts,t3,ts, 558}, where
kel0,1).

Example 3.4. F(ty,...,ts) = t; — kmax{tg,%,%}, where
kel0,1).

Example 3.5. F(ty,...,tg) = t; — aty — bty — cty — dts — etg, where
a,byc,d,e >0 anda+b+c+d+e < 1.

Example 3.6. F(ty,...,ts) = t1 — max {cty, cts, cty, ats + btg}, where
ce(0,1),a,b>0anda+b<1.

Example 3.7. F(ty,...,ts) = t; — aty — bmax{ts, t4} — cmax{ts, ts},
where a,b,c >0 and a+b+c < 1.

Example 3.8. F(ty,...,t¢) = t; — amax {to, t3,t4} —
—(1 — «) (at5 + btg), where a € (0,1), a,b>0 and a+b < 1.

Example 3.9. F(ty,...,ts) = t? — atyts — btzty — ctyts — dtsts, where
a,b,c,d>0anda+b+c+d<1.

The purpose of this paper is to prove a general fixed point theorem
involving altering distance and satisfying common limit range property
of type CLR4,s)r- In the last part of the paper, as applications, some
fixed point results for mappings satisfying contractive conditions of
integral type and for ¢ - contractive mappings in partial metric spaces
are obtained.

4. MAIN RESULTS

Theorem 4.1. Let (X,p) be a partial metric space and A, B, S and
T be self mappings of X such that for all x,y € X,

(4.1) F( (p(Az, By)) , ¥ (p(Sz,Ty)) , ¥ (p(Sz, Ax))
¥ (p(Ty, By)) , ¥ (p(Sz, By)) , ¥ (p(Ty, Ax))) <0,
where F' € F, and v is an altering distance.
If (A, S) and T satisfy CLRa syr - property, then
1) C(A,8) 40,
2) C(B,T)#0.
Moreover, if (A,S) and (B,T) are weakly compatible, then A, B, S

and T have a unique common fized point.

Proof. Since (A, S) and T satisfy CLR(4 s)r - property, there exists a
sequence {z,} in X such that

lim Az, = lim Sz, = z,
n—oo n—oo
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ze€ S(X)NT(X) and p(z,2) = 0.
Since z € T'(X), there exists u € X such that z = T'u. By (4.1) we
obtain

(4.2) F( (p(Azy, Bu)) ¥ (p(Szn, Tu)) , ¥ (p(Stn, Axy))
' ¥ (p(T'w, Bu)) , ¢ (p(Szy, Bu)) , ¢ (p(T'u, Az,))) < 0.

By (Py), p (Sxn, Axy,) < p(Szp, 2) +p (2, Az,). Letting n tends to
infinity, by Lemma 2.2 we obtain lim, ., p (Sz,, Az,) = 0.
Letting n tends to infinity in (4.2), by Lemma 2.2 we obtain

F( (p(z, Bu)),0,0,¢ (p(z, Bu)) , ¥ (p(z, Bu)) ,0) < 0,
a contradiction of (Fy) if p(z, Bu) > 0. Hence p(z, Bu) = 0 which
implies z = Bu = Tu. Therefore, C (B, T) # 0.
Also, since z € S (X), there exists v € X such that z = Sv.
By (4.1) we obtain

F(4 (p(Av, Bu)) ;¢ (p(Sv, Tu)) , ¢ (p(Sv, Av))
¥ (p(Tu, Bu)), ¢ (p(Sv, Bu)) , ¢ (p(T'u, Av)))

0,
F( (p(Av, 2)), 0,9 (p(z, Av)), 0,0, ¢ (p(z, Av))) <0,

a contradiction of (F3) if p (2, Av) > 0. Hence p(z, Av) = 0 which
implies z = Av = Sv. Hence, C (A, S) # 0.
Therefore,

(4.3) 2= Av = Sv=Bu="Tu.

Moreover, if (A,S) and (B,T) are weakly compatible, then Sz =
SAv = ASv = Az and Tz = TBu = BTu = Bz. By (4.1) we obtain

F (p(Av, Bz)) 4 (p(Sv, Tz)) , ¢ (p(Sv, Av))
¥ (p(Tz Bz)), ¢ (p(Sv, Bz)) ¢ (p(T'2, Av))) <0

(4.4) F( (p(z, B2)) % (p(z, Bz)) , 0,
' ¥ (p(Bz, Bz)) ¢ (p(2, B2)) ;¢ (p(2, Bz))) < 0.

By (P), p(Bz,Bz) < p(z,Bz). By (F}) and (4.4) we obtain
F( (p(z, Bz)), ¢ (p(z, B2)) , 0,
b (p(2, B2)) ¥ (p(2, B2)) . ¢ (p(2, B2))) < 0.

If p(z, Bz) > 0, we obtain a contradiction of (#}). Hence p (z, Bz) =

0 which implies z = Bz = T'z and z is a common fixed point of B and
T.
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Similarly, by (4.1) we obtain

F (p(Az, Bu)) , ¢ (p(Sz, Tu)) , 4 (p(Sz, Az)),
¥ (p(Tu, Bu)), ¢ (p(Sz, Bu)) , ¢ (p(Tu, Az))) <0,

(4.5) F( (p(Az, 2)) ;9 (p(Az, 2)) ¥ (p(A2, A2)),
' 0,9 (p(Az, 2)) ;4 (p(2, Az))) < 0.
)

By (P), p(Az, Az) < p(Az, z). Then by (4.5) and (F}) we obtain

P (p(Az, 2)), ¢ (p(Az, 2)) ¢ (p(Az, 2))
0,4 (p(Az,2)) , ¥ (p(Az, 2))) <0,

a contradiction of (Fy) if p(Az,z) > 0. Hence p(Az,z) = 0 which
implies z = Az = Sz. Hence z is a common fixed point of A, B, S and
T.

Suppose that w is another fixed point of A, B, S and T. Then by
(4.1) we obtain

F(4 (p(Az, Bw)) ¢ (p(Sz, Tw)) ;¥ (p(S o ,Az)),
(p(Sz, Bw)), ¢ (p(Tw, Az))) <0,

¢ (p(Tw, Bw)), ¢
F (p(z,w)) ¢ (p (2 w)) 0,
40 0 (ol w), 6 (plz,w) ¥ (b, 0)) <
By (BP), p(w,w) < p(z,w). By (F1) and (4.6) we obtain

F(4 p(z w)), ¢ (p ( w)),0,
¥ (p(z,w)), % (p(z,w)), % (p ( w))) <
(

a contradiction of (Fy) if p (z,w) # 0. Hence p (2 w) = 0 which implies
z =w and z is the unique common fixed point of A, B,S and T. [

If 1 (t) =t we obtain

Theorem 4.2. Let (X,p) be a partial metric space and A, B, S and
T be self mappings of X such that for all x,y € X

F(p(Az, By), p(Sz, Ty), p(Sz, Ax),

(4.7) p(Ty, By), p(Sz, By), p(Ty, Az)) < 0,

where F' € F,,.

If (A, S) and T satisfy CLRa,syr - property, then

1) C(A,S)#0,

2) C(B,T)#0.

Moreover, if (A, S) and (B,T) are weakly compatible, then A, B, S
and T have a unique common fized point.
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Example 4.3. Let X = [0, 1] be a partial metric space with p (z,y) =
max{z,y}. We define the following mappings
Az =0,Sv=-% Bx=% Te=uxz. ThenS(X)=1[0,1], T(X) =

T+ ' 2
[0,1], T (X)NS (X) = [0,1]. Let {x,} be a sequence such that z,, — 0.
Then lim,, o Az, = lim, ,,, Sz, =0 € S(X)NT (X) — 2. Since
Az = Sx implies © = 0, then ASO = SA0 = 0 and (A, S) is weakly
compatible. Similarly, (B, T) is weakly compatible. On the other hand,

p(Az,By) =p(0,%) = 4,
p(Ty, By) =y.

Hence
p (Az, By) < kp (T'y, By)
if k € [3,3), which implies
p(Az, By) < kmax{p (Sz,Ty) ,p (Sz, Az),
p(T'y, By) ,p (Sz, By) ,p (Az, Ty)},

where k € [%, 1).
By Theorem 4.2, A, B, S and T have a unique common fixed point
= 0.

For a function f : (X, p) — (X, p) we denote
pFiz (f)={x € X 2= fz, p(z,x) = 0}.

Theorem 4.4. Let A, B, S and T be self mappings of a partial metric
space (X, p). If the inequality (4.1) holds for allz,y € X and F' € F,,
then

[pFiz (S) NpFix (T)) NpFiz (A) = [pFix (S) NpFix (T)] N pFiz (B).

Proof. Let © € [pFixz (S) N pFiz (T)] N pFix(A). Then x = Sx =
Tx = Az and p (z,z) = 0. By (4.1) we have

F( (p(Az, Bx)) ¢ (p(Sx, Tx)) , 4 (p(Sx, Ax)),
o (p(Tx, Bx)) ¢ (p(Sw, Bx)) , ¢ (p(T'x, Ax))) <0,

F( (p(z, Bxr)),0,0,¢ (p(z, Bx)) , ¢ (p(x, Bx)),0) <0,

a contradiction of (Fy) if p (x, Bx) > 0. Hence, z = Bx and p(z,z) =
0. Hence,

[pFiz (S) NpFix (T)]NpFiz (A) C [pFiz (S) NpFiz (T)] N pFiz(B).
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Similarly, if x € [pFixz (S)NpFiz (T)|NpFiz (B), then by (4.1) and
(F3) we obtain x = Az and p (x,x) = 0. Hence,
[pFiz (S)NpFix (T)]NpFix (B) C [pFiz (S) NpFix (T)] N pFiz (A).
0
Theorems 4.1 and 4.4 imply the following one.

Theorem 4.5. Let S, T and {A;}ien+ be self mappings of a partial
metric space (X,p) satisfying the inequality

F(y (p(Aiz, Aipry)) , ¥ (p(Sz, Ty)) ¢ (p(Sz, Aiw))
@ZJ (p(Ty, Ai+1y)) 7¢ (p(S$, Ai-l-ly)) 7¢ (p(Ty7 AZZL‘))) <0,
forall x,y € X, FF € F, and ¢ is an altering distance, 1 € N*. If
(A1,5) and T satisfy CLR syr - property and (A, S), (A2, T) are
weakly compatible, then S, T and {A;}ien+ have a unique fized point z
with p(z,2) = 0.

If ¢ (t) = t, by Theorem 4.5 we obtain

Theorem 4.6. Let S, T and {A;}ien+ be self mappings of a partial
metric space (X, p) satisfying the inequality
F(p(Aix, Ait1y), p(Sz, Ty), p(Sz, Aiz),
p(Tya A’iJrly)a p(S.T, Ai+1y)7p<Tya Azx)) S 07

forallz,y € X and F' € F,.

If (A1,S) and T satisfy CLRasr - property and (Ay,S) and
(A2, T') are weakly compatible, then S, T and {A;}ien+ have a unique
fized point z with p(z,z) = 0.

5. APPLICATIONS

5.1. Fixed points for mappings satisfying contractive condi-
tions of integral type. In [6], Branciari established the following
theorem which opened the way to the study of fixed points for map-
pings satisfying contractive conditions of integral type.

Theorem 5.1 ([6]). Let (X, d) be a complete metric space, ¢ € (0,1)
and f: X — X such that for all x,y € X

d(fz,fy) d(z,y)
/ h(t)dt < / h(t)dt
0 0

where h : [0,00) — [0,00) is a Lebesque measurable mapping which is
summable (i.e., with finite integral) on each compact subset of [0, 00),
such that [; h(t)dt > 0, for all & > 0.
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Then, f has a unique fized point z such that for all x € X, z =
lim,, .o fx.

Theorem 5.1 has been extended to a pair of compatible mappings
n [19]. Some fixed point results for mappings satisfying contractive
condition of integral type are obtained in [31], [32], [34] and in other
papers.

Lemma 5.2 ([32]). Let h:[0,00) — [0,00) as in Theorem 5.1. Then
fo x)dzx is an altering distance.

Theorem 5.3. Let (X,p) be a partial metric space and A, B, S and
T be self mappings of X such that

(5 1) fo p(Az By dt fp(Sz Ty dt fo p(Sz,Ax) h( )d
' fo P, dt fo Sx By dt fo Ty A h(t)dt) <0,

for all x,y € X, where F € F, and h (t) is as in Theorem 5.1.

If (A, S) and T satisfy CLRa.syr - property, then

1) C(A,S) #0,

2)  C(B.T)#0.

Moreover, if (A,S) and (B,T) are weakly compatible, then A, B,S
and T have a unique common fized point.

Proof. As in Lemma 5.2,

(Az,By) SacTy
/0 Bt — o (p(Az, By)) / — 4 (p(S, Ty)).,

o

(Sz,Ax) TyBy)
/0 h(t)dt = 1 (p(Sz, Azx)) / dt =+ (p(Ty, By)) ,

(Sz,By) ’ p(Ty,Ax)
[ = vise B, / h(t)dt = v (p(Ty, Ax).
By (5.1) we obtain

F(Y (p(Az, By)) ¢ (p(Sz, Ty)) , ¢ (p(Sw, Az)),
Y (p(Ty, By)), ¥ (p(Sz, By)), ¢ (p(Ty, Az))) <0,

which is inequality (4.1). Hence the conditions of Theorem 4.1 are
satisfied and Theorem 5.1 follows by Theorem 4.1. U

By Theorem 5.3 and Example 3.2 we obtain
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Theorem 5.4. Let (X,p) be a partial metric space and A, B, S and
T be self mappings of X such that

JPARBY) p(pyat < kmaxc] [P0 pt)dt, [P0 n(tdt,
BP0 e, J70 ndt, [7 bedty

forallz,y € X, k €10,1) and h (t) is as in Theorem 5.1.

If (A, S) and T satisfy CLRa,syr - property, then

1) C(A,S) #0,

2) C(B,T) # 0.

Moreover, if (A,S) and (B,T) are weakly compatible, then A, B,S
and T have a unique common fized point.

(5.2)

Remark 5.5. By Theorem 5.3 and Examples 3.3 - 3.9 we obtain new
particular results.

Similarly, by Theorems 4.5 and 5.3 we obtain

Theorem 5.6. Let S, T and {A;}ien+ be self mappings of a partial
metric space (X, p) satisfying

F( Op(Aim,AhLly) h(t)dt, fOp(Sac,Ty) h(t)dt, fop(sx’Aix) h(t)dt,

L[‘OP(TyaAmy) h(t)dt, f()l’(5$aAi+1y) h(t)dt, f()p(T%Aﬂ) h(t)dt) <0,
forallz,y € X, F € F, and h(t) is as in Theorem 5.1, i € N*.
If (A1,S) and T satisfy CLRasr - property and (Ay,S) and
(A2, T') are weakly compatible, then S, T and {A;}ien+ have a unique
fized point z with p(z,z) = 0.

Remark 5.7. By Theorem 5.6 and Examples 3.2 - 3.9 we obtain new
particular results.

5.2. Fixed points for mappings satisfying a ¢ - contractive
condition. Asin [21], let ® be the set of all real nondecreasing lower
semi - continuous functions ¢ : [0, 00) — [0, 00) with lim,, . ¢" (t) =
0 for all t € [0,00). If ¢ € ®, then

1) @ (t) <tforallte (0,00),

%) o(0)=0.

The following functions F (t1,...,t6) : RS — R satisfy conditions
(F1), (F2), (F3), (F4), (F5).

Example 5.8. F (tl, ...,t(,') =1t — (%2 (max {t2,t3,t4,t5,t6}).
Example 5.9. F (t1,...,t5) = t1 — ¢ (max {ta, t5, 14, 250 }).
Example 5.10. F (t1,...,tg) =t — ¢ (max {tQ, tadts %})
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Jt6) = t1 — ¢ (max {t2, \/E3t4, /T5ts, Vlal6 ).

Example 512. F(tl,...,tﬁ) = tl — gp(at2+bt3+ct4—l—dt5—l—et6),
where a,b,c,d,e >0 anda+b+c+d+e < 1.

Example 5.11. F (4, ...

Example 5.13.
F(ty,....ts) = t1 — ¢ (aty + bmax{ts, t4} + cmax{ts,ts}),
where a,b,c >0 and a+ b+ c < 1.
By Theorem 4.1 and Example 5.8 we obtain

Theorem 5.14. Let (X, p) be a partial metric space and A, B, S, T
be self mappings of X such that

Y(p(Az, By)) < p(max{y(p(Sx, Ty)), ¥ (p(Sz, Ax)),
Y(p(Ty, By)), ¥ (p(Sx, By)), ¥(p(Ty, Ax))}),

forallz,y € X, ¢ € ® and ¢ is an altering distance.

If (A, S) and T satisfy CLRa,syr - property, then

1) C(A,S)#0,

2) C(B,T) # 0.

Moreover, if (A,S) and (B,T) are weakly compatible, then A, B,S
and T have a unique common fized point.

By Example 5.8 and Theorem 5.14 we obtain

Theorem 5.15. Let A, B, S and T be self mappings of partial metric
space (X, p) such that

lwm%hﬂﬂ<¢mwwfﬂy dp&““h@@
fo TyBy)h dt fo Ssz)h dt fp(TyAx dt})

forallx,y € X, p € ® and h(t) is as in Theorem 5.1.

If (A, S) and T satisfy CLRa syr - property, then

1) C(A,S)#0,

2) C(B,T) # 0.

Moreover, if (A,S) and (B,T) are weakly compatible, then A, B, S
and T have a unique common fized point.

Remark 5.16. Similarly, by Fxamples 5.9 - 5.13 and Theorem 5.1/
we obtain new particular results.
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