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UNIFIED STUDY OF CERTAIN GENERALIZATIONS
OF g-CONTINUITY FOR MULTIFUNCTIONS

TAKASHI NOIRI AND VALERIU POPA

Abstract. In this paper, by using gm-closed sets [32], we obtain
the unified definitions and properties of g-continuity, gs-continuity, gp-
continuity, αg-continuity, γg-continuity and gsp-continuity for multi-
functions.

Dedicated by the first author to Professor Valeriu Popa on the
Occasion of His 80th Birthday

1. Introduction

The concept of generalized closed (briefly g-closed) sets in topolog-
ical spaces was introduced by Levine [25] in 1970. These sets also
considered by Dunham [18] and Dunham and Levine [19]. In 1981,
Munshy and Bassan [29] introduced the notion of generalized continu-
ous (briefly g-continuous) functions. The notion of g-continuity is also
studied in [10], [11], [13] and other papers. The notions of generalized
semi-closed sets and generalized semi-continuity are introduced and
studied in [15].
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The notions of generalized preclosed sets and generalized precon-
tinuity are introduced and investigated in [6]. The notions of α-
generalized closed sets and α-generalized continuity are studied in [16].
The notions of generalized semi-preclosed sets and gsp-continuity are
introduced in [17]. The notions of γg-closed sets and γg-continuity
[21] are introduced and investigated. Quite recently, in [3], [12] and
[22] two forms of g-continuity for multifunctions are introduced.

Recently, the present authors [42], [44] have introduced the notions
of m-structures, m-spaces and m-continuity. In [32], the first author
introduced the notion of generalized m-closed (briefly gm-closed) sets
and tried to unify certain types of modifications of g-closed sets such
as stated above. In this paper, by using gm-closed sets, we introduce
the unified definitions of g-continuity, gs-continuity, gp-continuity, αg-
continuity, γg-continuity and gsp-continuity for multifunctions and
obtain several unified properties.

2. Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of
A and the interior of A are denoted by Cl(A) and Int(A), respectively.
We recall some generalized open sets in topological spaces.

Definition 2.1. Let (X, τ) be a topological space. A subset A of X
is said to be

(1) α-open [31] if A ⊂ Int(Cl(Int(A))),
(2) semi-open [24] if A ⊂ Cl(Int(A)),
(3) preopen [27] if A ⊂ Int(Cl(A)),
(4) β-open [1] or semi-preopen [4] if A ⊂ Cl(Int(Cl(A))),
(5) γ-open [21] or b-open [5] if A ⊂ Int(Cl(A)) ∪ Cl(Int(A)).

The family of all α-open (resp. semi-open, preopen, β-open, γ-open)
sets in (X, τ) is denoted by α(X) (resp. SO(X), PO(X), β(X), γ(X)).

Definition 2.2. Let (X, τ) be a topological space. A subset A of X is
said to be α-closed [28] (resp. semi-closed [14], preclosed [27], β-closed
[1] or semi-preclosed [4], γ-closed [21] or b-closed [5]) if the complement
of A is α-open (resp. semi-open, preopen, β-open, γ-open).

Definition 2.3. Let (X, τ) be a topological space and A a subset of X.
The intersection of all α-closed (resp. semi-closed, preclosed, β-closed,
γ-closed) sets of X containing A is called the α-closure [28] (resp.
semi-closure [14], preclosure [20], β-closure [2] or semi-preclosure [4],
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γ-closure [21] or b-closure [5]) of A and is denoted by αCl(A) (resp.
sCl(A), pCl(A), βCl(A) or spCl(A)), Clγ(A) or bCl(A)).

Definition 2.4. Let (X, τ) be a topological space and A a subset
of X. The union of all α-open (resp. semi-open, preopen, β-open,
γ-open) sets of X contained in A is called the α-interior [28] (resp.
semi-interior [14], preinterior [20], β-interior [2] or semi-preinterior
[4], γ-interior [21] or b-interior [5]) of A and is denoted by αInt(A)
(resp. sInt(A), pInt(A), βInt(A) or spInt(A)), Intγ(A) or bInt(A)).

A point x ∈ X is called a θ-cluster point of a subset A of X [46]
if Cl(V ) ∩ A 6= ∅ for every open set V containing x. The set of
all θ-cluster points of A is called the θ-closure of A and is denoted
by Clθ(A). If A = Clθ(A), then A is said to be θ-closed [46]. The
complement of a θ-closed set is said to be θ-open. The union of
all θ-open sets contained in A is called the θ-interior of A and is
denoted by Intθ(A). It is shown in [46] that Clθ(V ) = Cl(V ) for
every open set V of X and Clθ(A) is closed in X for each subset A of X.

Throughout the present paper, (X, τ) and (Y, σ) (or simply X and
Y ) always denote topological spaces and F : (X, τ)→ (Y, σ) (or simply
F : X → Y ) presents a multivalued function. For a multifunction
F : X → Y , we shall denote the upper and lower inverse of a subset
B of a space Y by F+(B) and F−(B), respectively, that is,

F+(B) = {x ∈ X : F (x) ⊂ B } and F−(B) = {x ∈ X :
F (x) ∩B 6= ∅ }.

Definition 2.5. A multifunction F : (X, τ)→ (Y, σ) is said to be
(1) upper continuous (resp. upper quasi-continuous or upper semi-

continuous [38], [39] upper precontinuous [43], upper α-continuous [30],
upper β-continuous [41]) at a point x ∈ X if for each open set V con-
taining F (x), there exists an open (resp. semi-open, preopen, α-open,
β-open) set U ⊂ X containing x such that F (U) ⊂ V ,

(2) lower continuous (resp. lower quasi-continuous or lower semi-
continuous [38], [39] lower precontinuous [43], lower α-continuous [30],
lower β-continuous [41]) at a point x ∈ X if for each open set V of
Y meeting F (x), there exists an open (resp. semi-open, preopen, α-
open, β-open) set U ⊂ X containing x such that F (u) ∩ V 6= ∅ for
each u ∈ U ,

(3) upper (lower) continuous (resp. upper (lower) quasi-continuous
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or semi-continuous, upper (lower) precontinuous, upper(lower) α-
continuous, upper (lower) β-continuous) in X if it has this property
at every point of X.

3. m-structures and m-continuity for multifunctions

Definition 3.1. Let X be a nonempty set and P(X) the power set
of X. A subfamily mX of P(X) is called a minimal structure (briefly
m-structure) on X [42], [44] if ∅ ∈ mX and X ∈ mX .

By (X,mX), we denote a nonempty set X with an m-structure mX

on X and call it an m-space. Each member of mX is said to be mX-
open and the complement of an mX-open set is said to be mX-closed.

Remark 3.1. Let (X, τ) be a topological space. The families τ ,
SO(X), PO(X), α(X), β(X), and γ(X) are all m-structures on X.

Definition 3.2. Let X be a nonempty set and mX an m-structure on
X. For a subset A of X, the mX-closure of A and the mX-interior of
A are defined in [26] as follows:

(1) mCl(A) = ∩{F : A ⊂ F,X − F ∈ mX},
(2) mInt(A) = ∪{U : U ⊂ A,U ∈ mX}.

Remark 3.2. Let (X, τ) be a topological space and A a subset of X.
If mX = τ (resp. SO(X), PO(X), α(X), β(X), γ(X)), then we have

(1) mCl(A) = Cl(A) (resp. sCl(A), pCl(A), αCl(A), βCl(A),
Clγ(A)),

(2) mInt(A) = Int(A) (resp. sInt(A), pInt(A), αInt(A), βInt(A),
Intγ(A)).

Lemma 3.1. (Maki et al. [26]). Let X be a nonempty set and mX

a minimal structure on X. For subsets A and B of X, the following
properties hold:

(1) mCl(X −A) = X −mInt(A) and mInt(X −A) = X −mCl(A),
(2) If (X − A) ∈ mX , then mCl(A) = A and if A ∈ mX , then

mInt(A) = A,
(3) mCl(∅) = ∅, mCl(X) = X, mInt(∅) = ∅ and mInt(X) = X,
(4) If A ⊂ B, then mCl(A) ⊂ mCl(B) and mInt(A) ⊂ mInt(B),
(5) A ⊂ mCl(A) and mInt(A) ⊂ A,
(6) mCl(mCl(A)) = mCl(A) and mInt(mInt(A)) = mInt(A).

Lemma 3.2. (Popa and Noiri [42]). Let (X,mX) be an m-space and
A a subset of X. Then x ∈ mCl(A) if and only if U ∩A 6= ∅ for every
U ∈ mX containing x.
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Definition 3.3. An m-structure mX on a nonempty set X is said to
have property B [26] if the union of any family of subsets belong to
mX belongs to mX .

Remark 3.3. If (X, τ) is a topological space, then SO(X), PO(X),
α(X), β(X) and γ(X) have property B,

Lemma 3.3. (Popa and Noiri [42]). Let X be a nonempty set and mX

an m-structure on X satisfying property B. For a subset A of X, the
following properties hold:

(1) A ∈ mX if and only if mInt(A) = A,
(2) A is mX-closed if and only if mCl(A) = A,
(3) mInt(A) ∈ mX and mCl(A) is mX-closed.

Definition 3.4. Let (X,mX) be an m-space and and (Y, σ) be a topo-
logical space. A multifunction F : (X,mX)→ (Y, σ) is said to be

(1) upper m-continuous if for each x ∈ X and each V ∈ σ containing
F (x), there exists U ∈ mX containing x such that F (U) ⊂ V ,

(2) lower m-continuous if for each x ∈ X and each V ∈ σ such that
F (x)∩V 6= ∅, there exists U ∈ mX containing x such that F (u)∩V 6= ∅
for each u ∈ U ,

(3) upper/lower m-continuous if it has this property at each point
x ∈ X.

Theorem 3.1. For a multifunction F : (X,mX)→ (Y, σ), the follow-
ing properties are equivalent:

(1) F is upper m-continuous;
(2) F+(V ) = mInt(F+(V )) for every open set V of Y ;
(3) F−(K) = mCl(F−(K)) for every closed set K of Y ;
(4) mCl(F−(B)) ⊂ F−(Cl(B)) for every subset B of Y;
(5) F+(Int(B)) ⊂ mInt(F+(B)) for every subset B of Y.

Proof. The proof follows from Theorem 3.1 of [34] and Lemma 4.1
of [45].

Corollary 3.1. For a multifunction F : (X,mX)→ (Y, σ), where mX

has property B, the following properties are equivalent:
(1) F is upper m-continuous;
(2) F+(V ) is mX-open for every open set V of Y;
(3) F−(K) is mX-closed for every closed set K of Y.

Proof. The proof follows from Theorem 3.1 and Lemma 3.3.

Theorem 3.2. For a multifunction F : (X,mX)→ (Y, σ), the follow-
ing properties are equivalent:
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(1) F is lower m-continuous;
(2) F−(V ) = mInt(F−(V )) for every open set V of Y;
(3) F+(K) = mCl(F+(K)) for every closed set K of Y;
(4) mCl(F+(B)) ⊂ F+(Cl(B)) for every subset B of Y;
(5) F (mCl(A)) ⊂ Cl(F (A)) for every subset A of X;
(6) F−(Int(B)) ⊂ mInt(F−(B)) for every subset B of Y.

Proof. The proof follows from Theorem 3.2 of [34] and Lemma 4.1
of [45].

Corollary 3.2. For a multifunction F : (X,mX)→ (Y, σ), where mX

has property B, the following properties are equivalent:
(1) F is lower m-continuous;
(2) F−(V ) is mX-open for every open set V of Y;
(3) F+(K) is mX-closed for every closed set K of Y.

Proof. The proof follows from Theorem 3.2 and Lemma 3.3.

4. m-continuity and gm-continuity for multifunctions

Definition 4.1. Let (X, τ) be a topological space. A subset A of X
is said to be

(1) g-closed [25] if Cl(A) ⊂ U whenever A ⊂ U and U ∈ τ ,
(2) αg-closed [16] if αCl(A) ⊂ U whenever A ⊂ U and U ∈ τ ,
(3) gs-closed [15] if sCl(A) ⊂ U whenever A ⊂ U and U ∈ τ ,
(4) gp-closed [6], [33] if pCl(A) ⊂ U whenever A ⊂ U and U ∈ τ ,
(5) gsp-closed [17] if spCl(A) ⊂ U whenever A ⊂ U and U ∈ τ ,
(6) γg-closed [21] or gb-closed if Clγ(A) ⊂ U whenever A ⊂ U and

U ∈ τ .

Definition 4.2. A subset A of a topological space is said to be g-
open (resp. gs-open, gp-open, αg-open, gsp-open, γg-open) if X−A is
g-closed (resp. gs-closed, gp-closed αg-closed, gsp-closed, γg-closed).

The family of all g-open (resp. gs-open, gp-open, αg-open, gsp-
open, γg-open) sets of X is denoted by GO(X) (resp. GSO(X),
GPO(X), αGO(X), GSPO(X), γGO(X)).

Definition 4.3. Let (X, τ) be a topological space and A a subset of X.
The intersection of all g-closed (resp. αg-closed, gs-closed, gp-closed,
gsp-closed, γg-closed) sets of X containing A is called the g-closure [18]
(resp. αg-closure, gs-closure, gp-closure, gsp-closure, γg-closure) of A
and is denoted by Clg(A) (resp. αClg(A), sClg(A), pClg(A), spClg(A),
γClg(A)).
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Definition 4.4. Let (X, τ) be a topological space and A a subset of
X. The union of all g-open (resp. αg-open, gs-open, gp-open, gsp-
open, γg-open) sets of X contained in A is called the g-interior [13]
(resp. αg-interior, gs-interior, gp-interior, gsp-interior, γg-interior)
of A and is denoted by Intg(A) (resp. αIntg(A)), sIntg(A), pIntg(A),
spIntg(A), γIntg(A)).

Remark 4.1. Let (X, τ) be a topological space and A a subset of X.
(1) Then, GO(X), GSO(X), GPO(X), αGO(X), GSPO(X) and

γGO(X) are all m-structures on X. Hence, if mX = GO(X) (resp.
αGO(X), GSO(X), GPO(X), GSPO(X), γGO(X)), then we have

(i) mClg(A) = Clg(A) (resp. αClg(A), sClg(A), pClg(A), spClg(A)),
γClg(A)),

(ii) mIntg(A) = Intg(A) (resp. αIntg(A)), sIntg(A), pIntg(A),
spIntg(A), γIntg(A)).

(2) If mX = GO(X), then by Lemma 3.1 we obtain the results es-
tablished in Theorem 2.1 (3), (5) and Theorem 2.8 (2), (3), (5), (6),
(7) in [13]. By Lemma 3.2, we obtain the result established in Theo-
rem 2.1 (4) in [13]. By Lemma 3.3, we obtain Lemma 3.1 of [13].

(3) The m-structures GO(X), GSO(X), GPO(X), αGO(X),
GSPO(X) and γGO(X) do not have, in general, property B.

Definition 4.5. Let (X, τ) be a topological space and mX an m-
structure on X. A subset A of X is said to be generalized m-closed
(briefly gm-closed) [32] if mCl(A) ⊂ U whenever A ⊂ U and U ∈ τ .

The complement of a gm-closed set is said to be gm-open. The fam-
ily of all gm-open sets is denoted by GMO(X). Obviously, GMO(X)
is an m-structure on X and is called a gm-structure on X.

Remark 4.2. Let (X, τ) be a topological space and mX an m-
structure on X. We put mX = τ (resp. SO(X), PO(X), α(X), β(X),
γ(X)). Then, a gm-closed set is a g-closed (resp. gs-closed, gp-closed,
αg-closed, gsp-closed, γg-closed) set and GMO(X) = GO(X) (resp.
GSO(X), GPO(X), αGO(X), GSPO(X), γGO(X)).

Definition 4.6. A multifunction F : (X, τ)→ (Y, σ) is said to be
(1) upper generalized continuous (briefly upper g-continuoous) [3] if

F+(K) is g-closed in X for every closed set K of Y ,
(2) lower generalized continuous (briefly lower g-continuous) [3] if

F−(K) is g-closed in X for every closed set K of Y .

Definition 4.7. Let (X, τ) be a topological space and GMO(X) a
gm-structure on X. A multifunction F : (X, τ) → (Y, σ) is said
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to be upper/lower gm-continuous at a point x ∈ X (resp. on X) if
F : (X,GMO(X)) → (Y, σ) is upper/lower m-continuous at x ∈ X
(resp. on X).

Remark 4.3. By Definition 4.7, for a multifunction F : (X, τ) →
(Y, σ), we have

(1) F is upper gm-continuous at x ∈ X if for each V ∈ σ containing
F (x), there exists a gm-open set U containing x such that F (U) ⊂ V ,

(2) F is lower gm-continuous at x ∈ X if for each V ∈ σ such that
F (x) ∩ V 6= ∅, there exists a gm-open set U containing x such that
F (u) ∩ V 6= ∅ for each u ∈ U .

By Definition 4.7, Remark 4.3, Theorems 3.1 and 3.2, Corollaries
3.1 and 3.2, we obtain the following theorems:

Theorem 4.1. For a multifunction F : (X, τ)→ (Y, σ), the following
properties are equivalent:

(1) F is upper gm-continuous;
(2) F+(V ) = mIntg(F

+(V )) for every open set V of Y ;
(3) F−(K) = mClg(F

−(K)) for every closed set K of Y ;
(4) mClg(F

−(B)) ⊂ F−(Cl(B)) for every subset B of Y;
(5) F+(Int(B)) ⊂ mIntg(F

+(B)) for every subset B of Y.

Corollary 4.1. Let (X, τ) be a topological space and mX an m-
structure on X such that GMO(X) has property B. Then, for a mul-
tifunction F : (X, τ)→ (Y, σ), the following properties are equivalent:

(1) F is upper gm-continuous;
(2) F+(V ) is gm-open for every open set V of Y;
(3) F−(K) is gm-closed for every closed set K of Y.

Theorem 4.2. For a multifunction F : (X, τ)→ (Y, σ), the following
properties are equivalent:

(1) F is lower gm-continuous;
(2) F−(V ) = mIntg(F

−(V )) for every open set V of Y;
(3) F+(K) = mClg(F

+(K)) for every closed set K of Y;
(4) mClg(F

+(B)) ⊂ F+(Cl(B)) for every subset B of Y;
(5) F (mClg(A)) ⊂ Cl(F (A)) for every subset A of X;
(6) F−(Int(B)) ⊂ mIntg(F

−(B)) for every subset B of Y.

Corollary 4.2. Let (X, τ) be a topological space and mX an m-
structure on X such that GMO(X) has property B. Then, for a mul-
tifunction F : (X, τ)→ (Y, σ), the following properties are equivalent:

(1) F is lower gm-continuous;
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(2) F−(V ) is gm-open for every open set V of Y;
(3) F+(K) is gm-closed for every closed set K of Y.

Remark 4.4. (1) Every upper/lower m-continuous multifunction is
obviously upper/lower gm-continuous. However, by Example 1 of [3],
the converse is not true.

(2) If mX = τ (resp. SO(X), PO(X), αO(X), BO(X), SPO(X))
and F is upper/lower gm-continuous, then F is upper/lower g-
continuous (resp. gs-continuous, gp-continuous, αg-continuous, gb-
continuous, gsp-continuous).

5. Some properties of gm-continuity

In this section, useing gm-open sets and gm-closed sets we define
the notions of gm-compact spaces and gm-connected spaces and obtain
their preservation theorems.

Definition 5.1. A subset B of a topological space (Y, σ) is said to be
(1) α-regular [23] if for each b ∈ B and each open set V of Y

containing b, there exists an open set G of Y such that b ∈ G ⊂
Cl(G) ⊂ V ,

(2) α-paracompact [47] if every σ-open cover of B has a σ-open
refinement which covers B and is locally finite for each point of Y .

For a multifunction F : X → Y , a multifunction Cl(F ) : X → Y
is defined in [8] as follows: Cl(F )(x) = Cl(F (x)) for each x ∈ X.
Similarly, sCl(F ), pCl(F ), αCl(F ), bCl(F ) and spCl(F ) are defined.
The following theorems are proved in [36].

Theorem 5.1. Let F : (X,mX)→ (Y, σ) be a multifunction such that
F (x) is α-regular and α-paracompact for each x ∈ X. Then F is upper
m-continuous if and only if G(F) is upper m-continuous, where G(F)
denotes Cl(F ), pCl(F ), sCl(F ), αCl(F ), bCl(F ) or spCl(F ).

Theorem 5.2. A multifunction F : (X,mX) → (Y, σ) is lower m-
continuous if and only if G(F) is lower m-continuous, where G(F)
denotes Cl(F ), pCl(F ), sCl(F ), αCl(F ), bCl(F ) or spCl(F ).

Corollary 5.1. Let F : (X,mX) → (Y, σ) be a multifunction such
that F (x) is α-regular and α-paracompact for each x ∈ X and mX a
minimal structure on X. Then F is upper gm-continuous if and only
if G(F) is upper gm-continuous, where G(F) denotes Cl(F ), pCl(F ),
sCl(F ), αCl(F ), bCl(F ) or spCl(F ).

Proof. The proof follows from Definition 4.7 and Theorem 5.1.
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Corollary 5.2. A multifunction F : (X,mX) → (Y, σ), where mX

is an m-structure on X, is lower gm-continuous if and only if G(F)
is lower gm-continuous, where G(F) denotes Cl(F ), pCl(F ), sCl(F ),
αCl(F ), bCl(F ) or spCl(F ).

Proof. The proof follows from Definition 4.7 and Theorem 5.2.

The following theorems are proved in [37].

Theorem 5.3. Let (Y, σ) be a regular space. For a multifunction
F : (X,mX)→ (Y, σ), the following properties are equivalent:

(1) F is upper m-continuous;
(2) F−(Clθ(B)) = mCl(F−(Clθ(B))) for every subset B of Y;
(3) F−(K) = mCl(F−(K)) for every θ-closed set K of Y;
(4) F+(V ) = mInt(F+(V )) for every θ-open set V of Y.

Theorem 5.4. Let (Y, σ) be a regular space. For a multifunction
F : (X,mX)→ (Y, σ), the following properties are equivalent:

(1) F is lower m-continuous;
(2) F+(Clθ(B)) = mCl(F+(Clθ(B))) for every subset B of Y;
(3) F+(K) = mCl(F+(K)) for every θ-closed set K of Y;
(4) F−(V ) = mInt(F−(V )) for every θ-open set V of Y.

Corollary 5.3. Let (Y, σ) be a regular space and mX have property
B. Then for a multifunction F : (X,mX) → (Y, σ), the following
properties are equivalent:

(1) F is upper m-continuous;
(2) F−(Clθ(B)) is mX-closed for every subset B of Y;
(3) F−(K) is mX-closed for every θ-closed set K of Y;
(4) F+(V ) is mX-open for every θ-open set V of Y.

Corollary 5.4. Let (Y, σ) be a regular space and mX have property
(B). Then for a multifunction F : (X,mX) → (Y, σ), the following
properties are equivalent:

(1) F is lower m-continuous;
(2) F+(Clθ(B)) is mX-closed for every subset B of Y;
(3) F+(K) is mX-closed for every θ-closed set K of Y;
(4) F−(V ) is mX-open for every θ-open set V of Y.

By Definition 4.7, Theorems 5.3 and 5.4, and Corollaries 5.3 and
5.4 we have the following theorems and corollaries:

Theorem 5.5. Let (Y, σ) be a regular space and mX an m-structure
on (X, τ). For a multifunction F : (X, τ) → (Y, σ), the following
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properties are equivalent:
(1) F is upper gm-continuous;
(2) F−(Clθ(B)) = mClg(F

−(Clθ(B))) for every subset B of Y;
(3) F−(K) = mClg(F

−(K)) for every θ-closed set K of Y;
(4) F+(V ) = mIntg(F

+(V )) for every θ-open set V of Y.

Theorem 5.6. Let (Y, σ) be a regular space and mX an m-structure
on (X, τ). For a multifunction F : (X, τ) → (Y, σ), the following
properties are equivalent:

(1) F is lower gm-continuous;
(2) F+(Clθ(B)) = mClg(F

+(Clθ(B))) for every subset B of Y;
(3) F+(K) = mClg(F

+(K)) for every θ-closed set K of Y;
(4) F−(V ) = mIntg(F

−(V )) for every θ-open set V of Y.

Corollary 5.5. Let (Y, σ) be a regular space and mX an m-structure
on (X, τ) such that GMO(X) has property B. Then for a multifunction
F : (X, τ)→ (Y, σ), the following properties are equivalent:

(1) F is upper gm-continuous;
(2) F−(Clθ(B)) is gm-closed for every subset B of Y;
(3) F−(K) is gm-closed for every θ-closed set K of Y;
(4) F+(V ) is gm-open for every θ-open set V of Y.

Corollary 5.6. Let (Y, σ) be a regular space and mX an m-structure
on (X, τ) such that GMO(X) has property B. Then for a multifunction
F : (X, τ)→ (Y, σ), the following properties are equivalent:

(1) F is lower gm-continuous;
(2) F+(Clθ(B)) is gm-closed for every subset B of Y;
(3) F+(K) is gm-closed for every θ-closed set K of Y;
(4) F−(V ) is gm-open for every θ-open set V of Y.

Definition 5.2. An m-space (X,mX) is said to be m-compact [44] if
every cover of X by sets of mX has a finite subcover.

A subset K of an m-space (X,mX) is said to be m-compact [44] if
every cover of K by sets of mX has a finite subcover.

Remark 5.1. (1) If (X, τ) is a topological space and (X,GMO(X))
is m-compact, then (X, τ) is said to be gm-compact. A subset K of
X is said to be gm-compact if every cover of K by gm-open sets of X
has a finite subcover.

(2) If mX = τ (resp. SO(X), PO(X), α(X)), then we obtain the
definition of GO-compactness [7] (resp. GSO-compactness [15], GPO-
compactness [6], αGO-compactness [16]).
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Theorem 5.7. Let F : (X,mX) → (Y, σ) be upper m-continuous
and F(x) compact for each x ∈ X. If K is m-compact, then F(K) is
compact.

Proof. The proof follows from Theorem 4 of [34].

Theorem 5.8. Let F : (X, τ) → (Y, σ) be a multifunction and mX

an m-structure on X. If F : (X, τ) → (Y, σ) is upper gm-continuous,
F(x) is compact for each x ∈ X and K is a gm-compact set of X, then
F(K) is compact.

Proof. The proof follows from Definition 4.7 and Theorem 5.7.

Corollary 5.7. If F : (X, τ)→ (Y, σ) is an upper g-continuous surjec-
tion such that F(x) is compact for each x ∈ X and X is GO-compact,
then Y is compact.

Remark 5.2. This is a corrected form of Theorem 13 of [3].

Definition 5.3. An m-space (X,mX) is said to be m-connected [44]
if X cannot be written as the union of two nonempty disjoint m-open
sets.

Remark 5.3. Let (X, τ) be a topological space and mX an m-
structure on X, then

(1) (X, τ) is said to be gm-connected if X cannot be written as the
union of two nonempty disjoint gm-open sets.

(2) If mX = τ (resp. α(X)), then by Definition 5.3 we obtain the
definition of GO-connected spaces [7] (resp. αGO-connected spaces
[16]).

Theorem 5.9. Let (X,mX) be an m-space, where mX has property B.
If F : (X,mX) → (Y, σ) is an upper/lower m-continuous surjection,
F(x) is connected for each x ∈ X and (X,mX) is m-connected, then
(Y, σ) is connected.

Proof. The proof follows from Theorem 5.1 of [34].

Theorem 5.10. Let F : (X, τ) → (Y, σ) be a multifunction and
mX an m-structure on X such that GMO(X) has property B. If
F : (X, τ) → (Y, σ) is an upper/lower gm-continuous surjective mul-
tifunction such that F(x) is connected for each x ∈ X and (X, τ) is
gm-connected, then (Y, σ) is connected.

Proof. The proof follows from Definition 4.7 and Theorem 5.3.
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Corollary 5.8. Let F : (X, τ) → (Y, σ) is an upper/lower g-
continuous surjection such that F(x) is connected for each x ∈ X and
(X, τ) is g-connected, then (Y, σ) is connected.

Remark 5.4. This is a corrected form of Theorem 14 of [3].

Definition 5.4. For a multifunction F : (X,mX)→ (Y, σ), the graph
G(F ) = {(x, F (x)) : x ∈ X} is said to be strongly m-closed [43] if for
each (x, y) ∈ (X × Y ) − G(F ), there exist U ∈ mX containing x and
an open set V of Y containing y such that [U × Cl(V )] ∩G(F ) = ∅.
Remark 5.5. Let (X, τ) be a topological space and mX an m-
structure on X. A multifunction F : (X, τ) → (Y, σ) is said to have
a strongly gm-closed graph if for each (x, y) ∈ (X × Y )−G(F ), there
exist a gm-open set containing x and an open set V of Y containing
y such that [U × Cl(V )] ∩G(F ) = ∅.
Lemma 5.1. (Popa and Noiri [43]). A multifunction F : (X,mX)→
(Y, σ) has a strongly m-closed graph if and only if for each (x, y) ∈
(X × Y )−G(F ), there exist U ∈ mX containing x and an open set V
of Y containing y such that F (U) ∩ Cl(V ) = ∅.
Theorem 5.11. Let (Y, σ) be a regular space. If F : (X,mX)→ (Y, σ)
is an upper m-continuous multifunction such that F(x) is closed in Y
for each x ∈ X, then G(F) is strongly m-closed.

Proof. Let (x, y) ∈ (X × Y )−G(F ), then y ∈ Y \ F (x). Since Y is
regular, there exist disjoint open sets V1 and V2 such that F (x) ⊂ V1
and y ∈ V2. Moreover, there exists an open set V such that y ∈
V ⊂ Cl(V ) ⊂ V2. Since F is upper m-continuous and Y \ Cl(V ) is an
open set containing F (x), there exists U ∈ mX containing x such that
F (U) ⊂ Y \ Cl(V ). Therefore, we have F (U) ∩ Cl(V ) = ∅ and hence
by Lemma 5.1 G(F ) is strongly m-closed.

Theorem 5.12. Let (Y, σ) be a regular space and mX an m-structure
on X. If F : (X, τ)→ (Y, σ) is an upper gm-continuous multifunction
such that F(x) is closed in Y for each x ∈ X, then G(F) is strongly
gm-closed.

Proof. The proof follows from Theorem 5.11 and Definition 4.7.

Remark 5.6. Let (Y, σ) be a regular space and F : (X, τ)→ (Y, σ) a
multifunction such that F (x) is closed in Y for each x ∈ X. If F is up-
per g-continuous (resp. upper gs-continuous, upper gp-continuous, up-
per αg-continuous, upper gb-continuous, upper gsp-continuous), then
G(F ) is strongly g-closed (resp. strongly gs-closed, strongly gp-closed,
strongly αg-closed, strongly gb-closed, strongly gsp-closed).
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6. Separation axioms and gm-continuity

Definition 6.1. An m-space (X,mX) is said to be m-T2 [44] if for
each distinct points x, y ∈ X, there exist U, V ∈ mX containing x, y,
respectively, such that U ∩ V = ∅.

Remark 6.1. Let (X, τ) be a topological space and mX an m-
structure on X.

(1) Then (X, τ) is said to be gm-T2 if for each distinct points
x, y ∈ X, there exist gm-open sets U, V containing x, y, respectively,
such that U ∩ V = ∅.

(2) If mX = τ , then X is g-T2 [9].

Definition 6.2. A multifunction F : (X, τ) → (Y, σ) is said to be
injective if for each points x, y ∈ X, x 6= y implies that F (x)∩F (y) =
∅.

Theorem 6.1. If F : (X,mX) → (Y, σ) is an upper m-continuous
injective multifunction such that F(x) is compact for each x ∈ X and
(Y, σ) is Hausdorff, then (X,mX) is m-T2.

Proof. Since F is injective, for any distinct points x1, x2 ∈ X we
have F (x1)∩F (x2) = ∅. Since F (x1) and F (x2) are compact sets in a
Hausdorff space, there exist open sets V1, V2 of Y such that F (x1) ⊂
V1, F (x2) ⊂ V2 and V1 ∩ V2 = ∅. Since F is upper m-continuous, there
exist U1, U2 ∈ mX containing x1, x2, respectively, such that F (U1) ⊂
V1, F (U2) ⊂ V2. Therefore, U1 ∩ U2 = ∅ and hence (X,mX) is m-T2.

Theorem 6.2. Let (X, τ) be a topological space and mX an m-
structure on X. If F : (X, τ) → (Y, σ) is an upper gm-continuous
injective multifunction such that F(x) is compact for each x ∈ X and
(Y, σ) is Hausdorff, then (X, τ) is gm-T2.

Proof. The proof follows from Definition 4.7 and Theorem 6.1.

Definition 6.3. A subset A of an m-space (X,mX) is said to be m-
dense in X [37] if mCl(A) = X.

Theorem 6.3. Let X be a nonempty set with two minimal structures
m1
X and m2

X such that U ∩ V ∈ m2
X whenever U ∈ m1

X and V ∈ m2
X

and (Y, σ) be a Hausdorff space.
If the following four conditions are satisfied,

(1) a multifunction G : (X,m1
X)→ (Y, σ) is upper m-continuous,

(2) a multifunction F : (X,m2
X)→ (Y, σ) is upper m-continuous,

(3) F(x) and G(x) are compact sets of (Y, σ) for each x ∈ X,



UNIFIED STUDY OF CERTAIN GENERALIZATIONS OF... 51

(4) F (x)∩G(x) 6= ∅ for each point x in an m-dense set D of (X,m2
X),

then F (x) ∩G(x) 6= ∅ for each point x in X.

Proof. The proof follows from Theorem 8.1 of [37].

Theorem 6.4. Let (X, τ) be a topological space with two minimal
structures m1

X and m2
X such that U ∩ V ∈ GM2

XO(X) whenever
U ∈ GM1

XO(X) and V ∈ GM2
XO(X) and (Y, σ) be a Hausdorff space.

If the following four conditions are satisfied,
(1) a multifunction F : (X,GM1

XO(X)) → (Y, σ) is upper m-
continuous,

(2) a multifunction G : (X,GM2
XO(X)) → (Y, σ) is upper m-

continuous,
(3) F(x) and G(x) are compact sets of (Y, σ) for each x ∈ X,
(4) F (x) ∩ G(x) 6= ∅ for each point x in an m-dense set D of

(X,GM2
XO(X)),

then F (x) ∩G(x) 6= ∅ for each point x in X.

Proof. The proof follows from Definition 4.7 and Theorem 6.3.

Theorem 6.5. Let X be a nonempty set with two minimal structures
m1
X and m2

X such that U ∩ V ∈ m2
X whenever U ∈ m1

X and V ∈ m2
X

and (Y, σ) be a normal space.
If the following four conditions are satisfied,

(1) a multifunction F : (X,m1
X)→ (Y, σ) is upper m-continuous,

(2) a multifunction G : (X,m2
X)→ (Y, σ) is upper m-continuous,

(3) F(x) and G(x) are closed in (Y, σ) for each x ∈ X,
(4) A = {x ∈ X : F (x) ∩G(x) 6= ∅},

then A = m2
X-Cl(A).

Proof. Let x ∈ X − A. Then F (x) ∩ G(x) = ∅. Since (Y, σ) is
normal and F (x) and G(x) are closed sets, there exist disjoint open
sets V and W of (Y, σ) such that F (x) ⊂ V and G(x) ⊂ W . Since F
is upper m-continuous, there exists U1 ∈ m1

X containing x such that
F (U1) ⊂ V . Since G is upper m-continuous, there exists U2 ∈ m2

X

containing x such that F (U2) ⊂ W . Put U1 ∩ U2 = U , then U ∈ m2
X .

Therefore, we have A∩U = ∅. By Lemma 3.2, we have x ∈ X −m2
X-

Cl(A) and hence A = m2
X-Cl(A).

Theorem 6.6. Let X be a topological space with two minimal struc-
tures m1

X and m2
X such that U ∩ V ∈ GM2O(X) whenever U ∈

GM1O(X) and V ∈ GM2O(X) and (Y, σ) be a normal space. If the
following four conditions are satisfied,
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(1) a multifunction F : (X,GM1O(X)) → (Y, σ) is upper m-
continuous,

(2) a multifunction G : (X,GM2O(X)) → (Y, σ) is upper m-
continuous,

(3) F(x) and G(x) are closed in (Y, σ) for each x ∈ X,
(4) A = {x ∈ X : F (x) ∩G(x) 6= ∅},

then A = m2Clg(A).

Proof. The proof follows from Definition 4.7 and Theorem 6.5.

Corollary 6.1. If F,G : (X, τ) → (Y, σ) are upper g-continuous and
punctually closed and (Y, σ) is normal, then A = Clg(A), where A =
{x ∈ X : F (x) ∩G(x) 6= ∅}.
Remark 6.2. This is a corrected form of Theorem 12 of [3]. Because
it is not true in general that Clg(A) is g-closed (see Example 2.3 of
[13]).

Theorem 6.7. Let X be a nonempty set with two minimal structures
m1
X and m2

X such that U ∩ V ∈ m2
X whenever U ∈ m1

X and V ∈ m2
X

and (Y, σ) be a Hausdorff space.
If the following four conditions are satisfied,

(1) a multifunction F : (X,m1
X)→ (Y, σ) is upper m-continuous,

(2) a multifunction G : (X,m2
X)→ (Y, σ) is upper m-continuous,

(3) F(x) and G(x) are compact sets of (Y, σ) for each x ∈ X,
(4) F (x) ∩G(x) 6= ∅ for each point x ∈ X,

then the multifunction H : (X,m2
X) → (Y, σ), defined by H(x) =

F (x) ∩G(x) for each x ∈ X, is upper m-continuous.

Proof. Let x ∈ X and V be an open set of (Y, σ) such that H(x) ⊂
V . Then A = F (x)− V and B = G(x)− V are disjoint compact sets.
Since A and B are compact sets of a Hausdorff space (Y, σ), there exist
open sets V1 and V2 such that A ⊂ V1, B ⊂ V2 and V1 ∩ V2 = ∅. Since
F is upper m-continuous, there exists U1 ∈ m1

X containing x such
that F (U1) ⊂ V1 ∪ V . Since G is upper m-continuous, there exists
U2 ∈ m2

X containing x such that G(U2) ⊂ V2 ∪ V . Set U = U1 ∩ U2,
then U ∈ m2

X containing x. If y ∈ H(x0) for any x0 ∈ U , then
y ∈ (V1 ∪ V ) ∩ (V2 ∪ V ) = (V1 ∩ V2) ∪ V . Since V1 ∩ V2 = ∅, we have
y ∈ V and hence H(U) ⊂ V . Therefore, H is upper m-continuous.

Theorem 6.8. Let (X, τ) be a topological space with two minimal
structures m1

X and m2
X such that U ∩ V ∈ GM2O(X) whenever

U ∈ GM1O(X) and V ∈ GM2O(X) and (Y, σ) be a Hausdorff space.
If the following four conditions are satisfied,
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(1) a multifunction F : (X,GM1O(X)) → (Y, σ) is upper m-
continuous,

(2) a multifunction G : (X,GM2O(X)) → (Y, σ) is upper m-
continuous,

(3) F(x) and G(x) are compact sets of (Y, σ) for each x ∈ X,
(4) F (x) ∩G(x) 6= ∅ for each point x ∈ X,

then the multifunction H : (X,GM2O(X)) → (Y, σ), defined by
H(x) = F (x) ∩G(x) for each x ∈ X, is upper m-continuous.

Proof. The proof follows from Definition 4.7 and Theorem 6.7.

7. The set of points of upper/lower gm-discontinuity

For a multifunction F : (X,mX) → (Y, σ), we define D+
m(F ) and

D−m(F ) as follows:

D+
m(F ) = {x ∈ X : F is not upper m-continuous at x },

D−m(F ) = {x ∈ X : F is not lower m-continuous at x }.
The following theorems are proved in [35].

Theorem 7.1. For a multifunction F : (X,mX)→ (Y, σ), the follow-
ing properties hold:
D+
m(F ) =

⋃
G∈σ{F+(G)−mInt(F+(G))}

=
⋃
B∈P (Y ) {F+(Int(B))−mInt(F+(B))}

=
⋃
B∈P (Y ) {mCl(F−(B))− F−(Cl(B))}

=
⋃
H∈F {mCl(F−(H))− F−(H)},

where F is the family of closed sets of (Y, σ).

Theorem 7.2. For a multifunction F : (X,mX)→ (Y, σ), the follow-
ing properties hold:
D−m(F ) =

⋃
G∈σ{F−(G)−mInt(F−(G))}

=
⋃
B∈P (Y ) {F−(Int(B))−mInt(F−(B))}

=
⋃
B∈P (Y ) {mCl(F+(B))− F+(Cl(B))}

=
⋃
A∈P (X) {mCl(A)− F+(Cl(F (A)))}

=
⋃
H∈F{mCl(F+(H))− F+(H)},

where F is the family of closed sets of (Y, σ).

Let (X, τ) be a topological space and mX an m-structure on X. For
a multifunction F : (X, τ)→ (Y, σ), we denote

D+
gm(F ) = {x ∈ X : F is not upper gm-continuous at x },

D−gm(F ) = {x ∈ X : F is not lower gm-continuous at x }.

Theorem 7.3. Let (X, τ) be a topological space and mX an m-
structure on X. Then, for a multifunction F : (X, τ) → (Y, σ), the
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following properties hold:
D+
gm(F ) =

⋃
G∈σ{F+(G)−mIntg(F

+(G))}
=

⋃
B∈P (Y ) {F+(Int(B))−mIntg(F

+(B))}
=

⋃
B∈P (Y ) {mClg(F

−(B))− F−(Cl(B))}
=

⋃
H∈F {mClg(F

−(H))− F−(H)},
where F is the family of closed sets of (Y, σ).

Proof. The proof follows from Definition 4.7 and Theorem 7.1.

Theorem 7.4. Let (X, τ) be a topological space and mX an m-
structure on X. Then, for a multifunction F : (X, τ) → (Y, σ), the
following properties hold:
D−gm(F ) =

⋃
G∈σ{F−(G)−mIntg(F

−(G))}
=

⋃
B∈P (Y ) {F−(Int(B))−mIntg(F

−(B))}
=

⋃
B∈P (Y ) {mClg(F

+(B))− F+(Cl(B))}
=

⋃
A∈P (X) {mClg(A)− F+(Cl(F (A)))}

=
⋃
H∈F{mClg(F

+(H))− F+(H)},
where F is the family of closed sets of (Y, σ).

Proof. The proof follows from Definition 4.7 and Theorem 7.3.

For a multifunction F : (X, τ)→ (Y, σ), we denote

D+
g (F ) = {x ∈ X : F is not upper g-continuous at x },

D−g (F ) = {x ∈ X : F is not lower g-continuous at x }.
Then, as corollaries of Theorems 7.3 and 7.4, we obtain the follow-

ing:

Corollary 7.1. For a multifunction F : (X, τ)→ (Y, σ), the following
properties hold:
D+
g (F ) =

⋃
G∈σ{F+(G)− Intg(F

+(G))}
=

⋃
B∈P (Y ) {F+(Int(B))− Intg(F

+(B))}
=

⋃
B∈P (Y ) {Clg(F

−(B))− F−(Cl(B))}
=

⋃
H∈F {Clg(F

−(H))− F−(H)},
where F is the family of closed sets of (Y, σ).

Corollary 7.2. For a multifunction F : (X, τ)→ (Y, σ), the following
properties hold:
D−g (F ) =

⋃
G∈σ{F−(G)− Intg(F

−(G))}
=

⋃
B∈P (Y ) {F−(Int(B))− Intg(F

−(B))}
=

⋃
B∈P (Y ) {Clg(F

+(B))− F+(Cl(B))}
=

⋃
A∈P (X) {Clg(A)− F+(Cl(F (A)))}

=
⋃
H∈F{Clg(F

+(H))− F+(H)},
where F is the family of closed sets of (Y, σ).
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Definition 7.1. Let (X,mX) be an m-space and A a subset of X.
The mX-frontier of A, mFr(A), [37] is defined by mFr(A) = mCl(A)∩
mCl(X − A) = mCl(A)−mInt(A).

Theorem 7.5. Let F : (X,mX) → (Y, σ) be a multifunction. Then
D+
m(F ) (resp. D−m(F )) is identical with the union of the m-frontiers of

the upper (resp. lower) inverse images of open sets containing (resp.
meeting) F(x).

Proof. We shall prove the first case since the proof of the second
is similar.
Let x ∈ D+

m(F ). Then, there exists an open set V of Y containing F (x)
such that U ∩ (X − F+(V )) 6= ∅ for every mX-open set U containing
x. By Lemma 3.2, we have x ∈ mCl(X − F+(V )). On the other
hand, since x ∈ F+(V ), we have x ∈ mCl(F+(V )) and hence x ∈
mFr(F+(V )).

Conversely, suppose that F is upper m-continuous at x ∈ X. Then,
for any open set V of Y containing F (x), there exists U ∈ mX such
that F (U) ⊂ V ; hence U ⊂ F+(V ). Therefore, we have x ∈ U ⊂
mInt(F+(V )). This contradicts to the fact that x ∈ mFr(F+(V )).

Theorem 7.6. Let F : (X, τ)→ (Y, σ) be a multifunction and mX an
m-structure on X. Then D+

gm(F ) (resp. D−gm(F )) is identical with the
union of the gm-frontiers of the upper (resp. lower) inverse images of
open sets containing (resp. meeting) F(x).

Proof. The proof follows from Definition 4.7 and Theorem 7.5.

For example, for upper/lower g-continuous multifunctions we obtain
the following corollary from Theorem 7.6.

Corollary 7.3. Let F : (X, τ) → (Y, σ) be a multifunction. Then
D+
g (F ) (resp. D−g (F )) is identical with the union of the g-frontiers of

the upper (resp. lower) inverse images of open sets containing (resp.
meeting) F(x).
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