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PRESIC TYPE FIXED POINT THEOREM FOR FOUR
MAPS IN PARTIAL s-METRIC-LIKE SPACES

K.P.R.RAO , M.IMDAD AND E.T.RAMUDU

Abstract. In this paper, we obtain a Presic type fixed point the-
orem for two pairs of jointly 2k-weakly compatible maps in partial
b-metric-like spaces.We also give an example to illustrate our main
theorem. We obtain three corollaries, for three and two maps respec-
tively,which are variations of theorems from the papers [1, 2] and [§].

1. INTRODUCTION AND PRELIMINARIES
One of the generalizations of Banach contraction principle,for map-
pings f : X* — X with X a complete metric space,was given by
S.B.Presic [6] in 1965.
Throughout this paper, R" , N and k denote the set of all non-
negative real numbers , the set of all positive integers and a positive
integer respectively.

Keywords and phrases: Complete metric spaces, Presic type theo-
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Theorem 1.1 (6). Let (X,d) be a complete metric space and
f:X*— X. Suppose that

k
d(f(xlyx% Tt 7:Ek>7 f(‘er T3, - ,$k+1)) S Z qi d(lL‘i,J}i+1)
=1

holds for all xi,x9, -+ ,xp, Tpr1 € X, where ¢ >0 fori=1,2,...n

k
and )" q; € 10,1).
i=1
Then f has a unique fized point x*. Moreover, for any arbitrary

points x1,Ta, - ,xkr1 n X, the sequence {x,} defined by x, p =
f(Tn, Tnst1, s Tpak—1), for alln € N converges to x*.

Later Ciric and Presic [3] generalized the above theorem as follows.

Theorem 1.2. ([3]). Let (X,d) be a complete metric space and
f:X* = X. Suppose that

d(f(xla Loy 7:616)7 f(l’g,l‘:;, e 7xk+1>> < A 1H<lza<}§€ {d(xh xiJrl)}
holds for all 1, xa,- - , Tk, Tpy1 in X, where A € [0, 1).
Then f has a fixed point x* € X. Moreover, for any arbitrary
points x1,Ta, - ,Trp1 n X, the sequence {x,} defined by x,,p =
f(Tn, Tnat, s Tpak_1), for alln € N converges to x*.

Moreover, if d(f(u,u,--- ,u), f(v,v,-+-,v)) < d(u,v) holds for all
u,v € X with u # v, then x* is the unique fized point of f.
Recently Rao et al.[1, 2] obtained some Presic type theorems for two

and three maps in metric spaces.Now we give the following definition
of [1, 2].

Definition 1.3. Let X be a non empty set and T : X?¢ — X
and f: X — X.The pair (f,T) is said to be 2k-weakly compatible if
f(l(x,z,...,x,x)) = T(fx, fx,..., fr, fxr) whenever x € X such that
fr="T(z,x,..,x,x).

Using this definition, Rao et al. [1] proved the following

Theorem 1.4. ([1]). Let (X, d) be a metric space and S, T : X** —
X, f: X — X be mappings satisfying
(141) d(S(mlax% T 7x2k)a T(.ng,.Tg, T 73:2]6-1-1)) < A max {d<fxlv fxi-i-l)}

1<i<2k

fOT all L1, L2y 3 T2k L2k+1 n X7
(142) d(T(y17y27 o 7y2k)7 S(y27 Yz, - 7y2k+1)) < A max {d(fy”w fyl+1)}

1<i<2k

Jor all y1,y2, -+, Yo, Yars1 in X, where 0 < A < 1.
(1.4.3) d(S(u,--- ,u), T(v,- - ,v)) < d(fu, fv), for all u,v € X with
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uF#v

(1.4.4) Suppose that f(X) is complete and either (f,S) or (f,T) is a
2k— weakly compatible pair.

Then there exists a unique point p € X such that fp = p =

Very recently Nazir and Abbas [8] obtained the following Presic type
theorem for a pair of maps in partial metric spaces as follows

Theorem 1.5. ([8]). Let (X, p) be a complete partial metric space.
Suppose that f,q: X¥ — X are two mappings satisfying

(151) p(f<xlax27 e 7Ik)7g(x27x37 e 7xk+1)) < A max {p(xwxz-&-l)}

1<i<k
for all 1,29, , Xk, Tpr1 in X, where A € [0,1).
Then f has a unique fixed point x*. Moreover, for any arbitrary
points x1,Ta, - ,xkp1 n X, the sequence {x,} defined by x,,p =
f(@p, Tpi1, s Tnak_1), converges to x*.

We observed that the conclusion is not clear and the proof given
by Nazir and Abbas [8] to the Theorem is not correct. They wrongly
used the condition (1.3.1)(Here (1.5.1)) three times in page 53 of [§]
(see the line 5 from 4" line, line 12 from line 11 and line 19 from line
18 from the above).

In this paper, we obtain a Presic type theorem for four mappings
satisfying a slight different contractive condition in partial b-metric-
like spaces. We also give an example and three corollaries to our main
theorem. One of our corollary is a probable modification of main
theorem of [8](Theorem 1.5 of this section).

Recently Khan et al.[5] introduced partial b-metric-like spaces by
combining the concepts of b-metric-like spaces given by Alghamdi [4]
and partial metric spaces given by Mathews [7].

Now we recall some basic definitions and remarks which play a cru-
cial role in the theory of partial b-metric-like spaces.

Definition 1.6. ([5]) A partial b-metric-like on a nonempty set X
is a function p : X x X — R* such that for all z,y,z € X and a
constant s > 1 the following are satisfied:

(1) p(z,y) =
(p2) pz,z) <p
(ps) pla,y) = ( ),
(p1) pla.y) < sple.2) + plz.y) — plz, 2.
The triad (X, p, s) is called a partial b-metric-like space .
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Definition 1.7. Let (X,p, s) be a partial b-metric-like space.
(i) A sequence {x,} in X is said to be convergent to x € X if
pla,z) = lim p(, z,).
n—oo
(ii) A sequence {x,} in X is said to be a Cauchy sequence in X if

Hm  p(z,,z,) exrists and is finite.
,M—00

(i) X is said to be complete if every Cauchy sequence {x,} in X
converges to a point x € X such that lim p(z,z,) = p(z,x) =
n—oo

Hm  p(z,, Tm).
n,m—00

Remark 1.8. Let (X, p, s) be a partial b-metric-like space and {x,}
be a sequence in X such that lim p(z,z,) = 0. Then
n—oo

(i) z is unique,
(i) 1 p(x,y) < lm p(x,,y) < s p(x,y) for all y € X whenever
n—oo
the limit exists,
(iii) p(xn, x0) < 5 p(wo, 1) + 5% p(21,2) + oo + 8" P(Ty-2,Tp-1)
+ 5" p(Tp_1,Tn).
Now, we introduce the definition of jointly 2k-weakly compatible
pairs.

Definition 1.9. Let X be a nonempty set, k a positive inte-
ger, ST : X** — X and f,g : X — X be mappings. Then
the pairs (f,S) and (g,T) are said to be jointly 2k-weakly com-

patibe if f(S(z,x,....,x) = S(fz, fz,..., fx) and g(T(z,x,...,x)) =
T(gz, gz, ...,gx) whenever there exists v € X such that for =
S(x,x,....,x) and gr = T(x,z,...,x).

Remark 1.10. If the two pairs (f,S) and (g,T) are 2k-weakly com-
patible then the pairs (f,S) and (g,T) are jointly 2k-weakly compatible.
But the converse need not be true in view of the following example.

Example 1.11. Let X = [0, 1] and k = 1. Define S(x,y) = M
T(z,y) = 2“3?/ Jfr=7%,90="% > for all z,y € X.

The pair (g,T) is not 2-weakly compatible since T(x,x) = gx implies

x=0,-2 7z and g(T(15, 15)) #+ T(g%, g%).But the pairs (f,S) and (g,T)
are jointly 2-weakly compatible.

9

Now we present our main result.

2. MAIN RESULT

Theorem 2.1. . Let (X,p,s) be a complete partial b-metric-like
space with s > 1 and S, T : X?* = X and f,g: X — X be mappings
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satisfying

(2.1.1) S(X?*) C g(X), T(X*) C f(X),

(2~1-2) p(S(ﬂﬁl, Loy, Tok—1, $2k), T(y1, Y2, 5 Y2k—1, y2k))
< Amax{ plgzr, fyr), P(f 22, gy2), P(9s, fys), p(fTa, gya), - . }
o p(gr2k-1, fyor—1), D(f T2k, GY2r)

for all xy, 29, , Top, Y1, Y2, -+ , Yo € X and X € (0, 82%),

(2.1.3) (f,9) and (g,T) are jointly 2k—weakly compatible pairs.
(2.1.4) Suppose z = fu = gu for some u € X whenever there exists a
sequence {Yog1n oo, in X such that lim yoriy, = 2 € X.

n—oo

Then z 1is the unique point in X such that z = fz = gz =
S(zy 2, ,2)=T(z,2,-+ ,2).

Proof. Suppose x1,xs, -+ , xo are arbitrary points in X.

From (2.1.1), define

Yok+2n—1 = 5(902n—17 Top, '$2k+2n—2) = gT2k+2n—-1

. Yok+2n = 1(Ton, Tong1, - - Topson—1) = fTokqon forn=1,2,--
et

Qo :p(fx2n7g$2n+1>7
Qon—1 = P(gTon—1, [Ton), n=1,2,---
Let 0 = A% and p = max{2, 93, , %2k},
Then 0 < # < 1 and by the selection of u we have
(1) ay < 0™, form=1,2,--- ,2k.

(2) a2kr1 = p(9T2k+1, [Tokt2)

= p(S(xla X2, L3, Ty, 5 L2k—1, $2k>, T(Jfg, X3, Lg, ", T2k, x2k+1))
p(g'rh fx2>7p<fx27 gxg),p(ga:g, fl’4),

< Amax

- { p(fry, 925),- -, p(gron—1, fror), (f2ok, 9T2k11)

from (2.1.2)
= dmax{ay, ag, a3, ay, -+, Qop_1, Aok}
<A maX{M9> M(92, /“937 M(94, T 7”62k_17 :u92k} from(l)
= b = 0% b

_ ,U02k+1
and
(3)okr2 = p(fTok+2, 9Tok+3)
= p(S(Ig, Ty, T5,T6, """ 5 L2k41, x2k+2)7 T(l’g, T3,Ty4," , T2k, x2k+1>>
p(gxs, fr2), p(fra, grs), p(95, f14),
< Amax
p(fCUGa 9955)7 s ap(9372k+1, fok)ap(fx2k+27 g$2k+1)
from (2.1.2)
=A max{ag, a3, 04, 05, ++, 0o, CY2k+1}

< Amax{u@z, Nﬂg) N'047 N'057 e 7:“02]6’ #Q%H} from (1)a (2>
— )\,u62 — 9%”02
= b2,
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Continuing in this way,by induction, we get
(4) o < ™ form=1,2,---

Now consider

(5)P(Y2k+2n—1, Y2k+2n)

= p(5($2n—1, Ton, 5 L2k+2n—3, x2k+2n—2)7

T(5E2n, Ton41, " » T2k4+2n—2, 332k+2n—1))

< Amax{p(9Zan—1, [T2n), P(fT2n, 9Ton41), - - s P(f Tokt2n—2, 9Tok4on—1)}
= A maX{Oanla Aon,y Aop41, O2p 42 *° °  O2k4 23, a2k+2n72}

S )\maX{MGQn_l, [,602”, /L92n+1, Iu92n+2’ . 711/692]6—‘,-271—3’ M92k+2n_2},

from (4)

— /\,ué’Qn_l — 92kﬂg2n—l

_ M92k+2n71

Also

(6) p(y2k+2n, y2k+2n+1) = p(5($2n+1, Lon+42, " s L2k+2n—1; $2k+2n),
T(flf2n, Ton41, " 5 T2k4+2n—2, 332k+2n—1))

< Amax{p(9Zant1; [T2n), P(fTont2, 9Tont1)s -+ P([Tokson, 9Torron—1)}
=A maX{Oézn, Aont1, Aon42, A2p43, * *° , 2422, 052k+2n71}

S )\max{,u@%, u92n+1’ M92n+2’ u92n+3’ . 7,u/92k;—‘,-2n—2’ M92k+2n_1},

from (4)

— /\,U@Qn — 9213“&271

— #92k+2n

Thus from (5) and (6) we have

(7) p(y2k+na y2k+n+1) S ,U92k+n fOT n = 1a 27 37 T

Now from m > n consider )
(8)p(y2k+m ?J2k+m) <s p(y2k+m y2k+n+1) +s p(y2k+n+17 y2k+n+2) +
+5™ 7" D(Yaktm— 15 Yoktm)
< s PR 2 PRt Ly gmene L gk

from (7) < p[(s0)*™ + (sO)2FFH .o 4 (s0)FT™ 0 since s > 1

2k (sO)" o) 1 _
< u(s8)* =, since sl = sAzk < 57 =1
—0asn—o0o,m— 00

Hence {yorin} is a Cauchy sequence in (X,p,s). Since (X,p,s) is

complete, there exists z € X such that
p(z,2) = 1 p(Yopin, 2) = 1 p(Yok s Yobm)-

)

From (8), we have

(9) p(z,2) =0

From (2.1.4), there exists u € X such that
(10) z = fu = gu

Now consider

(11) p(S(u, Uy-re U, u)v y2k+2n)

= p(S(u,u, -+ u), T(T2n, Tont1, 5 Toktran—3)
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< Amax{p(gu, fra,), p(fu, 9Tant1), -+, P(gU, f2r120-2), P(fU, 9Tok120-1)}
Letting n — oo and using (9),(10)and Remark 1.8(ii) ,we get

% p(S(u,u, - ,u,u), fu) <0 so that fu=S(u,u,--,u,u)
Similarly we have

(12) gu = T(u,u,--- ,u,u)

Since (f,S) and (g,T") are jointly 2k—weakly compatible pairs, we
have

(13) fZ = f(fu> = f(S(u,u, 7u7u)> = S(fu7fu7 7fu7fu)) =
S(z, 2, ,2,2)

and

(14) gz =T(z,2,-+ ,2,2)

Now consider

p(fz, 2) = p(fz gu)

=p(S(z,2,2,2, -+ ,2,2), T(u,u,u,u, - -+ ,u,u)), from (13),(12)

< )\max{p(gz, fU),p(fZ,QU), T 7p(gza fu),p(fz,gu)}

= Amax{p(gz, 2),d(fz,2)}, from (10)

Similarly we have p(gz, z) < Amax{p(gz, 2),p(fz,2)}.

Thus we have max{p(fz, z),d(gz,2)} < Amax{p(fz, 2),p(g9z,2)}
which in turn yields that z = fz = gz.

From (13) and (14), it follows that

(15) z=fz=92=85(2,2,--+ ,2,2) =T(z,2,- - ,2,2)

Suppose there exists 2/ € X such that

Z=f =g =857 2)=TE 2, 2).

Then from (2.1.2) we have

p(z, 2')

=p(S(z,z,--+,2), T2, - ,2))

< )\max{p(gz, fz'),p(fz, gZ,), T ,p(gz, fz'),p(fZ, gzl>} = )\])(Z, Z/)
This implies that 2’ = z.

Thus z is unique point in X satisfying (15).

Now we give an example to illustrate our main Theorem 2.1.

Example 2.2. Let X = [0,1] , p(z,y) = max{2? y?} and
k = 1.Then (X,p,s) is a complete partial b- metric like space with
s = 2.Define S(z,y) = [32 +2y] T (x,y) = [21+3y |2, fo = k3 |z and

r =735 forallz,yecX.
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Then for all x1,x9,y1,y2 € X, we have

p(S(z1,22), T(y1,y2))
_ max{ 3z3+2z2 241 +3y2

720
< = [max{3z7, 2y1} + max{ 2wy, 3y3}]
<3 max{max{?)xl, 2u1 }, max{?xg, 3ys}}

= %max{max{ % ay, max{xg, yj H

= g max{p(gz1, fy1), p(f22, gy2) }-
Thus the condition (2.1.2) of Theorem 2.1 is satisfied. One can easily

verify the remaining conditions of Theorem 2.1. Clearly,0 is the unique
point in X such that 0 = f0 = g0 = S5(0,0,...,0,0) =7(0,0,...,0,0).

Corollary 2.3. Let (X,p,s) be a partial b-metric-like space with
s>1and S,T : X* — X and f: X — X be mappings satisfying
(23.1) S(X™) C f(X), T(X*) C f(X),

(23.2)  p(S(z1, 22, 2op—1,Tox), T(Y1, Y2, -+, Yor—1,Y2r)) <
A max {p(fzs, fys)} for all w29, -+  Top,y1, 92, Yy € X

cmd )\ 6 ( , 3% ))

(2.3.3) f(X) is a complete subspace of X,

(2.3.4) the pairs (f,S) or (f,T) is 2k—weakly compatible.

Then there emists a unique z € X such that z = fz =
S(zyz,-+,2,2)=T(z,2,-+ ,2,2).

Corollary 2.4. Let (X,p,s) be a complete partial b-metric-like
space with s > 1 and S,T : X* — X be mappings sat-
isfying (2.4.1) p(S(w1, 22, , Tor—1,T2), T(Y1, Y2, - -+, Yor—1,Y2r)) <
A max {p(ws,y;)} for all @y, w9, Do, Y1, Y2, ,y2x € X and

1<i<2k
A e (0, 2r)
Then there exists a unique u € X such that
u=S(u,u,- u,u)=T(uu, -, u,u).

Corollary 2.5. Let (X,p,s) be a partial b-metric-like space with
s>1land S: X¥ — X and f : X — X be mapping satisfying
(2.5.1) S(X*) C f(X),

(2.5.2) p(S(w1, 72, -+ 061, 7%), S(Y1, Y2, "+, Yh—1, Uk))

A 1H<1a<}§€{p(f$zafyl)} fOT all L1, L2, Tk, Y1, Y2, 5 Yk €

and X € (0, ),

(2.5.3) f(X) is a complete subspace of X,

(2.5.4) the pair (f,S) is k—weakly compatible.

Then there ezists a unique z € X such that z = fz = S(z,2z,--+ , 2, 2).

>IN
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