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Abstract. In this paper a general fixed point theorem in complete
G - metric space for weakly compatible mappings is proved, theorem
which generalizes and unifies the results from [5].
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1. INTRODUCTION

Let (X, d) be a metric space and S, T": (X,d) — (X, d) be two map-
pings. In 1994, Pant [15] introduced the notion of pointwise R - weakly
commuting mappings. It is proved in [16] that the notion of pointwise
R - weakly commutativity is equivalent to commutativity in coinci-
dence points. Jungck [4] defined S and T' to be weakly compatible if
Sx = Tx implies STx = TSx. Thus, S and T are weakly compatible
if and only if S and T are pointwise R - weakly commuting.

In [2] and [3], Dhage introduced a new class of generalized metric
spaces, named D - metric space. Mustafa and Sims [6], [7] proved
that most of the claims concerning the fundamental topological
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structures on D - metric spaces are incorrect and introduced appro-
priate notion of generalized metric space, named G - metric space. In
fact, Mustafa, Sims and other authors studied many fixed point results
for self mappings in G - metric spaces under certain conditions [8] -
[14], [23] and other papers.

In [17] and [18], Popa initiated the study of fixed points for mappings
satisfying implicit relations.

Actually, the method is used in the study of fixed points in met-
ric spaces, symmetric spaces, quasi - metric spaces, compact metric
spaces, Tychonoff spaces, reflexive metric spaces, probabilistic metric
spaces, convex metric spaces, in two or three metric spaces for single
valued mappings, hybrid pairs of mappings and set valued mappings.

Recently, the method is used in the study of fixed points for map-
pings satisfying contractive conditions of integral type and in fuzzy
metric spaces. There exists a vast literature in this topic which can-
not be completely cited here.

The method unified different types of contractive and extensive con-
ditions. The proof of fixed point theorems are more simple. Also, this
method allows the study of local and global properties of fixed point
structures.

Recently, the present authors initiated the study of fixed points in
G - metric spaces using implicit relations in [19] - [21].

The study of fixed points for pairs of weakly compatible mappings
in G - metric spaces is initiated in [5], [20], [22].

In this paper a general fixed point theorem in G - metric spaces for
weakly compatible mappings is proved, theorem which generalize and
unified the results from [5].

2. PRELIMINARIES

Definition 2.1 ([7]). Let X be a nonempty set and G : X* — R, be
a function satisfying the following properties:

(G1) : G(z,y,2) =0if z =y = z,

(G2) : 0 < G(x,z,y) for all z,y € X with x # v,

(G3) : G(z,z,y) < G(z,y,2) for all z,y,z € X with z # y,

(Gy) : G(z,y,2) = G(y,2z,z) = G(z,z,y) = ... (symmetry in all
three variables),

(Gs) : G(z,y,2) < G(x,a,a) + G(a,y, z) for all x,y,z,a € X.

The function G is called a G - metric on X and the pair (X, G) is
called a G - metric space.

Note that G(z,y,z) =0, then z =y = 2.
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Definition 2.2 ([7]). Let (X, G) be a metric space. A sequence (x,,)
in X is said to be

a) G - convergent if for ¢ > 0, there is an z € X and k € N such
that for all n,m € N, m,n > k, G(z, z,,x,) < €.

b) G - Cauchy if for each € > 0, there exists k£ € N such that for all
n,m,p € N, n,m,p >k, G(z,, v, z,) <€, that is G(x,,, Ty, x,) — 0
as m,n,n — oo.

¢) A G - metric space is said to be G - complete if every G - Cauchy
sequence is G - convergent.

Lemma 2.3 ([7]). Let (X,G) be a G - metric space. Then, the fol-
lowing properties are equivalent:

1) (z,,) is G - convergent to x;

2) G(xp, xp,x) = 0 as n — oo;

3) G(xp,x,z) = 0 as n — oo;

4) G(xm, p,x) — 0 as m,n — 0.
Lemma 2.4 ([7]). If (X,G) is a G - metric space, the following are
equivalent:

1) (z,) is G - Cauchy;

2) For every € > 0, there is k € N such that G(x,,, T, Tm) < € for
alln,m e N, n,m > k.

Lemma 2.5 ([7]). Let (X,G) be a G - metric space, then the function
G(z,y, z) is jointly continuous in all three of its variables.

Lemma 2.6 ([7]). Let (X, G) be a G - metric space. Then G(x,z,y) <
2G(y,y,x) for all x,y € X.

Definition 2.7. Let f and g be self maps of a nonempty set X. If
w = fx = gx for some x € X, then x is called a coincidence point of
f and g and w is called a point of coincidence of f and g¢.

Lemma 2.8 ([1]). Let f and g be weakly compatible self mappings of
a nonempty set X. If f and g have an unique point of coincidence
w = fx = gx, then w is the unique common fixed point of f and g.

The following theorems are proved in [5].
Theorem 2.9 (Theorem 2.1 [5]). Let (X,G) be a G - metric space
and f,q: X — X satisfying the following condition
G(fz, fy, fz) < kM(z,y,2),
where

(2 1) M(l‘7ya Z) = maX{G(gm7gyagz)7G(ngfy7gz)7
' G(gy, fz,92),G(gz, fr,92),G(gy, [y,9%)}
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1
for all x,y,z € X, where k € 0,5 )

If f(X) Cg(X) and g(X) is a G - complete subspace of X, then f
and g have an unique point of coincidence in X. Moreover, if f and
g are weakly compatible, then f and g have an unique common fixed
point.

Theorem 2.10 (Theorem 2.2 [5]). Let (X,G) be a G - metric space
and f,g9: X — X satisfying the following condition

G(fz, fy, fz) < kM(z,y,2),

where
M(z,y,2) = a1G(gz, gy, 92) + a2G (g, g, fx)+
(2.2) asG(9y, 9y, [y) + asG (92, 92, [2) + asG(gx, g, fy)+
asG gy, 9y, f2) + a2G(gz, 9z, fx),

forall z,y,z € X, where 0 < ay + as + ag + a4 + a5 + 2a6 + a7 < 1.

If f(X)Cg(X) and g(X) is a G - complete subspace of X, then f
and g have an unique point of coincidence. Moreover, if f and g are
weakly compatible, then f and g have an unique common fized point.

Theorem 2.11 (Theorem 2.3 [5]). Let (X,G) be a G - metric space
and f,g9: X — X satisfying the following condition

G(fx, fy, fz) < kM(z,y, z),
where
(2.3)
M(z,y,z) = max{G(gz, gz, fy) + G(gz, gy, fz) + G(g2, 92, fx),
G(gy, fz, fx) + G(gy, fy, fy) + Ggz, fz, [2),
G(gy, fr, fx) + Glgz, fy, fy) + Glgz, fz, f2)}

1
for all x,y,z € X, where k € 0,6 )

If f(X) Cg(X) and g(X) is a G - complete subspace of X, then f
and g have an unique point of coincidence. Moreover, if f and g are
weakly compatible, then f and g have an unique common fixed point.

3. IMPLICIT RELATIONS

Definition 3.1 ([20]). Let F¢ be the set of all continuous functions
F(t1,....t6) : RS — R such that

(F}) : F' is nonincreasing in variable ¢,

(Fy) : There exists hy € [0,1) such that for all u,v > 0,
F(u,v,v,u,u +v,0) <0 implies u < hyv.
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(F3) : There exists hy € [0,1) such that for all ¢, > 0,
F(t,t,0,0,t,t') < 0 implies t < hot'.

In all the following examples, condition (F}) is obviously.

Example 3.2. F(ty,...,ts) = t; — kmax{ty, 2t3 4+ 2ts} —amax{ty, t5},
where k,a >0 and 0 < 2a + 2k < 1.
(Fy) : Let u,v > 0 be and F(u,v,v,u,u+v,0) = u—kmax{v,2v}—
—amax{u,u +v}=u—2kv—alu+v) < 0, which implies u <
2k
hiv, where 0 < hy = a1+ < 1.
—a
(F3) : Let t,t' > 0 and F(t,t,0,0,t,t') =t — kmax{t,2t'} —at < 0.
If t > 2t then t(1 — (k +a)) <0, a contradiction. Hence, t < 2t/

which implies t < haot', where 0 < hy = 1 < 1.

—a

Example 3.3. F(tl, ...,tﬁ) = tl —Clltg — (@2+a3+a5)t3 —a4t4—a6t5 -

artg, where ayi,as,...,a7 > 0 and 0 < ay+as+az+as+as+2a¢+a; < 1.
(Fy) : Let u,v > 0 be and F(u,v,v,u,u+v,0) = u—ayv — (ay +

az + as)v — agu — ag(u +v) < 0, which implies u < hyv, where 0 <

h1:a1+a2+a3+a5+a6<1'
1-@4-@6
(F3) : Let t,t’ > 0 and F(t,t,0,0,t,t') =t — ayt — agt — azt’ < 0

which implies t < hot', where 0 < hy = ar < 1.

1— a1 — Qg
Example 3.4. F(tl, ey t6) = tl—atg—k:max{t3+t5—|—t6, 4t3+2t4, 2t3+
2ts + 2t }, where 0 < a + 6k < 1.

(Fy) : Let u,v > 0 be and F(u,v,v,u,u + v,0) = u — av —
kmax {u + 2v,2u + 4v} < 0 which implies v < hyv, where 0 < hy =
a+ 4k ]
ok =

(F3) : Let t,t' > 0 and F(tt,0,0,t,') = t — at —
kmax {t +t',2t, 2t + 2t'} < 0 which implies t < hot’, where 0 < hy =

The following examples are proved in [20).

Example 3.5. F(tl,...,tﬁ) = tl — kmax{tg,tg,t4,t5,t6}, where k €
1

0,=].

o2)

t t
Example 3.6. F(ty,...,ts) = t; — kmaX{tg,tg,t%%}, where
ke [0,1).
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Example 3.7. F(ty,...,ts) = t1 — t1(aty + btz + cty) — dists, where
a,b,c,d>0and0<a+b+c+d<1.

ts+1ty t5+1¢
Example 3.8. F(ty,...,tg) = t; — kmax {tg, 3 5 4, 5 5 6}, where
ke [0,1).
. t363 + 1283
1+t2+t3+t4

Example 3.9. F(ty,....tg) = t3 , where ¢ € [0,1).

Example 3.10. F(ty,....t5) = t2 —at? —b
and 0 <a—+b<1.

———, wh ,b>0
1—|—t§—|—ti where a,b >

Example 3.11. F(ty,...,tg) = t; —aty— btz —cmax{2ty, t5+ts}, where
a,b,c>0and 0 <a+b+2c<1.

Example 3.12. F(ty,...,tg) = t; —aty—btz3 —cmax{ty+ts5, 2ts}, where
a,b,c>0and 0 <a+b+ 3c < 1.

Example 3.13.  F(ty,...,ts) = t —

2t te 2t ts3 t t
kmax{tg,tg,t4, 4;_ 6 4;_ 3 5;— 6}, where k € [0,1).

4. GENERAL FIXED POINT THEOREM

Lemma 4.1. Let (X,G) be a G - metric space and let f,g: X — X
be two functions such that

(4 1) F(G(f:c,f:c,fz),G(g:z:,gx,gz),G(g:c,gx,f:c),
' G(g2,92, f2), G(gz, gz, f2), G(gz, 92, fx)) <0

for all x,z € X and F satisfying property (F3). Then, f and g have
at most a point of coincidence.

Proof. Suppose that u = fp = gp and v = fq = gq. Then by (4.1) we
have successively:

F(G(fp, fp, fa),G(gp, gp, 99), G(gp, gp, D),
G(9q, 94, fa), G(gp, gp, fa), G (94, 94, fp)) <0,

F(G(gp, gp. 99), G(gp. gp. 99). 0,0, G(gp, gp, 99), G(9¢. 94, gp)) < 0
which implies by (F3) that

G(gp, gp, 99) < haG(9q, 99, gp).

Similarly, we obtain

G(9q, 99, 9p) < haG(gp, gp, 99),
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which implies that

G(gp, gp, 99)(1 — h3) < 0.

Hence G(gp, gp,9q) = 0, i.e. gp = gq. Therefore u = fp = gp = gq =
fq=n. O
Theorem 4.2. Let (X,G) be a G - metric space and f,g : X — X
two functions satisfying (4.1) for all z,z € X, where F € §q. If
f(X) C g(X) and g(X) is a G - complete metric subspace of (X, G),
then f and g have an unique point of coincidence. Moreover, if f and
g are weakly compatible, then f and g have an unique common fixed
point.

Proof. Let xq be an arbitrary point of X and x; € X such that fxg =
gx1. This can be done since f(X) C g(X). Continuing this process,
having chosen z, in X, we obtain x,,; such that fx,, = gx,.1. Then,
by (4.1) we have successively

F<G(f'rn717 fxnflu fxn>7 G(gxnfh 9Tn—1, gl’n), G(gxnfly 9Tp—1, fxnfl)u
G(g2n, 92n, [Tn), G(9Tn-1, 9Tn-1, fTn), G(g2n, g2y, frn_1)) <0,

F(G(gxn7 G, gxn-i—l)a G(gxn—b gTn—1, gxn)v G(gmn—la gTn—1, gxn)a
G(gxna 9Zn, ganrl)a G(gxnfla 9Tn—1, gxn+1>7 0) <0.
By (F}) and (G5) we obtain
F(G(g%m 9T, 9$n+1), G(g:pn—la 9Tn—1, gmn)v
G(92n-1, 9Tn-1, 9%n), G(9Tn, 9T, gTn+1),
G(92n, 9n, gn41) + G(9Tn-1, gTn-1,922),0) < 0.

By (F3) we obtain
G(9%n, 9n, 9ni1) < MG (gLn-1, 9Ln-1, 9Ln)-
Continuing the above process we obtain
G(92n, gn, gns1) < hYG(gxo, go, go1).

For every m,n € N, m > n we have by repeated use of the rectangle
inequality that

m—1
G(9Tn, 90, g1m) < Y Glgzj, 92, 9T511)

<
Il
3

—_

3

IN

h{G(gzo,gxo,gxl)

.
|

S>3

n
1

<
- 1M

G(Qﬁoa 9o, 9$1)'
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Therefore G(gx,, gn, gTm) — 0 as n,m — oo, hence, (gx,) is a G -
Cauchy sequence. Since g(X) is G - complete, there exists a point ¢
in g(X) such that gx, — q as n — oo.

Consequently, we can find a point p € X such that gp = ¢q. We

prove that fp = gp.
By (4.1) we have successively

F<G(f$n71> fxnfla fp)7 G(gmnfb gTn—1, gp)? G(gxnfla gTn—1, fwnfl)a
G(gpa ap, fp)a G(gxnfla gTn—1, fp)a G(gmnfla gTn—1, fxnfl)) S O,

F(G(gxn7 gTn, fp)v G(gmn—la 9Tn—1, gp)7 G(gxn—h 9Tp—1, gl'n),
G(gp, gp, [P), G(g2n-1, gTn-1, D), G(9Tp-1, 9Tn_1, g2s)) < 0.

Letting n tend to infinity, we obtain

F(G(gp, gp, fp),0,0,G(gp, gp, fp), G(gp, gp, [p),0) < 0.

By (Fy) it follows that G(gp, gp, fp) = 0 which implies gp = fp.
Hence w = gp = fp is a point of coincidence of f and ¢g. By Lemma
4.1, w is the unique point of coincidence of f and g. Moreover, if f
and g are weakly compatible, by Lemma 2.8, w is the unique common
fixed point of f and g¢. O

Corollary 4.3. Let (X,G) be a G - metric space and f,g: X — X
two functions satisfying the inequality

(4.2) G(fx, fx, fz) < amax{G(gzx, gz, fz),G(g9z, 9z, fz) }+
2 tkmax{Ggz, gz, 92), 2G(gr, gu, f2) + 2G(g2, g7, 2)}

for all z,z € X, where a,k >0 and 0 < 2a+2k < 1. If f(X) C g(X)
and g(X) is a G - complete metric subspace of (X,G), then f and g
have an unique point of coincidence. Moreover, if f and g are weakly
compatible, then f and g have an unique common fixed point.

Proof. The proof follows from Theorem 4.2 and Example 3.2. ([l
Remark 4.4. If in (2.1) x = y, then by (G5) and Lemma 2.6 we
obtain
G(fx, fx, fz) < kmax{G(gx,gz,g2),G(fz, fr,g2)}
< kmax{G(gr, gz, %), Glgz, [z, f2) + G(f, f,92)}
< kmax{G(gz, gz, 92), G(gz, gz, fr) + G(gz, gz, [r)}
< amax{G(gz, g2, f2), G(gz, gz, f2)} +

+kmax{G(gx, gz, 92), G(gz, gz, fr) + G(gz, 92, f)}.
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Then by Corollary 4.3 we obtain Theorem 2.9 for a = 0 and k €

°3)

Corollary 4.5. Let (X,G) be a G - metric space and f,g: X — X
two functions satisfying the inequality
(4.3)

G(f[[', fxa fZ) S alG(gxa qr, fZ) + (aQ + a3 + CL5)G(9$, qx, fl')+

+a1G(92, 92, [2) + a6G(gz, gz, [2) + arG(gz, 9z, fx),

for all x,z € X, where ay,...,a7 > 0 and 0 < ay + as + ag + a4 +
as + 2a¢ + a7 < 1.

If f(X) C g(X) and g(X) is a G - complete metric subspace of X,
then f and g have an unique point of coincidence in X.

Moreover, if f and g are weakly compatible, then f and g have an
unique common fized point.

Proof. The proof follows from Theorem 4.2 and Example 3.3. 0

Remark 4.6. Ifin (2.2) x =y, then we obtain (4.3) and by Corollary
4.5 we obtain Theorem 2.10.

Corollary 4.7. Let (X,G) be a G - metric space and f,g: X — X
two functions satisfying the following inequality

4G (g, gx, fr) +2G(9z, 92, [ 2),
2G (g, gz, fr) + 2G(g9z, 92, fr) + 2G(gz, g, f2)}
forallxz,z € X, where a,k >0 and 0 < a + 6k < 1.
If f(X) C g(X) and g(X) is a G - complete metric subspace of X,
then f and g have an unique point of coincidence in X.
Moreover, if f and g are weakly compatible, then f and g have an
unique common fized point.

Proof. The proof follows from Theorem 4.2 and Example 3.4. 0
Remark 4.8. By (2.3) with x =y and Lemma 2.6 we obtain

G(fx, fz, fz) < kmax{G(gz, gz, fr) + G(gz, gz, f2) + G(gz, g2, fz),
2G(gz, fx, fx) + G(g2, f2, f2),
< aG(gx,gx,92)+
4G(gz, gz, fr) + 2G (g2, 9z, f2),
2G(gz, gz, fx) +2G(g9z, 92, fx) + 2G (g, gz, f2)},
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forall z,z € X, where a,k >0 and 0 < a + 6k < 1.
1
Then by Corollary 4.7, fora =0 and k € [O, 6) we obtain Theorem
2.11.

Remark 4.9. By Theorem 4.2 and Examples 3.5 - 3.13 we obtain
new results.
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