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SELECTED OPEN PROBLEMS IN VECTORIAL OPTIMIZATION  
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  Abstract. We present some significant open problems in Euclidean spaces 
*,nR n N  which can be extended, mutatis mutandis, to IR  for every  

non –empty set I . 

1. INTRODUCTION 

 

  Multi – objective programming is an important component of the general 

optimization in  the abstract spaces and a part of it is represented by the Pareto 

optimality as an illustrative finite dimensional example of the efficiency. Not 

even for the market economies there exists no an universal mathematical 

model. Pareto efficiency or Pareto optimality (Pareto, Vilfredo, 1909) is a 

central theory in economics with broad applications in game theory, 

engineering and the social sciences. It represents the actual finite dimensional 

part of the Multiobjective Programming in Vector Optimization. Thus, 

whenever a feasible deviation from a genuine solution S of an arbitrary 

multiobjective programme generates the improvement of at least one of the 

objectives while some other objectives degrade, any such a solution S as this is 

called efficient or nondominated. A system in economics and in politics is 

called Pareto optimal or efficient in the language of the general efficiency 

whenever “no individual can be made better off without another being made 

worse off” that is, a social state is economically efficient, or Pareto optimal, 

provided that “no person in society can become better off without anyone else 

becoming worse off”.  
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This characteristic of Pareto type efficiency has been pointed out in (Arrow, K. 

J., 1963, Arrow, K. J., Hahn, F. M., 1971,Aubin, J. P., 1993, Debreu Gerard, 

1959, Hansson, S. O., 2004, Pareto, Vilfredo, 1909, Stewart, D. J., 2004 and 

the others). In terms of the alternative allocations this means that given a set of 

alternative allocations and a set of individuals, any movement from one 

alternative allocation to another that can make at least one individual better off, 

without making any other individual worse off is called a Pareto improvement 

or a Pareto optimization. An allocation of resources is named Pareto optimal 

whenever no further Pareto improvements can be made. If the allocation is 

strictly preferred by one person and no other allocation would be as good for 

everyone, then it is called strongly Pareto optimal. A weakly Pareto optimal 

allocation is one where any feasible reallocation would be strictly preferred by 

all agents (Zimmermann, H., 2000). Consequently, Pareto type efficiency is an 

important approximate criterion for evaluating the economic systems and the 

political policies, with minimum assumptions on the interpersonal 

comparability. We said “approximate criterion” because it asks “the ideal” 

which may not reflect, for example, the workings of real economics, thanks to 

the folowing restrictive assumptions necessary for the existence of Pareto 

efficient outcomes: the markets exist for all possible goods, being perfectly 

competitive and the transaction costs are negligible. In the political policies, 

not every Pareto efficient outcome is regarded as “desirable” (see, for instance, 

the strategies based on the unilateral benefits). For these reasons, Pareto 

optimality was accepted with some or much uncertainty and controversy, but, 

by the Arrow’s renowned impossibility theorem given in 1951 according to 

which ”no social preference ordering based on individual orderings only could 

satisfy a small set of very reasonable conditions”- the Pareto criterion being 

one of them, it remains ”plausible and uncontroversial” (Rosencrantz, Holger, 

2005). Usually, the concept of efficiency replaces the notion of optimality in 

multiple criteria optimization because whenever the solutions of a multiple – 

objectives program exist in Pareto’sense, they cannot be improved following 

the ordering induced by the cone. Seemingly, the concept of efficiency is 

equivalent to the optimality but, in reality, the optimality represents a 

particular case of the efficiency, that is, “the best approximation” of all the 

efficient points. The next section is dedicated to the main kind of optimization 

problems in nR . We also notice that the finite dimensionality of the 

background space is essential  in contrast with the general ordered vector 

spaces, since it controls the results at least thanks to the approximate numerical 

methods for the efficient points. The bibliography of this research work 

represents a synthesis of all the references given in [1] - [6], being quoted from 

them. 
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2. MULTI – OBJECTIVE  OPTIMIZATION PROGRAMS 

 

  Let E  be an arbitrary non – empty set and let 
*

1 2( , , ..., ) : ( , 2)n

nf f f f E R n N n     a vector - valued function. The 

main general strong 1( )P , 2( )P  and vectorial 3( )P , 4( )P  respectively, 

optimization problems that can be formulated in this context are the following: 

1( )P   ( ) :SMIN f x x E  

where 0x E  is a strong minimum solution if 0( ) ( ),f x f x x E   ; 

2( )P   ( ) :SMAX f x x E  

with 0y E  strong maximum solution if 0( ) ( ),f y f x x E   ; 

3( )P   ( ) :VMIN f x x E ; 

4( )P   ( ) :VMAX f x x E . 

In order to define the vectorial solutions, we need to know the possibility of 

“comparison” in nR . Let  ( ) : 0, 1,n n

i iR x R x i n       be the usual 

ordering cone. If ( ), ( ) n

i ia a b b R   , then it is possible to have: 

  1) , 1, n

i ia b a b i n b a R        ; 

  2) , 1,i ia b a b i n      with at least one of these inequalities being strict, 

that is     

 \nb a R   , where (0,0,..., 0) nR   ; 

  3)  

  0 0 0

, 1, int( )

: ( , 0) : ,

n

i i

n n n

a b a b i n b a R

x R B x x R x x R 



 

       

        
 

 

where . : nR R  is the usual norm in nR  given by 

2

1

n

i

i

u u


  , 

( ) n

iu u R   . 

Thus, we are led to say that 0x  is a vectorial minimum solution of 3( )P  if there 

exists no x E  such that 0( ) ( )f x f x , which is equivalent with each of the 

next properties: 

(i)  0 0( ) [ ( ) ] (nf E f x R f x   ; 
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(ii)  0( ) [ ( ) \ ]nf E f x R   ; 

(iii)  0[ ( ) ( )]nR f x f E    ; 

(iv)    0( \ ] [ ( ) ( )]nR f x f E   ; 

(v)    0[ ( ) ] [ ( ) \ ]n nf E R f x R      . 

 

These relations show that 0( )f x  is a fixed point for each of the following 

multifunctions: 

    1 1: ( ) ( ), ( ) : ( ) ,n nF f E f E F t f E f E R t R          

    2 2: ( ) ( ), ( ) : ( ) ,n nF f E f E F t f E f E t R R         

      3 3: ( ) ( ), ( ) : ( ) ,n n nF f E f E F t f E f E R R t R           

      4 4: ( ) ( ), ( ) : ( ) ,n n nF f E f E F t f E f E R t R R           

that is, 0 0( ) [ ( )]if x F f x  for every 1,4.i   By replacing 
nR  with ( )nR , one 

obtains the concept of vectorial maximum solution for 4( )P . Clearly, any vector 

optimization program (which has its origin in the usual ordered Euclidean 

spaces programs thanks to the Pareto type optimality of the vector - valued real 

functions) includes the corresponding strong optimization program. Moreover, 

it is possible to replace the usual convex cone 
nR  by any other  convenient 

convex cone in nR . In this way, we are sent to examine for a set nA R   

the following subsets 

)   0 0( ) : ,nSMIN A a A a a R a A       (the set of all strong minimum 

points); 

)   0 0( ) : ,nSMAX A a A a a R a A       (the set of all strong maximum 

points); 

)    0 0 0( ) : ( )nVMIN A b A A b R b      (the set of all vectorial minimum 

points); 

)    0 0 0( ) : ( )nVMAX A b A A b R b     (the set of all vectorial 

maximum points). 

All the strong optimal points for A  are contained in the set 

( ) ( ) ( )S A SMIN A SMAX A   while the set of all vectorial 

optimal(efficient)points  is defined by 

( ) ( ) ( ) ( , )nV A VMIN A VMAX A eff A R   , the last equality being in 
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accordance with (Postolică, V., 2017). Moreover,  0 , na eff A R  if and only if it 

is  a critical (ideal or balance) point for the generalized dynamical systems 

: 2AA   defined by    ,na A a R a A    . In this way ,  , neff A R   

describes the balance extremum moments for  , which in the market context, 

expresses the competitive  equilibrium/non - equilibrium consisting of the 

general relation price/consumption.  The first main connection between the 

above mentioned sets is the following, established in the general conditions 

offered by any real or complex vector space ordered by an arbitrary convex 

cone.  

  Theorem 1. (Postolică, V., 2017).  If ( )S A   , then ( ) ( )V A S A . 

In fact, 

( ) ( ( ) ) ( ) ( )( ( ) ( ))SMIN A SMAX A VMIN A SMIN A VMAX A SMAX A      

 

  Remark 1. This result is also important for for the numerical methods since it 

says that, if there exist”strong optimal points”, then these elements are the only 

”vectorial optimal  points”. The next examples are significant.  

  Remark 2. To establish the optimal points for a non – empty set in any 

ordered (possible topological) vector space the best direction of study is to 

establish the main connections between the mathematical qualities of the set for 

which one looks for the optimums and the properties of the ordering cone. 

Thus, the largest class  of the convex cones ensuring the existence for the 

efficient points in all non - empty compacts subsets of every Hausdorff 

separated topological vector space was defined by Sterna – Karwat, A., 1986 as 

follows: if V is an arbitrary Hausdorff topological vector space, a convex cone 

C belongs to   iff for every closed vector subspace L of V, C L  is a vector 

subspace whenever its closure C L  is a vector subspace. Consequently, 

 ,eff A K  is non – empty with respect to each compact set A  and any convex 

cone satisfying the above characterization, in every Hausdorff topological 

vector space. In order to maximum relax the compactness hypothesis, for 

example, by the completeness, it was necessary to improve the quality of the 

ordering cone. Professor George Isac from College of St. Jean, Québec, Canada 

introduced such as this concept of convex cone in 1981, published it in 1983  

like nuclear or supernormal cone, called by us and, officially recognized, as 

“Isac’s Cone” in 2009, after the acceptance of this last agreed denomination  

by professor Isac. Thus, let X  be a real or complex linear space and let 

 :P p A    be a family of seminorms defined on X . For every 

, 0x X    and 
*n N  let  
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1 2( ; , ,..., ; ) { : ( ) , 1, }nV x p p p y X p y x n         be the family  

0  1 2( ) ( ; , ,..., ; ) : *, , 1, , 0}nx V x p p p n N p P n       , with the 

following properties : 

(V1) ,x V V  0(x) ; 

(V2) 1 2,V V 0(x), 3V 0(x) : 3 1 2V V V   ; 

(V3) V 0(x), U 0(x), U V such that   ,y U W   0(y) with 

W V .  

Therefore, 0(x) is a base of neighborhoods for x  and taking 

 ( ) { :x V X U   0(x) with U V } , the set 

{ :D X D    ( )x , x D       is the locally convex topology 

generated by the family P . Obviously, the usual operations which induce the 

structure of linear space on X are continuous with respect to this topology. The 

corresponding topological space ( , )X   is a Hausdorff locally convex space  iff 

the family P  is sufficient, that is,  0 \ { },x X p P    with 0( ) 0p x  . In 

this context, a convex cone K X  is an Isac’s cone iff   

                                 
*, : ( ) ( ),p P f X p x f x x K          . 

Clearly, any pointed, convex cone, in every Euclidean space R
k
 (k   N*) is an 

Isac’s cone. Many examples together with pertinent comments of such as these 

important convex cones were given in (Isac, G., Postolică, V., 1993) and in 

(Postolică, V., 2017). 

  Open Problem 1. We introduce Isac’s sets in the following area: let M  be a 

non-empty subset of X  and let ( )cone M  be the convex cone generated by M . 

Obviously, the quality of Isac’s cone for ( )cone M  is equivalent with the fact 

that each seminorm is majorized by at least a linear and continuous functional 

on M . Therefore, it is natural to call it “Isac set”. An open problem is to 

discover the properties of these sets. 

  Remark 3. In our opinion, following the context of the ordered linear spaces, 

any optimization programme can be generally formulated as follows: let E  be 

a non – empty set, let X  be a vector space ordered by a convex cone K  and 

let : ( , )f E X K  be an objective function. The problem consists to look for 

the optimums of the set E  following the properties of its image 

 ( ) ( ) :f E f x x E   in X  by K   and conversely. 
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  Example 1. For each real number c  let us consider the sets 

0

1

( ) :
n

n

c i i

i

A x R x c


 
   
 

 , 1

1

( ) :
n

n

c i i

i

A x R x c


 
   
 

 , 

2

1

( ) :
n

n

c i i

i

A x R x c


 
   
 

  then it is clear that 
0 1 2( ) ( ) ( )c c cS A S A S A    , 

0 0 0 0( ) ( ) ( )c c c cV A VMIN A VMAX A A   , 1 2 0( ) ( )c c cVMIN A VMAX A A   so, 

by extrapolation,  1 0( ) ( , ,..., )c ceff A A      and 

   2 0 ( , ,..., )c ceff A A     .  

  Example 2. (Isac, G., Postolică, V., 1993. Let (X, P ={p :I}) be a H-

locally convex space with each seminorm p being induced by a scalar 

semiproduct (.,.) (I) and M a closed linear subspace of X for which there 

exist a H-locally convex space (Y,Q ={ q :I}) with each seminorm qQ 

generated by a scalar semiproduct <.,.>(I) and a linear possible 

continuous operator U:XY such that  

M={xX: (x,y) =<Ux,Uy>,  I}. 

The space of all spline functions with respect to U was defined by  

Postolică, V. (1981) as the U-orthogonal of M, that is,  

M ={xX:  <Ux,U>=0,  M, I}. 

Clearly, M  is the orthogonal of M in the H - locally convex sense. Let x0X 

and let G be a non-empty subset of X. Following the previous notations, we 

have 

  Definition 1. (Isac, G., Postolică, V.,1993) g0G is said to be a best 

simultaneous approximation for x0 by the elements of G with respect the family 

P (abbreviated g0  is a P - b.s.a. of x0  if 

(p (x0 - g0))   SMIN({(p(x0 - g)): gG, pP}) . 

Whenever each element xX possesses at least one P- b.s.a. in G the set G is 

called P - simultaneous proximinal. 

  Definition 2. (Isac, G., Postolică, V., 1993) g0G is said to be a best 

vectorial approximation of x0 by G with respect to P  (abbreviated g0  is a P - 

b.v.a. of x0 ) if   

(p (x0 - g0)) VMIN({(p(x0 - g)): gG, pP}). 

When, in addition, each element xX possesses at least one P - b.v.a. in G, the 

set G is called P - vectorial proximinal. 
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  Let us consider the direct sum X’=M M  and for every xX’, we denote its 

projection onto M  by sx. Then, taking into account the Theorem 4 obtained by 

Postolică, V. in 1981, it follows that this spline is a best simultaneous  

U-approximation of x with respect to M  since it satisfies all the next 

conditions : p (x - sx)   p(x - y)   yM , p P  . 

Moreover, following the definition of the approximate efficiency, the results 

given in Chapter 3 of (Isac, G., Postolică, V., 1993) and the conclusions 

obtained by (Postolică, V., 1984, 2017), we have 

  Theorem 2. 

  (i) for every xX´ the only elements of best simultaneous and vectorial 

approximation with respect to any family of seminorms which generates the  

H-locally convex topology on X by the linear subspace of splines are the spline 

functions sx. Moreover, if M and M  supply an orthogonal decomposiion for 

X, that is X=M M , then M  is simultaneous and vectorial proximinal; 

   (ii)For each sM , every M is the only solution of following 

optimization problem: VMIN({(q(U(-s))): X´ and M}); 

  (iii) for every xX´ its spline function sx is the only solution for the next 

vectorial optimization problems: 

VMIN({(q(U(-x))):M }), VMIN({(p(x-y)): yM }), 

VMIN({(q(Uy)):  y-xM}). 

Finally, let us consider two numerical examples in which, following  

Postolică,V.,(1981), Isac, G., Postolică, V.,(1993) and Postolică, V., (2017), we 

specify the expressions of splines and M and M  realize orthogonal 

decompositions. 

  Example 3. Let X=H
m
(R)={f C

m-1
(R): f

(m-1)
  is locally absolutely continuous 

and f
(m)

 L
2

loc (R)}, m
*N  endowed with the H-locally convex topology 

generated by the scalar semiproducts 

 (x,y)k=
h

m






0

1

[x
(h)

(k) y
(h)

(k) + x
(h)

(-k) y
(h)

(-k)]+ 



k

k

x
(m)

(t) y
(m)

(t)dt, k=0,1,2, … and  

Y= L
2

loc (R) with the H-locally convex topology induced by the scalar 

semiproducts <x,y>k=



k

k

x(t) y(t)dt, k=0,1,2, … If  U:XY is the derivation 

operator of order m, then  

M={xH
m
(R): x

(h)
()=0,  h= 0, m 1 , Z} 



109 

 

109 

 

and M ={sH
m
(R):




k

k

s
(m)

(t) x
(m)

(t)dt,  xM, k=0,1,2, …} 

We proved in (Postolică, V., 1981) that  

M ={sH
m
(R): s/(+1) is a polynomial function of degree 2m-1 at most} 

and if  y= (y), y’= (y’), y’’= (y
‘’
), y

(m-1)
= (y

(m-1)
) are m sequences of real 

numbers, then there exists an unique spline SM  satisfying the following 

conditions of interpolation: S
(h)

()= y
(h)

() whenever h= 0, m 1  and Z. 

Moreover, we observed in the paragraph 3 of (Isac, G., Postolică, V., 1993) 

that any spline  function S such as this is defined by 

   S(x) = p(x)+
h

m






0

1

c1
(h)

(x-1)+
2m-1

+ 
h

m






0

1

c2
(h)

(x-2)+
2m-1

+ … +
h

m






0

1

c0
(h)

(-x)+
2m-1

+ … 

where u+=(|u|+u)/2 for every real number u, p is a polynomial function of 

degree 2m-1 at most perfectly determined by the conditions p
(h)

(0)= y0
(h)

 and 

p
(h)

(1)= y1
(h)

 for all h= 0, m 1  and the coefficients c
(h) 

(h= 0, m 1 , Z) are 

successively given by the general interpolation.Therefore, for every function 

fH
m
(R), there exists an unique function denoted by SfM such that Sf

(h)
()= 

f
(h)

(),  h= 0, m 1  and Z. Hence, in this case, M and M give an 

orthogonal decomposition for the space H
m
(R). 

  Example 4. Let X=Fm={f C
m-1

(R): f
(m-1)

  is locally absolutely continuous 

and f
(m)

 L
2
(R)} endowed with the H-locally convex topology induced by the 

scalar semiproducts  

(x,y)=x()y()+ 

R

  x
(m)

(t) y
(m)

(t)dt,Z, Y= L
2
(R) with the topology 

generated by the inner product (x,y)= 

R

  x(t) y(t)dt,Z and U:XY be the 

derivation operator of order m. Then,  M= {x Fm: x()=0 for all Z}  and 

M ={ s Fm: 

R

  x
(m)

(t) y
(m)

(t)dt=0 for every xM}. 

In a similar manner as in Example1 it may be proved that M  coincides with 

the class of all piecewise polynomial functions of order 2m (degree 2m-1 at 

most) having their knots at the integer points. Moreover, for every function f in 

Fm there exists an unique spline function SfM  which interpolates f on the set 

Z of all integer numbers, that is, Sf   satisfies the equalities Sf()=f() for every 

Z, being defined by 
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Sf(x)= p(x)+ a1(x-1)+
2m-1

+ a2 (x-2)+
2m-1

+ … +a0(-x)+
2m-1

+ a-1(-x-1)+
2m-1

+ … 

where u+ has the same signification as in Example1, the coefficients a(Z) 

are successively and completely determined by the interpolation conditions 

Sf()=f(), Z\{0, 1} and p is a polynomial function satisfying the conditions 

p(0)=f(0) and p(1)=f(1). The uniqueness of Sf is ensured in Theorem 2 given by 

(Postolică, V., 1981).Thus, M and M  give an orthogonal decomposition of the 

space Fm and, as in the preceding example, M  is simultaneous and vectorial 

proximinal with respect to the family of seminorms generated by the above 

scalar semiproducts. 

  Remark 4. Our examples show that the abstract construction of splines can be 

used to solve also several frequent problems of interpolation and 

approximation, having the possibility to choose the spaces and the scalar 

semiproducts. It is obvious that for a given (closed) linear subspace of a H-

locally convex space X such a H-locally convex space Y (respectively, a linear 

(continuous) operator U:XY) would not exist. Otherwise, the problem of 

best vectorial approximation by the corresponding orthogonal space of any 

(closed) linear subspace M for the elements in the direct sum M M might be 

always reduced to the best simultaneous approximation. But, in general, such a 

possibility doesn’t exist. Even in a H-locally convex space  it is possible that 

there exist best vectorial approximations and the set of all best simultaneous 

approximations to be empty for some element of the space. We confine 

ourselves to mention the following simple example. 

  Example 5. Let X= R
N 

endowed with the topology generated by the family P 

={pi :iN} of seminorms defined by pi (x)= |xi| (iN) for every  

x= (xi)X and Gc={(xi)X: xi0 whenever iN and 
i N

  xi=c}, c R  

X is a P -simultaneous strictly convex ( Isac, G., Postolică, V., 1993)  

H-locally convex space. Nevertheless, every element of Gc is P -b.v.a. for the 

origin while its corresponding set of  the best simultaneous approximations 

with respect to P  is empty. 

However, at least from the numerical methods point of view, we are interested 

to solve the next open problem. 

  Open Problem 2. Characterizations of the equivalence 

( ) ( )S A V A A    . 

  Definition 3.( Postolică,V.,2008) A real function : nf A R R   is called  
nR  - increasing(

nR - decreasing) if    1 2f x f x  whenever 1 2,x x A and 

1 2

nx x R  ( 1 2

nx x R  ). 
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  The next coincidence of the efficient points sets and the Choquet boundaries 

is an immediate consequence  of the result established in the general context of 

Hausdorff linear topological ordered vector spaces (Postolică, V., 2008), and 

can not be obtained as a consequence of the Axiomatic Potential Theory. 

  Theorem 3. If nA R   is any non-void, compact subset, then, 

 VMIN A ( ( )VMAX A ) coincides with the Choquet’s boundary 
1 2

( )S SA A   of 

A  with respect to the convex cone 1S  ( 2S ) of all 
nR  - increasing(

nR - 

decreasing) real continuous functions on A. Consequently, each of these sets, 

endowed with the corresponding trace topology, is a Baire space and a G  - 

subset. Moreover, ( , )neff A R 
1 2

)S SA A  . 

  Corollary 3.1.  (i) If for every ( )f C A one denotes 

    sup ' : ( )nf a f a A a R   a'   and     sup '' : )nf a f a a R   a'' A ( , 

then 

       , : ( ) ( ), ( )n

a A

eff A R a A f a f a f a f C A



     ; 

   (ii)      1 2( ( ), ( )(( ( )) : 0 ( )( )VMIN A VMAX A VMIN A VMAX A a A s a s S s S     

are compact sets with respect  to Choquet’s topology  and as usual compact 

subsets of A . 

  Open Problem 3. Generalize the concept of Choquet’s boundary to non-

empty complete sets and extend to non-compact sets the established strong 

connection by coincidence between the general efficient points sets and 

Choquet’s boundaries. 

  Open Problem 4. If A  is any non-empty, compact and convex subset of nR  

 : /S f A R f  is continuous and concave}, then its Choquet’s boundary with 

respect to S coincides with the set  ex A of all extreme points x in A , that is, if 

,y z A  and there exists  0,1  with  1 ,y z x     then .y z x   The 

hypothesis of concavity imposed on the functions is essential for the validity of 

this result. To establish the main links between the extreme points of a non-

empty set and its efficient points. 
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