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1. INTRODUCTION

The concept of ideals in topological spaces has been introduced and
studied by Kuratowski [10] and Vaidyanathasamy [11]. An ideal Z on
a topological space (X, 7) is a nonempty collection of subsets of X
which satisfies (i) A € Z and B C A implies B € 7 and (ii) A € T
and B € 7 implies A U B € Z. Given a bitopological space (X, 71, 72)
with an ideal Z on X and if P(X) is the set of all subsets of X, a
set operator (.)f: P(X) — P(X), called the local function [11] of A

with respect to 7; and Z, is defined as follows: for A C X, Af(7;,7) =
{r € X|UNA ¢ T for every U € 7,(x)}, where 7;(z) = {U € 1;|]z € U}.

Keywords and phrases: Ideal bitopological spaces, (1,2)-a-Z-open
sets, (1,2)-a-Z-closed sets.
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For every ideal topological space (X, 7,Z), there exists topology 7*(I),
finer than 7, generated by the base 8(Z,7) = {U\I | U € 7 and [
€ Z}, but in general 5(Z,7) is not always a topology [7]. Observe
additionally that 7,-Cl"*(A) = A U Af(7;,Z) defines a Kuratowski clo-
sure operator for 7*(Z), when there is no chance of confusion, A} (Z) is
denoted by A} and 7;-Int*(A) denotes the interior of A in 7/(Z). The
aim of this paper is to introduced and characterized the concepts of
a-open sets and their related notions in ideal bitopological spaces.

2. PRELIMINARIES

Let A be a subset of a bitopological space (X, 7, 72). We denote the
closure of A and the interior of A with respect to 7; by 7;-Cl(A) and
7;-Int(A), respectively.

Definition 2.1. A subset A of a bitopological space (X, T, Ts) is said
to be (i, j)-a-open [9] if A C 7;-Int(7;-Cl(7;-Int(A))), where i,j = 1,2
and i # j.

Definition 2.2. A subset S of an ideal topological space (X, T,T) is
said to be a-T-open [8] if S C Int(Cl"(Int(S))). The family of all
a-Z-open sets of (X, 7,7) is denoted by aZO(X,T).

Definition 2.3. A function f : (X, 7, m) — (Y,01,092) is said to
be (i, j)-a-continuous [9] if the inverse image of every o;-open set in
(Y, 01,09) is (i,))-a-open in (X, 11,72, L), where i # j, i,j=1, 2.

Definition 2.4. A subset A of an ideal bitopological space (X, 1,72, 7)

is said to be
(i) (i,7)-R-Z-open [1] if A = 7;-Int(7;-CI*(A)).
(i, 7)-semi-Z-open [3] if A C 7;-Cl*(;-Int(A)).
i) (4,7)-pre-Z-open 2] if A C 7;-Int(7;-CI*(A)).
(i,7)-b-Z-open [4] if A C 7;-Int(7;-CI*(A)) U 7;-Cl*(7;-Int(A)) .
(i,7)-B-L-open [5] if A C 7;-Cl(7;-Int(7;- Cl*( )))-
(vi) (4,7)-0-Z-open [1] if 7;-Int(7;-Cl"(A) C 7;-C1I*(7;-Int(A)).

The complemenet of an (i, j)-pre-Z-open (resp. (i, j)-f-Z-open) set is
called an (i, j)-pre-Z-closed (resp. (i,j)-5-Z-closed) set.

Lemma 2.5. Let (X, 7, 7,Z) be an ideal bitopological space. Then
(i) A subset A is (i,j)-pre-I-closed if and only if 7,-Cl(7;-
Int*(A)) C A [2];
(i) A subset A is (i,])-B-I-closed if and only if 7;-Int(7;-Cl(7;-
Int*(A))) C A [5].
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Definition 2.6. A function f : (X, 7,72,Z) — (Y,01,02) is said to
be

(i) pairwise pre-Z-continuous (2] if the inverse image of every o;-
open set of Y is (i,7)-pre-Z-open in X, where i # j, i,j=1,
2.

(1) pairwise semi-Z-continuous [3| if the inverse image of every o;-
open set of Y is (i,)-semi-Z-open in X, where i # j, i,j=1,
2.

(i) pairwise b-Z-continuous [4] if the inverse image of every o;-
open set of Y is (i,7)-b-Z-open in X, where i # j, i,j=1, 2.

() pairwise B-I-continuous [5] if the inverse image of every o;-
open set of Y is (i,7)-8-Z-open in X, where i # j, i,j=1,
2.

(i) pairwise §-Z-continuous [3] if the inverse image of every o;-
open set of Y is (1,7)-0-Z-open in X, where i # j, 1,j=1, 2.

(1) pairwise strongly B-Z-continuous [5] if the inverse image of ev-
ery o;-open set of Y is strongly (i,7)-B-Z-open in X, where
i 43, i,j=1, 2

3. (4,j)-a-Z-OPEN SETS

Definition 3.1. A subset A of an ideal bitopological space (X, 1,72, 7)
is said to be (i, j)-a-L-open if and only if A C 7;-Int(7;-Cl*(1;-Int(A))),
where 1,7 =1,2 and 1 # j.

The family of all (i,j)-a-Z-open sets of (X, m,72,Z) is denoted by
aZO(X, 1, 12) or (i,7)-aZO(X). Also, The family of all (i,j)-a-Z-
open sets of (X, 11,72, L) containing x is denoted by (i,7)-aZO(X, x).

Remark 3.2. Let Z and J be two ideals on (X,n,72). If T C J,
then aJO(X, 11, m2) C a«ZO(X, Ty, Ts).

Proposition 3.3. (i) Every (i,j)-a-Z-open set is (i,j)-semi-Z-
open
(ii) Ewery (i,j)-a-Z-open set is (i, j)-a-open.
(iii) Ewvery (i, j)-a-Z-open set is (i, j)-pre-Z-open.
(iv) Every (i,j)-a-Z-open set is (i, j)-b-Z-open.
(v) Every (i, j)-a-Z-open set is (i, j)-B-L-open.
Proof. The proof follows from the definitions. O

The following example show that the converses of Proposition 3.3 is
not true in general.
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Example 3.4. Let X = {a,b,c} 71 = {0,{a},{b},{a,b}, X}, = =
{0,{a},X} and T = {0,{a}}. Then the set {a,c} is (i,)-b-Z-open
but not (i, 7)-a-Z-open. Also, the set {b,c} is (i,7)-semi-Z-open but
not (i, j)-a-Z-open and the set {a,c} is (i,j)-pre-Z-open and (i, j)-c-
open but not (i, j)-a-Z-open.

Proposition 3.5. For an ideal bitopological space (X, 1,72,Z) and
A C X we have:
(i) If T = {0}, then A is (i,j)-a-Z-open if and only if A is (i,7)-
a-open.
(ii) If T = P(X), then A is (i,5)-a-Z-open if and only if A is
T;-0pen.

Proof. The proof follows from the fact that
(i) If Z = {0}, then A* = CI(A).
(i) If Z = P(X), then A* = () for every subset A of X.
O

Proposition 3.6. Let A be a subset of an ideal bitopological space
(X,71,79,Z). If B is an (i,j)-semi-Z-open set of X such that B C
A C 7;-Int(1;-CI*(B)), then A is an (i, j)-o-L-open set of X.

Proof. Since B is an (i, j)-semi-Z-open set of X, we have B C ;-
Cl*(7-Int(B)). Thus, A C 7-Int(7;-Cl*(B)) C 7-Int(7;-Cl* (7;-C1* (7;-
Int(B)))) = 7-Int(7;-Cl*(7;-Int(B))) C 7-Int(7;-Cl*(7;-Int(A))), and
so A is an (¢, j)-a-Z-open set of X. O

Proposition 3.7. Let (X,71,7,Z) be an ideal bitopological space.
Then a subset ofX is (i, j)-a-Z-open if and only if it is both §-Z-open
and pre-L-open.

Proof. Let A be an (i, j)-a-Z-open set. Since every (i, j)-a-Z-open set
is (i, j)-semi-Z-open, by Proposition 3.3 A is an (4, j)-0-Z-open. Now
we prove that A C 7,-Int(7;-C1"(A)). Since A is an (i, j)-a-Z-open,
we have A C 7;-Int(7;-Cl*(7;-Int(A))) C 7-Int(7;-C1*(A)). Hence A is
(1, 7)-pre-Z-open. Conversely, let A be an (i, j)-d-Z-open and (4, j)-pre-
Z-open set. Then we have 7;-Int(7;-Cl*(A)) C 7;-Cl*(7;-Int(A4)) and
hence 7;-Int(7;-Cl"(A)) C 7-Int(7;-Cl*(7;-Int(A))). Since A is (i, 7)-
pre-Z-open, we have A C 7;-Int(7;-Cl*(A)). Therefore, we obtain that
A C 7-Int(7;-Cl*(1;-Int (A))); hence A is (¢, j)-a-Z-open. O

Lemma 3.8. A subset A is (i, j)-a-Z-open if and only if (i, j)-semi-
Z-open and (i, j)-pre-Z-open.
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Proof. Let A be (i, j)-semi-Z-open and (i, j)-pre-Z-open. Then, A C
7;-Int(7;-C1"(A)) C 7-Int(7;-Cl*(7;-Cl*(7-Int(A)))) = 7-Int (7;-Cl* (7:-
Int(A))). This shows that A is (i, j)-a-Z-open. The converse is obvi-
ous. UJ

Corollary 3.9. The following properties are equivalent for subsets of
an ideal bitopological space (X, T, 73,T):
(i) Every (i,7)-pre-Z-open set is (i, j)-semi-Z-open.
(i1) A subset A of X is (i, 7)-a-Z-open if and only if it is (i, j)-pre-
T-open.

Corollary 3.10. The following properties are equivalent for subsets
of an ideal bitopological space (X, 1,72, L):

(i) Every (i,7)-semi-Z-open set is (i, j)-pre-Z-open.

(ii) A subset A of X s (i,7)-a-Z-open if and only if it is (i,7)-

semi-L-open.

Proposition 3.11. Let A be a subset of an ideal bitopological space
(X, 71,70, Z). If A is (i,j)-pre-Z-closed and (i,j)-c-Z-open, then it is
T;-0pen.

Proof. Suppose A is (i, j)-pre-Z-closed and (i, j)-a-Z-open. Then by
Lemma 2.5 7,-Cl(7;-Int*(A)) € A and A C 7-Int(7;-Cl*(7;-Int (A))).
Now 7;-Cl(7;-Int(A)) C 7;-Cl(7;-Int(A)) C 7;-Cl(7;-Int"(A)) C A and
so A C 7-Int(7;-Cl*(tau; — Int(A)) C A C 7,-Int(A). Therefore, A is
T;-open. O

Lemma 3.12. [1] If A is any subset of an ideal bitopological space
(X, 71,72, L), then 7;-Int(7;-C1*(A)) is (¢, j)-R-Z-open.

Proposition 3.13. Let A be a subset of an ideal bitopological space
(X, 71,70, Z). If A is (i,j)-a-Z-open and (i,j)-B-Z-closed, then it is
(i, 7)-R-Z-open.

Proof. Let A be (i,j)-a-Z-open and (i,j)-B-Z-closed. =~ We have
by Lemma 2.5, A C 7;-Int(7;-Cl*(7;-Int(A))) and 7;-Int(7;-Cl*(74-
Int(A))) C 75-Int(7;-Cl(7;-Int"(A))) C A; hence A = 7;-Int(7;-Cl*(7;-
Int(A))). Thus, by Lemma 3.12, A is (4, j)-R-Z-open. O

An ideal bitopological space is said to satisfy the condition (A) if
UnNt-Cl"(A) C 7;-CI"(U N A) for every U € ;.

Theorem 3.14. Let (X, 7, 72,Z) be an ideal bitopological space that
satisfies the condition (A). Then we have the following
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(i) If V € (i,7)-aZO(X) and A € (i,))-aZO(X), then VN A €
(1,7)-aZO(X).

(i) If V € (i,§)-aZO(X) and A € (i,j)-aZO(X), then VN A €
(1,7)-0ZO(X).

Proof. (i). Let V € (i,7)-aZO(X) and A € (i,7)-aZO(X). Then V N
A C 7-Cl*(1-Int (V') ) N7y-Int (75-C1* (1;-Int A))) C 75-C1* (7;-Int (V') N7;-
Int(7;-Cl*(7;-Int(A)))) C 7-Cl*(7-Int(V') N 7;-Cl*(7;-Int(A4))) C 74-
CI*(7j-CI* (r-Int (V') N73-Int(A))) C 7;-Cl*(7-Int(V')). This shows that
VNAE(i,j)-aZO(X).

(). Let V € (i,§)-PTO(X) and A € (i,j)-aZO(X). Then
VNA C 7-Int(7;-Cl*(A)) N7i-Int (7;-Cl* (73-Int(A)) ) ) = 73-Int(7;-Int(75-
CI"(V)) N 7-Cl*(7-Int(A))) C 7-Int(7;-Cl* (1;-Int(7;-CLI*(V)) N 7;-
Int(A))) C 7-Int(7;-Cl*(7;-CI" (V) N 7-Int(A))) C 7-Int(7;-Cl*(74-
ClI*(VNr-Int(A)))) C 7i-Int(7,-C1* (V' NV)). This shows that VN A €
(i, j)-PZO(X). O

Remark 3.15. The intersection of two (i,7)-a-Z-open sets need not
be (i,7)-a-Z-open as it can be seen from the following example.

Example 3.16. Let X = {a,b,c,d}, m = {@, {a}, {b}, {a,b},
{a,b,c}, X}, 7o = {9, X} and T = {@,{c},{d},{c,d}}. Then the
sets {a,c} and {b,c} are (1,2)-a-Z-open sets of (X, 11,72, I) but their
intersection {c} is not an (1,2)-a-Z-open set of (X, 1, 72,7).

Theorem 3.17. If {A.}aca be a family of (i,7)-a-Z-open sets in
(X,71,79,Z), then |J Aq is (i,7)-a-Z-open in (X, 1, 72,7).

a€el)

Proof. Since {A, : a € Q} C (i,j)-aZO(X), then A, C -
Int(7;-Cl*(7;-Int(A,))) for every a € Q. Thus, UQAa C U 7

Int(7;-Cl*(7;-Int(A,))) C Ti—Int(Tj—Cl*(aLEJQ 7-Int(Ay)) = 7-Int(7;-
Cl*(Ti—Int(aLGJQ Ay)). Therefore, we obtain aLgJQ A, C 7-Int(7;-CI*(7;-
Imt(oéLeJQ A,)). Hence any union of (i, j)-a-Z-open sets is (i,7)-a-Z-
open. ]

If (X,7,7) is an ideal topological space and A is a subset of X, we
denote by 74, the relative topology on A and Zj, = {AN1 € I} is
obviously an ideal on A.

Theorem 3.18. Let (X, 71, 7,Z) be an ideal bitopological space sat-
isfies the condition (A). If A € (i,j)-aZO(X) and A C B € (i,7)-
aZO(X), Then A € (i,7)-oZpO(B).
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Proof. By definition, A C 7-Int(7;-Cl*(7-Int(A N B))) N B = 7;-
Intg(7;-Int(7;-ClI"(AN B))) N B) C 7-Intp(7;-Cl" (AN B)) N B) = 7;-
Int 5 (7;-Cl (7-Int(A) N 7-Int(B))) C 7-Int g(7;-Cly (1i-Int(A) N B)) =
7;-Int g (7,-Clg (1i-Int g (7-Int (A) N B))) C 1-Intg(7;-Clp(7-Int 5 (A))).
This shows that A € (i, j)-aZjpO(B). O

Definition 3.19. In an ideal bitopological space (X, 11,79,Z), AC X
is said to be (i, 7)-a-L-closed if X\ A is (i,7)-a-Z-openin X, i,j = 1,2
and i # j.

Theorem 3.20. If A is an (i, j)-a-Z-closed set in an ideal bitopological
space (X, 11,72, Z) if and only if 7;-Cl(7;-Int*(7;-C1(A))) C A.

Proof. The proof follows from the definitions. O

Theorem 3.21. If A is an (i, j)-a-Z-closed set in an ideal bitopological
space (X, 11,72, T), then 7,-Cl(7;-Int(7;-C1"(A))) C A.

Proof. Since A € (i,5)-aZC(X), X\A € (i,5)-0ZO(X). Hence,
X\A C 7-Int(7;-Cl*(r-Int(X\A)) C 7-Int(7;-Cl(7,-Int(X\A))) =
X\7-Cl(7j-Int(7,-CL(A))) € X\(7;-Cl(7;-Int(7;-C1"(A))). Therefore,
we obtain 7;-Cl(7;-Int(7,-Cl"(A)) C A. O
Proposition 3.22. Let (X, 7, 72,Z) be an ideal bitopological space. If

a subset of X is (i,7)-8-Z-closed and (i,j)-0-Z-open, then it is (i,7)-
a-Z-closed.

Proof. The proof follows from the definitions. O

Theorem 3.23. Arbitrary intersection of (i, j)-a-Z-closed sets is al-
ways (1, j)-a-L-closed.

Proof. Follows from Theorems 3.17 and 3.21. U

Definition 3.24. Let (X, 1, 79,Z) be an ideal bitopological space, S a
subset of X and x be a point of X. Then
(i) z is called an (i, j)-a-Z-interior point of S if there exists V €
(1,7)-aZO(X, 11, 72) such that x € V C S.
ii) the set of all (i, j)-a-Z-interior points of S is called (i, j)-a-Z-
interior of S and is denoted by (i, 5)-aZ Int(S).

Theorem 3.25. Let A and B be subsets of (X, 11,72,Z). Then the
following properties hold:
(i) (4,4)-aZInt(A) =U{T: T C A and A € (i,5)-aZO(X)}.
(ii) (i,7)-oZInt(A) is the largest (i, )-a-Z-open subset of X con-
tained in A.
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) A is (i,7)-a-Z-open if and only if A = (i,j)-aZ Int(A).
(iv) (4,4)-aZ Int((i,7)-aZ Int(A)) = (i,7)-aZ Int(A).

v) If A C B, then (i,j)-aZInt(A) C (i,7)-oZ Int(B).
(vi) (4,j)-aZInt(AN B) = (i,5)-aZInt(A) N (i,7)-aZ Int(B).
(vii) (i,7)-aZInt(AU B) C (i,7)-aZ Int(A) U (7, 5)-aZ Int(B).

Proof. (i). Let x € U{T : T C A and A € (i,))-0ZO(X)}.
Then, there exists 1" € (i,7)-aZO(X,z) such that x € T C A and
hence z € (i,j)-aZInt(A). This shows that U{T" : T" C A and
A € (i,7)-aZO(X)} C (4,7)-aZ Int(A). For the reverse inclusion, let
x € (i,7)-aZ Int(A). Then there exists T' € (i, j)-aZO(X, z) such that
xeT CA weobtainx € U{T : T C Aand A € (i,5)-aZO(X)}.
This shows that (i,j)-aZInt(A) C U{T : T C A and A € (i,))-
aZO(X)}. Therefore, we obtain (i,7)-aZInt(A) = U{T : T C A and
A€ (i,5)-0ZO(X)}.

The proof of (ii) — (v) are obvious.

(vi). By (v), we have (i, j)-aZ Int(A) C (4, j)-aZ Int(AU B) and (i, j)-
aZInt(B) C (i,7)-aZInt(A U B). Then we obtain (i,7)-aZ Int(A)
U (4,7)-aZInt(B) C (i,7)-aZInt(A U B) Since (i, j)-oZInt(A) C A
and (i,7)-aZInt(B) C B, we obtain (i,j)-aZInt(A U B) C (i,))-
aZlInt(A) U (i,7)-aZInt(B). It follows that (i,j)-aZInt(AN B) =
(i,7)-aZ Int(A) N (i, 7)-aZ Int(B).

(vii). Since AN B C Aand AN B C B, by (v), we have (i,7)-
aZlnt(AN B) C (i,j)-aZInt(A) and (i,7)-aZInt(A N B) C (4,7)-
aZInt(B) . Therefore, (i,7)-aZInt(A) U (i,7)-aZInt(B) C (i,7)-
aZ Int(AN B). O
Theorem 3.26. If (X, 7, 72,Z) is an ideal bitopological space satis-
fying the condition (A), then (i,j5)-oZInt(A) = A N 7-Int(7;-Cl*(7;-
Int(A))) holds for every subset A of X.

Proof. Since A N 7-Int(7;-Cl*(1;-Int(A))) < 7-Int(7;-Cl*(73-
Int(A))) = 7-Int(r-Int(7;-Cl*(7-Int(A4)))) = 7-Int(7;-Cl*(7;-
Int(A)) N (7-Int(7;-Cl*(73-Int(A)))) C  7-Int(7;-Cl*(7-Int(A) N 7;-
Int(7;-Cl*(7;-Int(A))))) = 7-Int(7;-Cl*(7-Int(A N 7-Int (7;-CL*(7;-
Int(A)))))), A N 7-Int(7;-Cl*(7;-Int(A))) is an (7, j)-a-Z-open set
contained in A and so A N 7;-Int(7;-Cl*(7;-Int(A))) C (4, j)-oZ Int(A).
Since (i,7)-aZInt(A) is (i,j)-a-Z-open, (i,j)-aZInt(A) C 7-
Int(7;-Cl*(7-Int((¢, j)-oZ Int(A)))) C 7-Int(7;-Cl*(7-Int(A))) and
so (i,7)-aZlnt(A) < A N 7-Int(7;-Cl*(Int(A))).  Hence (i,7)-
aZ Int(A) = AN Int(7;-Cl*(7-Int(A))). O
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Definition 3.27. The wunion of all (i,7)-pre-Z-open sets of
(X, 71,72, Z) containing A is called the (i, j)-pre-Z-interior of A and
is denote by (i,7)-pZ Int(A).

Lemma 3.28. If (X, 7, 7,Z) is an ideal bitopological space satisfies
the condition (A), then (i, j)-pZ Int(A) = AN 7-Int(7;-C1*(A)) holds
for every subset A of X.

Theorem 3.29. If (X, 7,7, Z) is an ideal bitopological space satisfies
the condition (A), then (i,7)-aZInt(A) = (i,7)-pZ Int(A) holds for
every (i,7)-0-Z-open subset A of X.

Proof. Since every (i,j)-a-Z-open set is (i,7)-pre-Z-open, (i,j)-
aZInt(A) C (¢,5)-pZ Int(A). By Theorem 3.26, aZ Int(A) = AN ;-
Int(7;-Cl*(7;-Int(A))). Since A is (i, j)-0-Z-open, (i,7)-aZInt(A) D
AN 7-Int(7;-Int (7;-Cl*(A))) = AN 7;-Int(7;-CI"(A)) = (¢, 7)-pZ Int(A)
by Lemma 3.28 and so (7, 7)-aZ Int(A) D (4, j)-pZ Int(A). Therefore,
(1, 7)-aZ Int(A) = (i, j)-pZ Int(A). O

Definition 3.30. Let (X, 7, 72,Z) be an ideal bitopological space, S a
subset of X and x be a point of X. Then
(i) = is called an (i,7)-a-Z-cluster point of S if V.N.S # 0 for
every V € (i,7)-aZO(X, z).
(ii) the set of all (i,j)-a-Z-cluster points of S is called (i, j)-a-Z-
closure of S and is denoted by (i, 7)-aZ C1(S).

Theorem 3.31. Let A and B be subsets of (X, 11, 72,Z). Then the
following properties hold:
(i) (1,7)-aZCl(A) = {F:ACF and F € (i,j)-aZC(X)}.
(ii) (¢,7)-aZ Cl(A) is the smallest (i, j)-a-Z-closed subset of X con-
taining A.

(iii) A is (4, j)-a-Z-closed if and only if A = (i,7)-aZ C1(A).
(,7) aICl((i,j)—aICl(A) (i,7)-aZ CI(A).
If A C B, then (i,7)-oZ Cl(A) C (i,7)-oZ Cl(B).
(i,7)-aZ Cl{AU B) = (i,7)-aZ Cl(A) U (i,7)-aZ CI(B).
(i,7)-aZCl(AN B) C (i,7)-oZ Cl(A) N (i,7)-oZ Cl(B).

Proof. (i). Suppose that = ¢ (i,7)-aZ CI(A). Then there exists F' €
(i,7)-aZO(X)} such that V.0 S # 0. Since X\V is (i, j)-a-Z-closed
set containing A and = ¢ X\V, we obtain © ¢ N{F : A C F and
F € (i,7)-aZC(X)}. Then there exists F' € (i,7)-aZC(X) such that
A C Fand z ¢ F. Since X\V is (i,7)-a-Z-closed set containing
x, we obtain (X\F)N A = (). This shows that = ¢ (i, j)-oZ CI(A).
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Therefore, we obtain (i,7)-aZCl(A) = N{F : A C F and F € (i,j)-
aZC(X)}.

The other proofs are obvious. O

Theorem 3.32. Let (X, 71,7,Z) be an ideal bitopological space and
AC X. A point z € (i,7)-aZ Cl(A) if and only if UNA # O for every
U € (i,7)-aZO(X, x).

Proof. Suppose that x € (i, j)-oZ Cl(A). We shall show that UNA # ()
for every U € (i,j)-aZO(X, z). Suppose that there exists U € (i, j)-
aZO(X,x) such that UN A = (). Then A C X\U and X\U is (i, j)-a-
Z-closed. since A C X\U, (i,7)-aZ Cl(A) C (i,7)-aZ CI(X\U). Since

€ (i,7)-aZCl(A), we have z € (i,7)-aZ CI(X\U). Since X\U is
(i, j)-a-Z-closed, we have x € X\U; hence x ¢ U, which is a con-
tradicition that x € U. Therefore, U N A # (). Conversely, suppose
that UN A # () for every U € (i,/)-aZO(X,x). We shall show that

€ (i,7)-aZ Cl(A). Suppose that = ¢ (i, j)-aZ C1(A). Then there ex-
ists U € (i,7)-aZO(X, x) such that UN A = ). This is a contradicition
to U N A # (); hence = € (i, j)-oZ CI(A). O

Theorem 3.33. Let (X, 71, 72,Z) be an ideal bitopological space and
A C X. Then the following propeties hold:

(i) (4,4)-aZInt(X\A) = X\(i,7)-aZ CI(A);

(i) (4,4)-aZ Cl(X\A) = X\(¢,7)-aZ Int(A).
Proof. (i). Let x € (i,7)-aZ Cl(A). Since x ¢ (i,7)-aZ Cl(A), there
exists V' € (4,5)-aZO(X,z) such that V N A # (J; hence we obtain
x € (i,7)-aZInt(X\A). This shows that X\(7,7)-aZ Cl(A) C (i,7)-
aZ Int(X\A). Let z € (4, j)-aZ Int(X\A). Since (7, j)-aZ Int(X\A) N
A = (), we obtain z ¢ (i,7)-aZ Cl(A); hence z € X\(4,j)-oZ Cl(A).
Therefore, we obtain (7, j)-aZ Int(X\A) = X\(7, j)-aZ CI(A).
(7). Follows from (7). O

Theorem 3.34. If (X, 7,7, Z) is an ideal bitopological space satisfies
the condition (A), then (i,j)-aZ Cl(A) = AU 7;-Cl(7;-Int*(7;-C1(A)))
holds for every subset A of X.

Proof. The proof follows from the definitions. OJ

Definition 3.35. A subset B, of an ideal bitopological space
(X, 71,79, Z) is said to be an (i,j)-a-Z-neighbourhood of a point x €
X if there ezists an (i, j)-a-L-open set U such that v € U C B,.
Theorem 3.36. A subset of an ideal bitopological space (X, 11, 72,T)
is (i,j)-a-L-open if and only if it is an (i,7)-a-Z-neighbourhood of
each of its points.
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Proof. Let G be an (i, j)-a-Z-open set of X. Then by definition, it is
clear that G is an (i, j)-a-Z-neighbourhood of each of its points, since
for every z € G, x € G C G and G is (i, j)-a-Z-open. Conversely,
suppose G is an (i, j)-a-Z-neighbourhood of each of its points. Then
for each z € G, there exists S, € (7,7)-aZO(X) such that S, C G.
Then G = |J{S, : € G}. Since each S, is (i, j)-a-Z-open, G is
(i, 7)-a-Z-open in (X, 1,72, Z). O

Proposition 3.37. The product of two (i,7)-a-Z-open sets is (i,j)-
a-L-open.

Proof. The proof follows from Lemma 3.3 of [12]. O

4. PAIRWISE a-Z-CONTINUOUS FUNCTIONS

Definition 4.1. A function f : (X, 7,7,Z) — (Y,01,09) is said to
be (i, j)-a-Z-continuous if the inverse image of every o;-open set of Y
is (i,7)-a-Z-open in X, where i # j, i,j=1, 2.

Proposition 4.2. (i) Every (i,j)-a-Z-continuous function is

(1, 7)-semi-Z-continuous but not conversely.

(ii) Ewvery (i,7)-a-Z-continuous function is (i, j)-a-continuous but
not conversely.

(iii) Ewvery (i, j)-a-Z-continuous function is (i, j)-pre-Z-continuous
but not conversely.

(iv) Every (i,7)-a-Z-continuous function is (i, j)-b-Z-continuous
but not conversely.

(v) Every (i,j)-a-Z-continuous function is (i,7)-B-Z-continuous
but not conversely.

Proof. The proof follows from Proposition 3.3 and Example 3.4. [
Theorem 4.3. A function f : (X, 7,72,Z) = (Y,01,09) is (i,7)-a-Z-
continuous if and only if it is (i, j)-semi-Z-continuous and (i, j)-pre-
T-continuous.
Proof. This is an immediate consequence of Lemma 3.8. 0
Theorem 4.4. For a function f : (X,7,7,Z) — (Y,01,02), the
following statements are equivalent:

(i) f is pairwise a-Z-continuous;

(ii) For each point x in X and each o;-open set F' in'Y such that

f(z) € F, there is a (i, j)-a-Z-open set A in X such thatx € A,
flA) C F;
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(iii) The inverse image of each o;-closed set in'Y is (i, j)-a-Z-closed
m X,
(iv) For each subset A of X, f((i,7)-aZ Cl(A)) C 0;-CI(f(A));
(v) For each subset B of Y, (i,7)-aZ CI(f~Y(B)) C f~(0;-Cl(B));
(vi) For each subset C of Y, [fYo;-Int(C)) < (i,7)-
aZ Int(f~1(C)).
(vii) 7-Cl(7;-Int*(7;-C1(f~*(B)))) C f~H(m-CU(B)) for each subset
B ofY.
(vill) f(7-Cl(7;-Int*(7;-C1(A)))) C 7;-C1(f(A)) for each subset A of
X.

Proof. (1) = (i1): Let x € X and F be a oj-open set of ¥ containing
f(x). By (i), f~1(F) is (4,j)-a-Z-open in X. Let A = f~'(F). Then
x € Aand f(A) C F.

(i) = (i): Let F' be o;~openinY and let z € f~*(F). Then f(z) € F.
By (ii), there is an (i, j)-a-Z-open set U, in X such that x € U, and
f(U,) C F. Then z € U, C f~Y(F). Hence f~(F) is (4, j)-a-Z-open
in X.

(1) < (i13): This follows due to the fact that for any subset B of Y,
P N\B) = X\f(B).

(ii7) = (iv): Let A be a subset of X. Since A C f~1(f(A)) we have
A C fHo;-CI(f(A))). Now, (i,7)-aZ CI(f(A)) is oj-closed in Y and
hence f~1(0;-Cl(A)) C f~1(0;-Cl(f(A))), for (i,7)-aZ Cl(A) is the
smallest (7, j)-a-Z-closed set containing A. Then f((i, j)-aZ CI(A)) C
o5-CI(F(A).

(iv) = (ii): Let F be any (i,j)-a-Z-closed subset of Y. Then
F(i.))-aZ CUF1(F))) C (i, ))-orCUF(F(E)) = (i, )-0,-CU(F) =
F. Therefore, (i,7)-aZ CI(f~*(F)) C f~'(F). Consequently, f~1(F)
is (i, j)-a~-Z-closed in X.

(iv) = (v): Let B be any subset of Y.  Now, f((i,7)-
aZCI(f~1(B))) C (i,)-0;-Cl(f(f1(B))) C 0;-C1(B). Consequently,
(5, j)- 0T CU(f A (B)) C f'(0,-CI(B)).

(v) = (iv): Let B = f(A) where A is a subset of X. Then, (i,7)-
6T CI(A) C (i, j)-0Z CI(f(B)) C [~ (0:-CI(B)) = [ or-CI(F(A))).
This shows that f((4,j)-aZ CI(A)) C 0,-C1(f(A)).

(i) = (vi): Let B be a o;-open set in Y. Clearly, f~!(o;-Int(B)
is (i,7)-a-Z-open and we have f~1(o;-Int(B)) C (i,7)-aZ Int(f ' o;-
Int(B)) C (i, j)-aZ Int(f~'B).

(vi) = (i): Let B be a og;-open set in Y. Then o,-Int(B) = B
and f~Y(B)\f ! (o;-Int(B)) C (i,7)-aZInt(f1(B)). Hence we have
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f~YB) = (i, j)-aZ Int(f~*(B)). This shows that f~1(B) is (4, j)-a-Z-
open in X.
(i1i) = (vii): Let B be any subset os Y. Since 7,-Cl(B) is ;-
closed in Y, by (iii), f~!(7-Cl(B)) is a-Z-closed and X\ f~(7;-C1(B))
is a-Z-open. Then X\f'(7-Cl(B)) C 7i-Int(7;-Cl*(7-Int(f (74~
Cl(B))))) = X \7i-Cl(7j-Int* (7,-C1(f~*(r;-C1(B))))). Hence we obtain
7-Cl(7;-Int*(7;-C1(f~1(B)))) C f~*(m-C1(B)).
(vii) = (viii): Let A be any ubset of X. By(iv), we have Cl(7;-
It (7-CI(A)) € 7-Cl(ry-Int*(7-CI( 1 (F(A)))  f~(-CI((A))
and hence f(7;-Cl(7;-Int™(7;-Cl(4)))) C 7-C1(f(A)).
(viii) = (i): Let V be any open set of Y. Then by (v), f(7-Cl(7;-
Wt (r-CI(f ' ("\V))))) © mClf(f (V\V))) C nCIN\V) =
Y\V. Therefore, we have 7;-Cl(7;-Int*(7,-Cl(f~1(Y\V)))) C
“HY\V) € X\f (V). Consequently, we obtain f~*(V) C 7;-Int(7;-
Cl*(r-Int(f~*(V)))). This shows that f~(V) is a-Z-open. Thus, f is
a-Z-continuous. UJ

Corollary 4.5. Let [ : (X, 7,7,Z) = (Y,01,09,Z) be an (i,7)-a-Z-

continuous function, then

(i) f(r;-CI*(U)) C 1;-Cl(f(U)) for every (i,j)-pre-L-open set U
of X,

(ii) 7-CI*(f~Y(V)) C f~1(r;-CU(V)) for every (i, j)-pre-I-open set
VofY.

Proof. (1). Let U be any (4, j)-pre-Z-open set of X, then U C 7;-Int(7;-
CI*(U)). Therefore, by Theorem 4.4, we have f(7;-C1"(U)) C f(7j-
ClI(U)) C f(7-Cl(7j-Int(7;-C1*(U)))) C f(73-Cl(7;-Int*(7;-CL(U)))) C
7-C1(f(U)).

(2). Let V' be any (i,7)-pre-Z-open set of Y. By Theo-
rem 4.4, 7-CI'(f~4(V)) c 7-Cl(f~*(V)) C 7-Cl{f (r5-Int(7;-
CI*(V)))) C 7,-Cl(r;-Int(7,-Cl* (7;-Int (£~ (7;-Int (r;-C1(V))))))) C
Tj—Cl(Tj—Int*<Tj—Cl(f_1(Tj—Int(Tj—Cl((V))))))) C f_l(Tj—Cl<Tj—Int(Tj—
Cl'v)))) € f7H(7;-CLV)). m

Theorem 4.6. Let f : (X, 7,7,Z) = (Y,01,09) be a pairwise a-Z-
continuous function. Then for each subset V of Y, f~(o;-Int(V)) C
7-CI(f~1 (V).

Proof. Let V' be any subset of Y. Then o;-Int(V') is o;-open in Y and
so fY(oi-Int(V)) is (i, j)-a-Z-open in X. Hence f~!(o;-Int(V)) C 7-
Int(75-Cl* (7-Int( f ~*(03-Int(V))))) C 7;-CI*(f~H(V)). O
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Theorem 4.7. Let f: (X, 7,7,Z) = (Y,01,02) be a bijective. Then
[ is pairwise a-Z-continuous if and only if o;-Int(f(U)) C f((4,7)-
aZInt(U)) for each subset U of X.

Proof. Let U be any subset of X. Then by Theorem 4.4, f~!(o;-
Int(f(U))) C (i,5)-aZInt(f~*(f(U))). Since f is bijection, o;-
m(f(U)) = F(F ot (f(O) < f(lj)laTint(T)). Con-
versely, let V be any subset of Y. Then o-Int(f(f~1(V))) C
f((4,5)-aZInt(f~1(V))). Since f is bijection, oi-Int(V) = oy-
Wi(F(F (V) € f(l j)yaZnt(F(V)); hence -} (orint(V) C
(i,7)-aZInt(f~*(V)). Therefore, by Theorem 4.4, f is pairwise a-
Z-continuous. 0J

Theorem 4.8. Let f : (X, 71,79,Z) = (Y,01,02) be a function. If
g (X,m,72,T) = (X X Y,01 X 02) defined by g(x) = (z, f(x)) is a
pairwise a-L-continuous function, then f is pairwise a-L-continuous.
Proof. Let V be a o;-open set of Y. Then f~1(V) = XN fY(V) =

g (X x V). Since g is a pairwise a-Z-continuous function and X x V/
is a 7; X o-open set of X x Y, f~4(V) is a (i, j)-a-Z-open set of X.

Hence f is pairwise a-Z-continuous. 0]
Definition 4.9. A function f : (X, 7,7) — (Y,01,09,7) is said to
be:

(i) pairwise a-Z-open (resp. pairwise semi-L-open [3], pairwise
pre-L-open [6]) if f(U) is a (i,7)-a-L-open (resp. (i,J)-semi-
Z-open, (i,j)-pre-L-open) set of Y for every 1;-open set U of
X.

(i) pairwise a-Z-closed (resp. pairwise semi-Z-closed [3|, pairwise
pre-Z-closed [6]) if f(U) is a (i, 5)-a-Z-closed set of Y for every
T;-closed set U of X.

Theorem 4.10. A function f: (X, 7,7) — (Y,01,09,Z) is (i,])-a-
Z-open if and only if it is (i, j)-semi-Z-open and (i, j)-pre-Z-open.
Proof. This is an immediate consequence of Lemma 3.8. 0
Theorem 4.11. For a function f : (X,7,7) — (Y,01,09,Z), the
following statements are equivalent:

(i) f is pairwise a-Z-open;
(ii) f(m-Int(U)) C (4,4)-aZ Int(f(U)) for each subset U of X;
(iil) 7-Int(f~1(V)) € f1((4,7)-aZ Int(V')) for each subset V of Y.

Proof. (i) = (ii): Let U be any subset of X. Then 7-Int(U) is
a 1;-open set of X. Then f(r-Int(U)) is a (i,7)-a-Z-open set of
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Y. Since f(ri-Int(U)) C f(U), f(r-Int(U)) = (4,7)-oZ Int(f(7;-
Int(U))) C (i,7)-aZInt(f(U)).

(it) = (4ii): Let V be any subset of Y. Then f~!(V) is a sub-
set of X. Hence f(r-Int(f~1(V))) C (4,7)-aZInt(f(f~H(V))) C
(i,7)-aZInt(V)). Then 7-Int(f~(V)) C f~H(f(r-Int(f~1(V)))) C
7, )T (V).

(1ii) = (7): Let U be any 7-open set of X. Then 7,-Int(U) = U and
f(U) is a subset of Y. Now, V = 7;- Int(V) C 7-Int(f71(f(V)))
7 (G, - ZInt( (V). Then (V) C J(F-2((7, ))-aZTnt(F(V))))
(i,7)-aZInt(f(V)) and (4, j)-oZ Int(f(V)) C f(V). Hence f(V) is
(1, 7)-a-Z-open set of Y; hence f is pairwise a-Z-open.

Dmﬂﬁ

Theorem 4.12. Let f : (X,71,7) — (Y,01,02,Z) be a function.
Then f is a pairwise a-Z-closed function if and only if for each subset

V oof X, (i,7)-aZCI(f(V)) C f(r-Cl(V)).

Proof. Let f be a pairwise a-Z-closed function and V' any subset of
X. Then f(V) C f(r-Cl(V)) and f(7-CL(V)) is a (i, j)-a-Z-closed set
of Y. We have (i,7)-oZCI(f(V)) C (i,5)-oZ CI(f(1,-Cl(V))) = f(7:-
C1(V)). Conversely, let V' be a 7;-open set of X. Then f(V) C (4, j)-
aZ Cl(f(V)) C f(m-CL(V)) = f(V); hence f(V) is a (4, j)-a-Z-closed
subset of Y. Therefore, f is a pairwise a-Z-closed function. O

Theorem 4.13. Let f : (X,71,72) — (Y,01,02,Z) be a function.
Then f is a pairwise a-Z-closed function if and only if for each subset
Voof Y, f7H((i, §)-aZ CI(V)) € 7-CI(f~H(V)).

Proof. Let V' be any subset of Y.  Then by Theorem 4.12,
(i,§)-aZCIV) C  f(r-Cl(f~1(V))). Since f is bijection,
ST )-0ZCUV)) = [7H(E)-aZCUf(fTI(V)) C fH(f (7
Cl(f~4(V)))) = 7-CI(f~'(V)). Conversely, let U be any subset of X.
Since f is bijection, (i,7)-aZ CI(f(U)) = f(f~*((z,7)-aZ CI(f(U))) C
f(m-Cl(f~1(f(U)))) = f(7-CI(U)). Therefore, by Theorem 4.12, f is

a pairwise a-Z-closed function. ([l

Theorem 4.14. Let [ : (X, 7, 72) — (Y,01,09,Z) be a pairwise a-
T-open function. If V is a subset of Y and U is a 7;-closed subset of
X containing f~1(V'), then there exists a (i,7)-a-Z-closed set F of Y
containing V' such that f~'(F) C U.

Proof. Let V' be any subset of Y and U a 7-closed subset of X
containing f~1(V), and let F = Y\(f(X\V)). Then f(X\V) C
F(FH(X\V)) € X\V and X\U is a 7;-open set of X. Since f is
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pairwise a-Z-open, f(X\U) is a (4, j)-a-Z-open set of Y. Hence F is
an (i, j)-a-Z-closed set of Y and f~1(F) = f1(Y\(f(X\U)) cU. O

Theorem 4.15. Let f : (X, 7, 72) — (Y,01,09,Z) be a pairwise a-
T-closed function. If V is a subset of Y and U is a open subset of
X containing f~Y(V), then there exists (i,j)-a-Z-open set F of Y
containing V' such that f~*(F) C U.

Proof. The proof is similar to the Theorem 4.14. O

Theorem 4.16. Let f : (X, 71,72) — (Y,01,09,Z) be a pairwise a-
T-open function. Then for each subset V of Y, f=(7;-Cl(7;-Int*(7;-
CI(V))) C -CI(f~H(V).

Proof. Let V be any subset of Y. Then 7,-Cl(f~'(V) is a 7;-closed
set of X. Then by Theorem 4.14, there exists an (i, j)-a-Z-closed set
F of Y containing V such that f~'(F) C 7-Cl(f~}(V). Since Y\F
is (i, j)-a-Z-open, f~H(Y\F) C f~!(7;-Int(7-Cl*(7;-Int(Y'\ F))))) and
X\FUF) € 0\ @Ol e (reCUF))) = X\ /= (-Cl(ry-
Int*(7,-C1(F)))). Thus we obtain that f~!(7-Cl(7;-Int*(r:-C1(V)))) C
7-Cl(7j-Int*(7;-CI(F))) € f~YF) C 7-Cl(f~*(V)). Therefore, we
have f~1(7-Cl(7;-Int*(7;-C1(V'))) C 7-CL(f (V). O

Definition 4.17. A function f : (X, 7,72,Z) = (Y,01,02,J) is said
to be:
(i) pairwise a-(Z,J)-open if f(U) is a (i,7)-a-TJ-open set of Y
for every (i, 7)-a-Z-open set U of X.
(i) pairwise a-(Z, J)-closed if f(U) is a (i, j)-a-T -closed set of Y
for every (i, 7)-a-Z-closed set U of X.

It is clear that every pairwise a-(Z, J)-open (resp. pairwise a-(Z, J)-
closed) function is pairwise a-J-open (resp. pairwise a-J-closed)
function. But the converse is not true in general.

Example 4.18. Let X = {a,b,c} 7 = {0,{a},{b},{a,b}, X},
7o = {0,{a}, X} and T = {0,{a}}. Then the identity function
f:(X,m,m,Z) = (X,71,72,Z) is pairwise a-J-open but not pair-
wise a-(Z,T)-open.

Theorem 4.19. For a function f: (X, 7,7,Z) = (Y,01,02,7), the
following statements are equivalent:

(i) f is pairwise a-(Z, J)-open;
(ii) f((4,7)-aZInt(U)) C (i,7)-aT Int(f(U)) for each subset U of
X;
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(iii) (i,4)-aZInt(f~1(V)) € f~1(4,5)-aT Int(V)) for each subset
V oofY.

Proof. (i) = (4i): Let U be any subset of X. Then (7, j)-aZ Int(U) is a
(1, 7)-a-Z-open set of X. Then f((i,j)-oZInt(U)) is a (i, j)-a-Z-open
set of Y. Since f((7,7)-aZInt(U)) C f(U), f((¢,7)-aZInt(U)) = (i, j)-
aZ Int(f((i,7)-aZInt(U))) C (4,4)-sT Int(f(U)).

(i) = (uii): Let V be any subset of Y.  Then f~(V)
is a subset of X. Hence f((i,7)-aZInt(f~%(V))) < (i,5)-
aJ Int(f(f~1(V))) C (4,7)-aZInt(V)). Then (i, j)-aZ Int(f~*(V)) C
PG )0 Tt (1 (V)))) € £1((0f)-aT It (V).

(13i) = (i): Let U be any (i,j)-a-Z-open set of X. Then (i,
aZInt(U) = U and f(U) is a subset of Y. Now, U = (i,j
aZInt(U) < (i,5)-aZInt(fT'(f(U))) < [f7H((i5)-aT Int(f(U))).
Then f(U) C f(f7((i,j)-od Int(f(U))) C (i,j)-oF Int(f(U)) and
(i,7)-aJ Int(f(U)) C f(U). Hence f(U) is a (i, j)-a-J-closed set of
Y’; hence f is pairwise a-(Z, J)-open. O

Theorem 4.20. Let f: (X, 7, 7,Z) — (Y,01,092,J) be a function.
Then f is a pairwise a-(Z, J)-closed function if and only if for each
subset U of X, (i,7)-aJ CI{(f(U)) C f((i,))-aZ CL(U)).

Proof. Let f be a pairwise a-(Z, J)-closed function and U any sub-
set of X. Then f(U) C f((i,7)-oZClU)) and f((i,7)-oZ Cl(U)) is
a (i,7)-a-J-closed set of Y. We have (i,7)-aJ CI(f(U)) C (4,4)-
aJ CI(f((i,7)-aZ CLU))) = f((3,4)-oZ CI(U)). Conversely, let U be
a (i, j)-a-Z-open set of X. Then f(U) C (i,7)-aJ CI(f(U)) C f((4,7)-
aZCl(U)) = f(U); hence f(U) a-J-closed subset of Y. Therefore, f

is a pairwise a-(Z, J)-closed function. O

Theorem 4.21. Let f : (X, 7,7,Z) — (Y,01,092,J) be a function.
Then f is a pairwise a-(Z,J)-closed function if and only if for each
subset V of Y, f~Y((i,7)-aT CL(V)) C (i,7)-aZ CI(f~H(V)).

Proof. Let V' be any subset of Y. Then by Theorem 4.20, (i,j)-
aJ CIf(f1 (V) € f((4,5)-aZCI(f~1(V))). Since f is bijection,
I3, 5)-aT CU(V)) C (i,§)-aZ CI(f~*(V)). Conversely, let U be any
subset of X. Then f~1((i,7)-aJ CI(f(U))) C (i,7)-aZ CI(f*(f(U))).
Hence (i, 7)-aJ CI(f(U)) C f((i,5)-aZ CI(f~1(f(U)))). Therefore, by
Theorem 4.20 f is a pairwise a-(Z, J)-closed function. O

Theorem 4.22. Let f: (X, 7,72,Z) — (Y, 01,092, J) be a pairwise a-
(Z,J)-open function. If V is a subset of Y and U is a (i, j)-a-Z-closed
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subset of X containing f~'(V'), then there exists (i,j)-a-Z-closed set
F of Y containing V such that f~'(F) C V.

Proof. The proof is similar to the Theorem 4.14. O

Theorem 4.23. Let f : (X, 71,72,Z) — (Y,01,09,T) be a pairwise
a-(Z,J)-closed function. If V is a subset of Y and U is a (i,j)-a-Z-
open subset of X containing f~1(V), then there exists (i,j)-a-J -open
set F' of Y containing V' such that f~'(F) C V.

Proof. The proof is similar to the Theorem 4.14. O

Theorem 4.24. For a bijective function f : (X,7,7,Z) —
(Y, 01,09, T), the following statements are equivalent:

(i) f is pairwise a-(Z, J)-closed;
(ii) f is pairwise a-(Z,J)-open.

Proof. The proof is clear. O

5. PAIRWISE «-Z-IRRESOLUTE FUNCTIONS

Definition 5.1. A function f : (X, 71,7,Z) = (Y,01,09,J) is said
to be (i, j)-a-Z-irresolute if the inverse image of every (i, j)-a-J -open
set of Y is (i,j)-a-Z-open in X, where i # j, i,j=1, 2.

Proposition 5.2. Every pairwise a-Z-irresolute function is pairwise
a-Z-continuous but not conversely.

Proof. Straigtforward. O
Theorem 5.3. Let f : (X, 7,7,Z) — (Y,01,09,T) be a function,
then

(1) f is pairwise a-Z-irresolute;

(2) the inverse image of each (i, j)-a-J -closed subset of Y is (i, j)-
a-L-closed in X ;

(3) for each x € X and each V € STO(Y) containing f(x), there
exists U € aZO(X) containing x such that f(U) C V.

Proof. The proof is obvious from that fact that the arbitrary union of

(1, 7)-a-Z-open subsets is (i, j)-a-Z-open. O
Theorem 5.4. Let f : (X, 7,7,Z) — (Y,01,02,T) be a function,
then

(i) f is pairwise a-Z-irresolute;
(i) (i,5)-aZCI(f~1(V)) C f~1((i,5)-aT CUV)) for each subset V
of Y;
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(iii) f((i,7)-aZCHU) C (i,7)-aT CY(f(U)) for each subset U of X.

Proof. (i) = (i1): Let V be any subset of Y. Then V C (i,j)-
aJ CI(V) and f~Y(V) C f~Y(i,5)-aZCl(V)). Since f is pairwisr
a-Z-irresolute, f~1((i,7)-aJ CI(V)) is a (i,j)-a-Z-closed subset of
X. Hence (i, j)-aZ CI(f~1(V)) C (i,4)-aZ CI(f~1((i, j)-aT CUV))) =
fH(E, )-aT CI(V)).

(i1) = (iti): Let U be any subset of X. Then f(U) C
(i, j)-J CI(f(U)) and (i,j)-aZCIU) C (i,j)-aZCL(f7}(f(V))) C
Y@, 7)-aJ CI(f(U))). This implies that f((i,7)-aZCI(U)) C
P ({0 g)-0T CUFUN)) < (i f)-a CUFD)).

(i) = (i): Let V be a (i,j)a-J-closed subset of Y.
Then f((i,j)aZCUf (V) © (i) aZCUf(F(V)) C (i,))-
aZ CI(V) = V. This implies that (i, j)-aZ CI(f~1(V)) C f~1(f((4, )-
aZ CI(f~(V)))) C f~4(V). Therefore, f~*(V) is a (i, j)-a-Z-closed
subset of X and consequently f is a pairwise a-Z-irresolute func-
tion. O

Theorem 5.5. A function f : (X, 7,7,Z) — (Y,01,09,J) is a
pairwise a-L-irresolute if and only if f~'((i,7)-aJ Int(V)) C (i,7)-
aZInt(f~H(V)) for each subset V of Y.

Proof. Let V be any subset of Y. Then (i, j)-aJ Int(V) C V. Since
f is pairwise a-Z-irresolute, f~1((4,7)-aJ Int(V)) is a (4, j)-a-Z-open
subset of X. Hence f~((i,7)-aJ Int(V)) = (i,7)-aZ Int(f((4, )-
aJ Int(V))) C (i,7)-aZInt(f~1(V)). Conversely, let V be a (i,7)-a-
J-open subset of Y. Then f~(V) = f~Y(4,7)-aJ Int(V)) C (i,7)-
aZTInt(f~Y(V)). Therefore, f~1(V) is a (i, j)-a-Z-open subset of X
and consequently f is a pairwisr a-Z-irresolute function. 0

Corollary 5.6. Let f : (X, 7,72,Z) — (Y,01,02,J) be a function.
Then f is pairwise a-Z-closed and pairwise a-L-irresolute if and only

if f((i,7)-aZCUV)) = (i,5)-aT CI(f(V))) for evey subset V of X.

Definition 5.7. An ideal bitopological space (X, T1,79,Z) is called
pairwise a-L-Hausdorff if for each two distinct points x # y, there
exist disjoint (i, 7)-a-Z-open sets U and V' containing x and y, respec-
tively.

Theorem 5.8. Let f : (X, 7,7,Z) — (Y,01,02,J) be a pairwise
a-Z-irresolute function. If Y is pairwise a-J-Hausdorff, then X is
pairwise a-L-Hausdorff.

Proof. The proof is clear. 0
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Corollary 5.9. Let f : (X, 7,72,Z) — (Y,01,02,T) be a function.
Then f is pairwise a-L-open and pairwise a-L-irresolute if and only if
({1, )-0T CUVY)) = (i, )-aL CUS (V) for cvey subset V. of
Y.

Definition 5.10. A function f: (X, 7,72,Z) = (Y,01,02,J) is said
to be pairwise a-I-homeomorphism if f and f~' are pairwise o-I-
wrresolute.

Theorem 5.11. Let f : (X, 71,72,Z) — (Y,01,02,J) be a bijection.
Then the following statements are equivalent:

(i) f is pairwise a-Z-homeomorphism;
(ii) f! is pairwise a-I-homeomorphism;
(iii) f and f=' are pairwise a-(Z,J)-open (pairwise a-(J,T)-
closed);
(1) f is pairwise a-Z-irresolute and pairwise a-(Z, J)-open (pair-
wise a-(J,T)-closed);
(2) f((i,4)-aZCUV)) = (i,j)-aT CI(f(V)) for each subset V of

X;
(3) g{((i,j)-aIInt(V)) = (i,7)-aJ Int(f(V)) for each subset V of
(4) f_’l((i,j)-ajlnt(V)) = (i,7)-aZInt(f~(V)) for each subset
VoofY;
(5) (z}{)—aICl(f_l(V)) = [7Y(i,5)-aT CIV)) for each subset V

Proof. (1) = (2): It follows immediately from the definition of a pair-
wise a-Z-homeomorphism.

(2) = (3) = (4): It follows from Theorem 4.24.

(4) = (5): Tt follows from Theorem 4.21 and Corollary 5.6.

(5) = (6): Let U be a subset of X. Then by Theorem 3.33, f((i,7)-
aZlnt(U)) = X\ f((i,))-aZ CUUX\U)) = X\(i,j)-oZ CI(f(X\U)) =
(i, j)-oZ Tnt(£(U)).

(6) = (7): Let V be a subset of Y. Then f((4,)-aZInt(f~*(V))) =
(i, 7)-aZInt(f(f71(V))) = (i, j)-oZInt(f(V)). Hence f='(f((i,
aZInt(f~HV)) = (@, 5)-aZInt(V)).  Therefore, f((i,
aJ Int(V)) = (4,7)-aZ Int(f~1(V)).

(7) = (8): Let V be a subset of Y. Then by Theorem 3.33,
(i,5)-aZ CI(f1(V)) = X\(f7'((i,j)-aT Int(Y\V))) = X\((i,)-
aZInt(f~H((X\V)))) = f71((i, j)-aZ CL(V)).

(8) = (1): It follows from Theorem 4.21 and Corollary 5.9. O
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