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DETERMINING THE LAPLACIAN SPECTRUM IN
PARTICULAR CLASSES OF GRAPHS
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Abstract. During the last three decades, different types of decom-
positions have been processed in the field of graph theory. Among
these we mention: decompositions based on the additivity of some
characteristics of the graph, decompositions where the adjacency law
between the subsets of the partition is known, decompositions where
the subgraph induced by every subset of the partition must have prede-
terminate properties, as well as combinations of such decompositions.

In this paper we characterize threshold graphs using the weakly
decomposition, determine the Laplacian spectrum in threshold graphs.

Dedicated to Professor Valeriu Popa on the Occasion of His 80th
Birthday

1. Introduction

Threshold graphs play an important role in graph theory as well
as in several applied areas such as set-packing problem (Chvátal and
Hammer [4]), parallel processing (Henderson and Zalcstein [12]), allo-
cation problems (Ordman [16]).
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When searching for recognition algorithms, frequently appears a
type of partition for the set of vertices in three classes A,B,C, which
we call a weakly decomposition, such that: A induces a connected
subgraph, C is totally adjacent to B, while C and A are totally non-
adjacent. The structure of the paper is the following. In Section 2
we present the notations to be used, in Section 3 we give the notion
of weakly decomposition and in Section 4 we characterize threshold
graphs and determine the Laplacian spectrum in threshold graphs.

2. General Notations

Throughout this paper, G = (V,E) is a connected, finite and undi-
rected graph, without loops and multiple edges ([3]), having V = V (G)
as the vertex set and E = E(G) as the set of edges. G is the comple-
ment of G. If U ⊆ V , by G(U) we denote the subgraph of G induced
by U . By G−X we mean the subgraph G(V −X), whenever X ⊆ V ,
but we simply write G − v, when X = {v}. If e = xy is an edge of
a graph G, then x and y are adjacent, while x and e are incident, as
are y and e. If xy ∈ E, we also use x ∼ y, and x 6∼ y whenever x, y
are not adjacent in G. A vertex z ∈ V distinguishes the non-adjacent
vertices x, y ∈ V if zx ∈ E and zy 6∈ E. If A,B ⊂ V are disjoint
and ab ∈ E for every a ∈ A and b ∈ B, we say that A,B are totally
adjacent and we denote by A ∼ B, while by A 6∼ B we mean that no
edge of G joins some vertex of A to a vertex from B and, in this case,
we say that A and B are non-adjacent.

The neighbourhood of the vertex v ∈ V is the set NG(v) = {u ∈ V :
uv ∈ E}, while NG[v] = NG(v)∪{v}; we simply write N(v) and N [v],
when G appears clearly from the context. The neighbourhood of the
vertex v in the complement of G will be denoted by N(v).

The neighbourhood of S ⊂ V is the set N(S) = ∪v∈SN(v)− S and
N [S] = S ∪N(S). A clique is a subset Q of V with the property that
G(Q) is complete. The clique number or density of G, denoted by
ω(G), is the size of the maximum clique. A clique cover is a partition
of the vertices set such that each part is a clique. θ(G) is the size
of a smallest possible clique cover of G; it is called the clique cover
number of G. A stable set is a subset X of vertices where every two
vertices are not adjacent. α(G) is the number of vertices is a stable
set o maximum cardinality; it is called the stability number of G.
χ(G) = ω(G) and it is called chromatic number.
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By Pn, Cn, Kn we mean a chordless path on n ≥ 3 vertices, a
chordless cycle on n ≥ 3 vertices, and a complete graph on n ≥ 1
vertices, respectively.

A graph is called cograph if it does not contain P4 as an induced
subgraph.

A split graph is a graph in which the vertices can by partitioned a
clique and an independent set.

Let F denote a family of graphs. A graph G is called F -free if none
of its subgraphs is in F . The Zykov sum of the graphs G1, G2 is the
graph G = G1 +G2 having:

V (G) = V (G1) ∪ V (G2),
E(G) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2)}.

3. Preliminary results

3.1. Weakly decomposition
At first, we recall the notions of weakly component and weakly

decomposition.
Definition 1. ([7], [19], [20]) A set A ⊂ V (G) is called a weakly

set of the graph G if NG(A) 6= V (G) − A and G(A) is connected. If
A is a weakly set, maximal with respect to set inclusion, then G(A)
is called a weakly component. For simplicity, the weakly component
G(A) will be denoted with A.

Definition 2. ([7], [19], [20]) Let G = (V,E) be a connected
and non-complete graph. If A is a weakly set, then the partition
{A,N(A), V −A ∪N(A)} is called a weakly decomposition of G with
respect to A.

Below we remind a characterization of the weakly decomposition of
a graph.

The name of ”weakly component” is justified by the following result.
Theorem 1. ([8], [19], [20]) Every connected and non-complete

graph G = (V,E) admits a weakly component A such that G(V −A) =
G(N(A)) +G(N(A)).

Theorem 2. ([19], [20]) Let G = (V,E) be a connected and non-
complete graph and A ⊂ V . Then A is a weakly component of G if
and only if G(A) is connected and N(A) ∼ N(A).

The next result, that follows from Theorem 1, ensures the existence
of a weakly decomposition in a connected and non-complete graph.

Corollary 1. If G = (V,E) is a connected and non-complete graph,
then V admits a weakly decomposition (A,B,C), such that G(A) is a
weakly component and G(V − A) = G(B) +G(C).
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Theorem 2 provides an O(n + m) algorithm for building a weakly
decomposition for a non-complete and connected graph.

Algorithm for the weakly decomposition of a graph ([22])
Input: A connected graph with at least two nonadjacent vertices, G =
(V,E).
Output: A partition V = (A,N,R) such that G(A) is connected,
N = N(A), A 6∼ R = N(A).
begin

A := any set of vertices such that
A ∪N(A) 6= V
N := N(A)
R := V − A ∪N(A)
while (∃n ∈ N , ∃r ∈ R such that nr 6∈ E ) do
begin
A := A ∪ {n}
N := (N − {n}) ∪ (N(n) ∩R)
R := R− (N(n) ∩R)

end
end

3.2. Threshold graphs
In this subsection we remind some results on threshold graphs.
A graph G is called threshold graph if NG(x) ⊆ NG[y] or NG(y) ⊆

NG[x] for any pair of vertices x and y in G.
Threshold graphs were first introduced by Chvátal and Hammer

([5]).
Theorem 3. ([4]) A graph G is a threshold graph if and only if G

does not contain a C4, C4, P4 as an induced subgraph.
Chvátal and Hammer also showed that threshold graphs can be

recognizing in O(n2) time.
In [1], Babel showed that if G is a threshold graph then the al-

gorithms that determine ω(G), χ(G), α(G) and θ(G) are O(n + m)
time.

Theorem 4. ([4]) A graph G is a threshold graph if and only if G
is a cograph and G is a split graph.

In [6] (as well as in [10] and [14]) linear algorithms for recognizing a
cograph can be found. Hammer and Simeone [11]) give an O(n + m)
algorithm for recognizing a split graph. Therefore, an algorithm that
recognizes a threshold graph is O(n(n+m)).
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In [15] a linear algorithm for recognizing a threshold graph can be
found.

3.3. Quasi-threshold graphs
In this subsection we remind some results on quasi-threshold graphs.

A graph G which is P4-free is called a cograph. A cograph which is
C4-free is called a quasi-threshold graph. Graphs obtained from a
vertex by recursively applying the following operations: (i) adding a
new vertex, (ii) adding a new vertex that is adjacent to all old vertices,
and (iii) disjoint union of two graphs are precisely the quasi-threshold
graphs (see Yan et al. [13]).

3.4. Weakly quasi-threshold graphs
In this subsection we remind some results on weakly quasi-threshold

graphs. In ([2]) we study the class of weakly quasi-threshold graphs
that are obtained from a vertex by recursively applying the operations
(i) adding a new isolated vertex, (ii) adding a new vertex and making
it adjacent to all old vertices, (iii) disjoint union of two old graphs,
and (iv) adding a new vertex and making it adjacent to all neighbours
of an old vertex.

Fie G = (V,E) un graf conex. Atunci urmatoarele sunt echivalente
([2]):
(a) G este un graf weakly quasi-threshold
(b) G este un cograf si nu exista C4 = [v1, v2, v3, v4] cu N(v1) 6= N(v3)
si N(v2) 6= N(v4).

A graph G is weakly quasi-threshold ([18]) if and only if G does not
contain any P4 or co-(2P3) as induced subgraphs.

3.5. Mock threshold graphs
In this subsection we remind some results on mock threshold graphs.
Theorem 4. A graph G is threshold if and only if G has a vertex

ordering v1, . . . , vn such that for every i (1≤ i ≤n) the degree of vi
in G(v1, . . . , vi) is 0 or i-1.

By relaxing this characterization slightly we get a new, bigger class
of graphs.

Definition 3. A graph G is said to be mock threshold1 if there is
a vertex ordering v1, . . . , vn such that for every i (1 ≤ i ≤ n) the
degree of vi in G(v1, . . . , vi) is 0, 1, i-2, or i-1. We write GMT for
the class of mock threshold graphs.

We call such an ordering an MT-ordering. Note that a graph can
have several MT-orderings. There are several easy but important con-
sequences of the definition.
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4. New results on threshold graphs

4.1. Characterization of a threshold graph using the weakly
decomposition

In this paragraph we give a new characterization of threshold graphs
using the weakly decomposition. Some of the following result is found
in [21], but we give a demonstration for a fully presentation.

Theorem 5. Let G=(V,E) be a connected graph with at least two
nonadjacent vertices and (A,N,R) a weakly decomposition, with A the
weakly component. G is a threshold graph if and only if:
i) A ∼ N ∼ R;
ii) N is clique and R is stable set;
iii) G(A) is threshold graph.

Proof. Let G = (V,E) be a connected, uncomplete graph and
(A,N,R) a weakly decomposition of G, with G(A) as the weakly com-
ponent.
At first, we assume that G is threshold. Then N ∼ R and A ∼ N also,
as otherwise a ∈ A, n ∈ N would exists such that an 6∈ E. Because
N = N(A) it follows that there exists a1 ∈ A such that na1 ∈ E. As
G(A) is connected, a path Paa1 exists. On the path from a to a1 in
Paa1 , let a2 ∈ A the last vertex with a2n 6∈ E and a3 ∈ A the first
vertex with a3n ∈ E. Then G({a2, a3, n, r}) ' P4, for every r ∈ R, so
i) holds.

If N would not be a clique then (as A ∼ N ∼ R) an induced C4

would exists. This would be a contradiction, as G is threshold. So N
is a clique and A ∼ N ∼ R.
Suppose that R is not stable. Then an edge r1r2 (r1, r2 ∈ R) exists
such that G({r1, r2, a1, a2}) ' 2K2, for every a1 ∈ A and every a2 ∈ A,
as |A| ≥ 2. Indeed, if |A| = 1 then because R is not stable there exists
R′ ⊆ R such that G(R′) is connected. Suppose that R′ is maximal
with respect to inclusion. Then G(R′) is a weakly component as R′

is a weakly set (NG(R′) = N 6= A ∪ N ∪ (R − R′) = V − R′, G(R′)
is connected) and R′ is maximal with respect to inclusion. We have
|R′| > |A|, contradicting the maximality of A. As A 6= ∅, it follows
that |A| ≥ 2. So R is stable. So ii) also holds.

As G is threshold we have that G(A) is threshold, so iii) holds, too.
Conversely, we suppose that i), ii) and iii) hold. If we suppose

that X ⊂ V exists such that G(X) ' 2K2 then, as A ∼ N ∼ R, N
clique and R stable, it follows that X ⊆ A, contradicting that G(A) is
threshold. If we suppose that G(X) ' P4 then X ⊆ A, contradicting
iii). In a similar manner we can prove that G is C4-free. So G is
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threshold.

The above results lead to a recognition algorithm with the total
execution time O(n(n+m)).

4.2. Characterization of a quasi-threshold graph using the
weakly decomposition

In this paragraph we give a characterization of quasi-threshold
graphs using the weakly decomposition.

Theorem 6. [21] Let G=(V,E) be a connected graph with at least
two nonadjacent vertices and (A,N,R) a weakly decomposition, with A
the weakly component. G is a quasi-threshold graph if and only if:
i) A ∼ N ∼ R;
ii) N is clique;
iii) G(A),G(R) are quasi-threshold graph.

4.3. Characterization of a weakly quasi-threshold graph
using the weakly decomposition

In this paragraph we give a new characterization of weakly quasi-
threshold graphs using the weakly decomposition.

Theorem 7. [22] Let G=(V,E) be a connected graph with at least
two nonadjacent vertices and (A,N,R) a weakly decomposition, with A
the weakly component. G is a weakly quasi-threshold graph if and only
if:
i. A ∼ N ∼ R;
ii. G(A),G(N),G(R) are P 3-free graph;
iii. G(A),G(N),G(R) are weakly quasi-threshold graph.

4.4. Determine the Laplacian spectrum in threshold graphs
The survey spectrum graph is an important subject in the algebraic
theory of graphs [23]. Laplacian is also related to the eigenvalues graph
of the Wiener index [24]
Theorem 8. Let G=(V,E) be a connected graph with at least two
nonadjacent vertices and (A,N,R) a weakly decomposition, with A the
weakly component. If G is a weakly quasi-threshold graph then :
i) dG(r) = |N |,∀r ∈ R;
ii) dG(a) = |A|+ dG(A)(a),∀a ∈ A;
iii) dG(x) = |V | − 1,∀x ∈ N .
Proof. It folows of Theorem 7.

Definition 4. Let P be a hereditary property a vertices of a graph
(ie, if v have the property P in G and G’ is subgaph of G so that v is
in V(G’), then it has property P in G’). The graph G is called locally
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P − perfect if every induced subgraph H of G it is a vertex that has
the property P in H.

Proposition 1. The graph G is locally P-perfect if and only if
there is an order x1, ...xn of the vertices set of G such that in Gi =
[x1, ..., xi]G the vertex xi has the property P, ∀i = 1, ..., n.
Demonstration. Suppose G is locally P-perfect. Consider Gn = G .
Then there is xn with the property P in Gn. Let Gn−1 = Gn − xn.
Then there is xn−1 with the property P in Gn−1. We continue the
process. Obtain an order x1, ..., xn such that xi has the property P in
Gi, ∀i = 1, ..., n.

Suppose that there is an order x1, ..., xn in Gi = [x1, ..., xi]G such
that xi has the property P in Gi, ∀i = 1, ..., n. Let G ’ be an induced
subgraph of G. The order of the vertices of G induce an order xk1 ...xkn
of the set of vertices of G’. If kp = j then xkp it is the property P in
Gj. According to the election of xkp(= xj) we have V(G’)⊆V (Gj).
As the property P is hereditary the result that xkp has the property P
in G’. So G is locally P-perfect.

In [1a], R. Behr, V. Sivaraman and T. Zaslavsky specifies:
Proposition 2. Every induced subgraph of a mock threshold graph

is mack threshold.
So, the mock threshold graphs are hereditary in the sense of induced

subgraphs.
We consider the property P:
(∗) : ThedegreeofviinG(v1, . . . , vi)is0, 1, i− 2ori− 1.
Corollary 2. A graph G is mock threshold if and only if G is locally

P-perfect, where P is the property specified in (*).
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