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SUBSPACES IN RHEONOMIC FINSLER SPACES

OTILIA LUNGU

Abstract. The purpose of the present paper is to investigate some
properties of subspaces in Rheonomic Finsler Spaces. We describe the
induced connections of the subspaces.

1. PRELIMINARIES. RHEONOMIC FINSLER SPACES

Let M be an n-dimensional real manifold and (7'M, w, M) the tan-
gent bundle of M with 7 : TM — M . We denote £ = TM x R
a 2n + 1- dimensional real manifold. In E we consider a local chart
U x (a,b). The points u = (z,y,t) € E have the local coordinates
(', y",1).

Definition 1.1. A rheonomic Finsler space is a pair RF" =
(M, F (x,y,t)), where F': TM x R — R satisfy the following axioms:
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a) F' is a positive scalar function on E called the fundamental func-
tion of RF™

b) F is a positive 1-homogeneous with respect to 3%

c) F is diffferentiable on (TM\ {0}) x R and continuous on the nul
section of the projection 7

d) The Hessian of F, g;; = %% is positive defined and is called
the fundamental tensor of RF™.

The canonical spray S of RF™ is
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where 7/, are the Christoffel symbols of the fundamental tensor
gij (27, Y, t) .

The Cartan nonlinear connection N has the coefficients
(N} (xz,y,t), NJQ (z,y, t)) .N determines the horizontal distribution on
FE which is supplementary to the vertical distribution. The adapted

basis to these distribution is (%, %, g>with
y t

6 0
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The dual adapted basis is (dz*, dy, 6t) where

, 0 0

oy’ = dy' + N (z,y,t)da’
6t = dt+ N (z,y,t)da’.

Theorem 1.1. The canonical metrical N-connection has the coef-
ficients expressed by the generalized Christoffel symbols:
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2. SUBSPACES IN RHEONOMIC FINSLER SPACES

Let M™ be a submanifold of M, m < n. It is represented paramet-
rically by the equations

We denote '
oz’
- Oue
and we assume that rang (B) = m. We consider the supporting
element y' at a point (u®) of M™ to be tangent to M™. So

y' = B (u)v®

B, (u)

The function F (u,v,t) = F(z (u),y(u,v),t) is a metric Finsler
on M™.Consequently we get m-dimensional Rheonomic Finsler space
RE™ which is a subspace of RF". The fundamental function Fis
called the induced metric on RF™. We have
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We denote 5
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It follows that
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We get
Jas = gz‘jBéBlg
that is non-degenerate and positive definite and called the induced
metric tensor of RF™. _
At each point (u®) of RF™ we have n —m unit vectors B}, (u,v)
normal to RF™ such that
9ij (x (u) ,y (u,v) ) B, (u)
9ij (x (u) ,y (u,v) ,t) By (u,v)

where a,b,c=m+1,m+2,...,n
We have

(7>:07

B
Bg( ) = 5abv

BiB’ = 6 BIB® = 0.

3. INDUCED CONNECTIONS

The induced tangent connection on the subspace RF™ s
TT™ (Ng, Fg,, Cg,) where

N§ = B (Béﬁ—l—N]’fBé)

ng = BQ<BEW—|—BéF]ﬂ/)
Csy = BQBJCJZ'W

with

F, = F,BY+C B

c,, = CB

H = Bj (Bj, + NjB]).
Now, by a direct calculus we can state the following theorem:
Theorem  3.1. The induced tangent connection

™ (N 5 Forys Cgﬁy) on the subspace REF™ of the Rheonomic
Finsler space RF™ has the coefficients expressed by

(6% a, o a2i o ]8’yrs(1:y,t) r, S
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Theorem 3.2. The induced normal connection
NT™ (N, 5> Lrars #) on the subspace RF™ of the Rheonomic
Finsler space RF™ has the coefficients expressed by

0%z 1 OV, (z,y,1)
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