"Vasile Alecsandri" University of Bacău
Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 28(2018), No. 1, 5-28

GENERALIZED VERSION OF FUZZY δ-SEMICLOSED SET

ANJANA BHATTACHARYYA

Abstract

The notions of fuzzy δ-semiopen and fuzzy δ-semiclosed set have been introduced in [5]. Taking this idea as a basic tool, we introduce the notion of fuzzy generalized δ-semiclosed set $(f g \delta$ semiclosed set, for short). Then the mutual relationships between this set with $f g$-closed set $[2,3], f g s$-closed set [3], $f s g$-closed set [3], $f g \beta$ closed set [3], $f \beta g$-closed set [3] are established. Afterwards, we introduce and characterize $f g \delta$-semiclosed function. In Section 4, a new type of idempotent operator, viz., generalized δ-semiclosure operator is introduced and studied some of its properties. Next we introduce and characterize fuzzy generalized δ-semicontinuous function and show that the composition of two fuzzy generalized δ-semicontinuous functions may not be so. In Section 5, we introduce and characterize fuzzy generalized δ-semiregular and fuzzy generalized δ-seminormal spaces and also we prove the invariance of the propery of a fuzzy topological space of being generalized δ-seminormal, under fuzzy generalized δ-semiirresolute function. In the last section, we first introduce fuzzy generalized δ-semi T_{2}-space and then three different types of fuzzy continuous-like functions are introduced and establish that the inverse image of fuzzy generalized δ-semi T_{2}-space under these functions are fuzzy T_{2}-spaces [13].

Keywords and phrases: $f g \delta$-semiclosed set, $f g \delta$-semiclosed function, $f g \delta$-semicontinuous function, $f g \delta$-semiregular (normal) space, $f g \delta$-semi T_{2}-space.
(2010) Mathematics Subject Classification: 54A40, 54C99

1. Introduction and Preliminaries

Fuzzy δ-open set is introduced in [9]. Using this idea, in [5], fuzzy δ semiopen set is introduced and studied. Different types of generalized version of fuzzy closed sets are defined in $[2,3,6]$. Also in $[3,4]$, several types of generalized version of fuzzy continuous-like functions are introduced and studied. In this way, here we introduce a new type of generalized version of fuzzy closed set and using this concept a new version of fuzzy continuous-like function is introduced and studied.

Throughout this paper (X, τ) or simply by X we shall mean a fuzzy topological space (fts, for short) in the sense of Chang [7]. A fuzzy set [16] A in an fts X, denoted by $A \in I^{X}$, is defined to be a mapping from a non-empty set X into the closed interval $I=[0,1]$. The support [16] of a fuzzy set A, denoted by $\operatorname{supp} A[16]$ and is defined by $\operatorname{supp} A=\{x \in$ $X: A(x) \neq 0\}$. The fuzzy set with the singleton support $\{x\} \subseteq X$ and the value $t(0<t \leq 1)$ will be denoted by $x_{t}[16] .0_{X}$ and 1_{X} are the constant fuzzy sets taking values 0 and 1 respectively in X. The complement [16] of a fuzzy set A in X is denoted by $1_{X} \backslash A$ and is defined by $\left(1_{X} \backslash A\right)(x)=1-A(x)$, for each $x \in X$. For any two fuzzy sets A, B in $X, A \leq B$ means $A(x) \leq B(x)$, for all $x \in X$ [16] while $A q B$ means A is quasi-coincident (q-coincident, for short) [11] with B, i.e., there exists $x \in X$ such that $A(x)+B(x)>1$. The negation of these two statements will be denoted by $A \not \leq B$ and $A \not q B$ respectively. For a fuzzy set $A, c l A$ and $\operatorname{int} A$ will stand for fuzzy closure [7] and fuzzy interior [7] respectively. A fuzzy set A in an fts X is called fuzzy regular open [1] if $A=i n t c l A$. A fuzzy set A is called a fuzzy neighbourhood (nbd, for short) of a fuzzy point x_{t} if there exists a fuzzy open set G in X such that $x_{t} \leq G \leq A$ [11]. If, in addition, A is open, then A is called a fuzzy open nbd [11] of x_{t}. A fuzzy set A in X is called a q-neighbourhood (q-nbd, for short) [11] of a fuzzy point x_{t} if there is a fuzzy open set U in X such that $x_{t} q U \leq A$. If, in addition, A is fuzzy open (resp., fuzzy regular open), then A is called fuzzy open q-nbd [11] (resp., fuzzy regular open q-nbd [1]) of x_{t}. A fuzzy point x_{α} is said to be a fuzzy δ-cluster point of a fuzzy set A in an fts X if every fuzzy regular open q-nbd U of x_{α} is q-coincident with A [9]. The union of all fuzzy δ-cluster points of A is called the fuzzy δ-closure of A, denoted by $\delta c l A$ [9]. A fuzzy set A is called fuzzy δ-closed if $A=\delta c l A[9]$ and the complement of a fuzzy δ-closed set is called fuzzy δ-open [9]. The union of all fuzzy δ-open sets contained in a fuzzy set A is called fuzzy δ-interior of A and is denoted by $\operatorname{dint} A$ [9]. For a fuzzy set A in an fts $(X, \tau), \delta c l\left(1_{X} \backslash A\right)=1_{X} \backslash \operatorname{\delta int} A[9]$. A fuzzy
set A in an fts X is called fuzzy semiopen [1] (respectively, fuzzy β open [8]) if $A \leq \operatorname{clint} A$ (respectively, $A \leq \operatorname{clintcl} A$). The complement of a fuzzy semiopen (respectively, fuzzy β-open) set is called fuzzy semiclosed [1] (respectively, fuzzy β-closed [8]). The intersection of all fuzzy semiclosed (respectively, fuzzy β-closed) sets containing a fuzzy set A is called fuzzy semiclosure [1] (respectively, fuzzy β-closure [8]) of A, denoted by $\operatorname{scl} A$ (respectively, $\beta c l A$). The collection of all fuzzy semiopen (respectively, fuzzy β-open, fuzzy δ-open) sets in an fts X is denoted by $F S O(X)$ (respectively, $F \beta O(X), F \delta O(X)$) and that of fuzzy semiclosed (respectively, fuzzy β-closed, fuzzy δ-closed) sets is denoted by $F S C(X)$ (respectively, $F \beta C(X), F \delta C(X)$).

2. Some Well-Known Definitions

In this section we first recall some definitions from $[2,3,10,12,15]$ for ready references.
Definition 2.1. A fuzzy set A in an $\mathrm{fts}(X, \tau)$ is called
(i) $f g$-closed [2,3] if $c l A \leq U$ whenever $A \leq U$ where U is fuzzy open in X,
(ii) fgs-closed [3] if $s c l A \leq U$ whenever $A \leq U$ where U is fuzzy open in X,
(iii) fsg-closed [3] if scl $A \leq U$ whenever $A \leq U$ where $U \in F S O(X)$, (iv) $f g \beta$-closed [3] if $\beta c l A \leq U$ whenever $A \leq U$ where U is fuzzy open in X,
(v) $f \beta g$-closed [3] if $\beta c l A \leq U$ whenever $A \leq U$ where $U \in F \beta O(X)$.

Definition 2.2. A function $f: X \rightarrow Y$ is called
(i) fuzzy closed [15] if $f(U)$ is fuzzy closed in Y for every fuzzy closed set U in X,
(ii) $f g$-closed [3] if $f(U)$ is $f g$-closed in Y for every fuzzy closed set U in X,
(iii) $f g s$-closed [3] if $f(U)$ is $f g s$-closed in Y for every fuzzy closed set U in X,
(iv) fuzzy continuous [12] if $f^{-1}(U)$ is fuzzy open in X for every fuzzy open set U in Y,
(v) $f g$-continuous [3] if $f^{-1}(U)$ is $f g$-closed in X for every fuzzy closed set U in Y.

Definition 2.3 [10]. An $\mathrm{fts}(X, \tau)$ is said to be fuzzy normal if for any two fuzzy closed sets A, B in X with $A \not q B$, there exist two fuzzy open sets U, V in X such that $A \leq U, B \leq V$ and $U \not q V$.

3. Fuzzy Generalized δ-semiopen Set : Some Properties

In this section we first recall the definition of fuzzy δ-semiopen set from [5] and then establish the mutual relationships between this set with the sets mentioned in Section 2. Afterwards, we introduce and study $f g \delta$-semiopen set and $f g \delta$-semiclosed function.

Definition 3.1 [5]. A fuzzy set A in an fts (X, τ) is called fuzzy δ-semiopen if $A \leq \operatorname{cl}(\operatorname{dint} A)$. The complement of fuzzy δ-semiopen set is called fuzzy δ-semiclosed set.

The union (intersection) of all fuzzy δ-semiopen (fuzzy δ semiclosed) sets contained in (containing) a fuzzy set A is called fuzzy δ-semiinterior (fuzzy δ-semiclosure) of A, denoted by $\delta \operatorname{sint} A(\delta s c l A)$. A fuzzy set A in an fts (X, τ) is fuzzy δ-semiclosed (fuzzy δ-semiopen) iff $A=\delta s c l A(A=\delta \operatorname{sint} A)$.

The collection of all fuzzy δ-semiopen (fuzzy δ-semiclosed) sets in X is denoted by $F \delta S O(X)(F \delta S C(X))$.

Remark 3.2 (i). It is clear from definition that $\operatorname{dint} A \leq \operatorname{int} A$ for any fuzzy set A in an $\mathrm{fts}(X, \tau)$ and so fuzzy δ-semiopen set is fuzzy semiopen. But the converse is not true, in general, follows from next example.
(ii) The collection of all fuzzy closed sets in X and $F \delta S C(X)$ are independent concepts follows from the next example.
(iii) Fuzzy δ-open set is fuzzy δ-semiopen, but not conversely, follows from the next example.
(iv) For any fuzzy set A in an fts $(X, \tau), A \in F \delta S O(X)$ implies $A \leq c l(\operatorname{dint} A) \leq c l(\operatorname{int} A) \leq c l(\operatorname{int}(c l A))$ implies $A \in F \beta O(X)$. But not conversely follows from the next example.

Example 3.3. Let $X=\{a, b\}, \tau=\left\{0_{X}, 1_{X}, A, B\right\}$ where $A(a)=0.5, A(b)=0.3, B(a)=0.6, B(b)=0.4$. Then (X, τ) is an fts. Now $\operatorname{FSO}(X)=\left\{0_{X}, 1_{X}, U, V\right\}$ where $A \leq U \leq 1_{X} \backslash A, V \geq B$ and $F S C(X)=\left\{0_{X}, 1_{X}, 1_{X} \backslash U, 1_{X} \backslash V\right\}$ where $A \leq 1_{X} \backslash U \leq 1_{X} \backslash A, 1_{X} \backslash V \leq 1_{X} \backslash B, F \delta O(X)=\left\{0_{X}, 1_{X}, A\right\}$, $F \delta C(X)=\left\{0_{X}, 1_{X}, 1_{X} \backslash A\right\}, F \delta S O(X)=\left\{0_{X}, 1_{X}, U\right\}, F \delta S C(X)=$ $\left\{0_{X}, 1_{X}, 1_{X} \backslash U\right\}$ where $A \leq U \leq 1_{X} \backslash A$. Consider the fuzzy set C, defined by $C(a)=0.4, C(b)=0.5$. Then $C \in F S C(X)$. But $\operatorname{int}(\delta c l C)=\operatorname{int}\left(1_{X} \backslash A\right)=A \not \leq C \Rightarrow C \notin F \delta S C(X)$.
Now $1_{X} \backslash B \in \tau^{c}$. But $1_{X} \backslash B \notin F \delta S C(X)$ as $\operatorname{int}\left(\delta c l\left(1_{X} \backslash B\right)\right)=$ $\operatorname{int}\left(1_{X} \backslash A\right)=A \not \subset 1_{X} \backslash B$.

Consider the fuzzy set D, defined by $D(a)=D(b)=0.5$. Then $D \notin \tau^{c}$, but $\operatorname{int}(\delta c l D)=\operatorname{int}\left(1_{X} \backslash A\right)=A \leq D$ and so $D \in F \delta S C(X)$. Again consider the fuzzy set E, defined by $E(a)=0.5, E(b)=0.6$. Then $E \in F \delta S O(X)$, but $E \notin F \delta O(X)$.
Also $\operatorname{int}(c l(\operatorname{int} C))=0_{X} \leq C$ and so $C \in F \beta C(X)$, but $C \notin F \delta S C(X)$.

Definition 3.4. A function $f: X \rightarrow Y$ is called fuzzy δ-semiclosed (resp., fuzzy δ-semiopen) if $f(F) \in F \delta S C(Y)$ (resp., $f(F) \in F \delta S O(Y)$) in Y for each $F \in F \delta S C(X)$ (resp., $F \in F \delta S O(X)$).

Proposition 3.5. If a function $f: X \rightarrow Y$ is fuzzy δ-semiclosed, injective, then for each $B \in I^{Y}$ and each $V \in F \delta S O(X)$ with $f^{-1}(B) \leq V$, there exists $U \in F \delta S O(Y)$ such that $B \leq U$ and $f^{-1}(U) \leq V$.
Proof. Let $B \in I^{Y}$ and $V \in F \delta S O(X)$ with $f^{-1}(B) \leq V$. Then $1_{X} \backslash V \leq 1_{X} \backslash f^{-1}(B) \Rightarrow f\left(1_{X} \backslash V\right) \leq f\left(1_{X} \backslash f^{-1}(B)\right) \leq 1_{Y} \backslash B$ (as f is injective). Since f is fuzzy δ-semiclosed, $f\left(1_{X} \backslash V\right) \in F \delta S C(Y)$. Let $U=1_{Y} \backslash f\left(1_{X} \backslash V\right)$. Then $U \in F \delta S O(Y)$ and $B \leq U$. Again $f^{-1}(U)=f^{-1}\left(1_{Y} \backslash f\left(1_{X} \backslash V\right)\right) \leq 1_{X} \backslash\left(1_{X} \backslash V\right)=V$.

Definition 3.6. A fuzzy set A in an fts (X, τ) is said to be fuzzy generalized δ-semiclosed ($f g \delta$-semiclosed, for short) if δ scl $A \leq U$ whenever $A \leq U$ where U is fuzzy open in X.

The complement of a fuzzy generalized δ-semiclosed set is called fuzzy generalized δ-semiopen ($f g \delta$-semiopen, for short).

Definition 3.7. A fuzzy set A is called a fuzzy generalized δ-semiopen neighbourhood ($f g \delta$-semiopen nbd, for short) of a fuzzy point x_{α} if there is an $f g \delta$-semiopen set U in X such that $x_{\alpha} \leq U \leq A$.

Remark 3.8. (i) A fuzzy δ-semiclosed set is $f g \delta$-semiclosed, but not conversely follows from the next example.
(ii) Since for any fuzzy set A in an fts (X, τ), scl $A \leq \delta s c l A$, $\beta c l A \leq \delta s c l A$, we conclude that $f g \delta$-semiclosed set is $f g s$-closed and $f g \beta$-closed. But the converses are not true, in general, follow from the next example.
(iii) In [5], it is shown that a fuzzy point $x_{\alpha} \in \delta s c l A$ for any fuzzy set A in an fts X iff every fuzzy δ-semiopen set U with $x_{\alpha} q U, U q A$. From
this it is clear that union of two $f g \delta$-semiclosed sets is $f g \delta$-semiclosed. But the intersection of two $f g \delta$-semiclosed sets may not be so, follows from the next example.

Example 3.9 (i). Let $X=\{a, b\}, \tau=\left\{0_{X}, 1_{X}, A, B\right\}$ where $A(a)=0.5, A(b)=0.6, B(a)=0.5, B(b)=0.55$. Then (X, τ) is an fts. Here $F S O(X)=\left\{0_{X}, 1_{X}, U\right\}$ where $U \geq B, F S C(X)=\left\{0_{X}, 1_{X}, 1_{X} \backslash U\right\}$ where $1_{X} \backslash U \leq 1_{X} \backslash B$, $F \delta S O(X)=F \delta S C(X)=\left\{0_{X}, 1_{X}\right\}$. Consider a fuzzy set V, defined by $V(a)=V(b)=0.6$. Then $V \notin F \delta S C(X)$. But 1_{X} is the only fuzzy open set in X such that $V<1_{X}$ and so $\delta s c l V \leq 1_{X} \Rightarrow V$ is $f g \delta$-semiclosed in X.
Next consider a fuzzy set C, defined by $C(a)=0.5, C(b)=0.4$. Then $C \in F S C(X) \Rightarrow C$ is $f g s$-closed in X. But $C<B(\in \tau)$ and $\delta s c l C=1_{X} \not \leq B \Rightarrow C$ is not $f g \delta$-semiclosed. Also $C \in F \beta C(X)$ and so C is $f g \beta$-closed in X.
(ii). Consider Example 3.3. Consider two fuzzy sets C and D, defined by $C(a)=0.55, C(b)=0.7, D(a)=0.7, D(b)=0.4$. Only 1_{X} is the fuzzy open set in X such that $C<1_{X}, D<1_{X}$ and so $\delta s c l C \leq 1_{X}$ and $\delta s c l D \leq 1_{X}$ imply that C and D are $f g \delta$-semiclosed in X. Let $E=C \bigwedge D$. Then $E(a)=0.55, E(b)=0.4$. Then $B \in \tau$ be such that $E<B$. Then $\delta s c l E=1_{X} \not \leq B$ which implies that E is not $f g \delta$-semiclosed in X

Remark 3.10. $f \beta g$-closedness and $f g \delta$-semiclosedness are independent concepts follows from the next two examples.

Example 3.11. Not every $f \beta g$-closed set is $f g \delta$-semiclosed set Consider Example $3.9(\mathrm{i})$. Here any fuzzy set $W \not \leq 1_{X} \backslash B$ is fuzzy β-open in X. Consider a fuzzy set T such that $T>1_{X} \backslash B$. Now $C<T$ and $\beta c l C=C<T$ and so C is $f \beta g$-closed set in (X, τ), though C is not $f g \delta$-semiclosed in X.

Example 3.12. Not every $f g \delta$-semiclosed set is $f \beta g$-closed set Let $X=\{a, b\}, \tau=\left\{0_{X}, 1_{X}, A\right\}$ where $A(a)=0.5, A(b)=0.6$. Then (X, τ) is an fts. $F \beta O(X)=\left\{0_{X}, 1_{X}, U\right\}$ where $U \not \leq 1_{X} \backslash A$ and $F \beta C(X)=\left\{0_{X}, 1_{X}, 1_{X} \backslash U\right\}$ where $1_{X} \backslash U \nsupseteq A$. $F \delta S O(X)=F \delta S C(X)=\left\{0_{X}, 1_{X}\right\}$. Consider the fuzzy set B defined by $B(a)=0.5, B(b)=0.7$. Then $B \in F \beta O(X)$ and $B \leq B$. Now $\beta c l B=1_{X} \not \leq B \Rightarrow B$ is not $f \beta g$-closed set. But 1_{X} is the only
fuzzy open set in X such that $B<1_{X}$ and so $\delta s c l B=1_{X} \leq 1_{X}$ which shows that B is $f g \delta$-semiclosed in X.

Remark 3.13. $f s g$-closedness and $f g \delta$-semiclosedness are independent concepts follows from the next two examples.

Example 3.14. Not every $f s g$-closed set is $f g \delta$-semiclosed set Consider Example 3.9(i). Now $C<B \in F S O(X)$ and $s c l C=C<B$ which implies that C is $f s g$-closed set in X. But C is not $f g \delta$ semiclosed as shown in Example 3.9(i).

Example 3.15. Not every $f g \delta$-semiclosed set is $f s g$-closed set Consider Example 3.12. Here B is $f g \delta$-semiclosed. Now $B \in \operatorname{FSO}(X)=\left\{0_{X}, 1_{X}, U\right\}$ where $U \geq A$. Then $F S C(X)=\left\{0_{X}, 1_{X}, 1_{X} \backslash U\right\}$ where $1_{X} \backslash U \leq 1_{X} \backslash A$. So scl $B=1_{X} \not \leq B$ and so B is not $f s g$-closed set.

Remark 3.16. $f g$-closedness and $f g \delta$-semiclosedness are independent concepts follows from the next two examples.

Example 3.17. Not every $f g$-closed set is $f g \delta$-semiclosed set Consider Example 3.14. Here C is not $f g \delta$-semiclosed. Now $C<B(\in \tau)$ and $c l C=1_{X} \backslash A=C<B$ and so C is $f g$-closed set.

Example 3.18. Not every $f g \delta$-semiclosed set is $f g$-closed set Consider Example 3.3. Here $1_{X} \backslash E$ being fuzzy δ-semiclosed is $f g \delta$-semiclosed. Now $1_{X} \backslash E \leq B(\in \tau)$. But $\operatorname{cl}\left(1_{X} \backslash E\right)=1_{X} \backslash A \not \leq B$ and so $1_{X} \backslash E$ is not $f g$-closed set.

Definition 3.19. A function $f: X \rightarrow Y$ is called $f g \delta$-semiclosed if $f(U)$ is $f g \delta$-semiclosed in Y for each fuzzy closed set U in X.

Note 3.20. $f g \delta$-semiclosed function and $f g$-closed function are independent concepts follow from the next two examples.

Example 3.21. ot every $f g \delta$-semiclosed function is $f g$-closed function
Let $X=\{a, b\}, \tau=\left\{0_{X}, 1_{X}, C\right\}, \tau_{1}=\left\{0_{X}, 1_{X}, A, B\right\}$ where $C(a)=$ $0.5, C(b)=0.6, A(a)=0.5, A(b)=0.3, B(a)=0.6, B(b)=0.4$. Then (X, τ) and $\left(X, \tau_{1}\right)$ are fts's. Now $F \delta S C\left(X, \tau_{1}\right)=\left\{0_{X}, 1_{X}, U\right\}$ where
$A \leq U \leq 1_{X} \backslash A$. Consider the identity function $i:(X, \tau) \rightarrow\left(X, \tau_{1}\right)$. Now $1_{X} \backslash C \in \tau^{c}, i\left(1_{X} \backslash C\right)=1_{X} \backslash C \leq B\left(\in \tau_{1}\right)$. Now $\delta s c l_{\tau_{1}}\left(1_{X} \backslash C\right)=1_{X} \backslash C \leq B$ implies that $1_{X} \backslash C$ is $f g \delta$ semiclosed in $\left(X, \tau_{1}\right)$ and so i is $f g \delta$-semiclosed function. But $\operatorname{cl}_{\tau_{1}}\left(1_{X} \backslash C\right)=1_{X} \backslash A \not \leq B$ implies that $1_{X} \backslash C$ is not $f g$-closed in $\left(X . \tau_{1}\right)$ and so i is not $f g$-closed function.

Example 3.22. Not every $f g$-closed function is $f g \delta$-semiclosed function
Let $X=\{a, b\}, \tau=\left\{0_{X}, 1_{X}, A\right\}, \tau_{1}=\left\{0_{X}, 1_{X}, A, B\right\}$ where $A(a)=0.5, A(b)=0.6, B(a)=0.5, B(b)=0.55$. Then (X, τ) and $\left(X, \tau_{1}\right)$ are fts's. Consider the identity function $i:(X, \tau) \rightarrow\left(X, \tau_{1}\right)$. Now $F \delta S C\left(X, \tau_{1}\right)=\left\{0_{X}, 1_{X}\right\}$. Now $1_{X} \backslash A \in \tau^{c}$, $i\left(1_{X} \backslash A\right)=1_{X} \backslash A<B\left(\in \tau_{1}\right)$. So $c l_{\tau_{1}}\left(1_{X} \backslash A\right)=1_{X} \backslash A<B$ and so $1_{X} \backslash A$ is $f g$-closed in $\left(X, \tau_{1}\right)$ which shows that i is $f g$-closed function. But $\delta s \operatorname{sl}_{\tau_{1}}\left(1_{X} \backslash A\right)=1_{X} \not \subset B$ and so $1_{X} \backslash A$ is not $f g \delta$-semiclosed set in $\left(X, \tau_{1}\right)$. Hence i is not $f g \delta$-semiclosed function.

Theorem 3.23. An injective function $f: X \rightarrow Y$ is $f g \delta$-semiclosed if and only if for each $S \in I^{Y}$ and each fuzzy open set U in X with $f^{-1}(S) \leq U$, there exists $f g \delta$-semiopen set V in Y such that $S \leq V$ and $f^{-1}(V) \leq U$.
Proof. Let f be $f g \delta$-semiclosed function. Let $S \in I^{Y}$ and U be a fuzzy open set in X such that $f^{-1}(S) \leq U$. Then $1_{X} \backslash f^{-1}(S) \geq$ $1_{X} \backslash U \Rightarrow f\left(1_{X} \backslash U\right) \leq f\left(1_{X} \backslash f^{-1}(S)\right) \leq 1_{Y} \backslash f\left(f^{-1}(S)\right)=1_{Y} \backslash S$ (as f is injective). Now $1_{X} \backslash U$ is fuzzy closed in X. Then $f\left(1_{X} \backslash U\right)$ is $f g \delta$ semiclosed in Y. Let $V=1_{Y} \backslash f\left(1_{X} \backslash U\right)$. Then V is $f g \delta$-semiopen in Y. Now $S \leq 1_{Y} \backslash f\left(1_{X} \backslash U\right)=V$ and $f^{-1}(V)=f^{-1}\left(1_{Y} \backslash f\left(1_{X} \backslash U\right)\right)=$ $1_{X} \backslash f^{-1}\left(f\left(1_{X} \backslash U\right)\right) \leq U$.
Conversely, let F be a fuzzy closed set in X and O be a fuzzy open set in Y such that

$$
f(F) \leq O \ldots(i)
$$

Then $f^{-1}\left(1_{Y} \backslash f(F)\right)=1_{X} \backslash f^{-1}(f(F)) \leq 1_{X} \backslash F$ which is fuzzy open in X. By hypothesis, there exists an $f g \delta$-semiopen set V in Y such that

$$
1_{Y} \backslash f(F) \leq V_{\ldots}(i i)
$$

and

$$
f^{-1}(V) \leq 1_{X} \backslash F \ldots(i i i)
$$

Therefore, $F \leq 1_{X} \backslash f^{-1}(V)$ implies that $f(F) \leq f\left(1_{X} \backslash f^{-1}(V)\right) \leq$ $1_{Y} \backslash V$ (as f is injective) and so

$$
V \leq 1_{Y} \backslash f(F) \ldots(i v)
$$

From (i), $1_{Y} \backslash O \leq 1_{Y} \backslash f(F), f^{-1}\left(1_{Y} \backslash O\right) \leq f^{-1}\left(1_{Y} \backslash f(F)\right) \leq f^{-1}(V)$ (by (ii)) $\leq 1_{X} \backslash F$ (by (iii)). Then $F \leq 1_{X} \backslash f^{-1}(V) \leq$ $1_{X} \backslash f^{-1}\left(1_{Y} \backslash f(F)\right.$) (by (ii) $\leq 1_{X} \backslash f^{-1}\left(1_{Y} \backslash O\right)$ which shows that $f(F) \leq f\left(1_{X} \backslash f^{-1}\left(1_{Y} \backslash O\right)\right) \leq 1_{Y} \backslash f\left(f^{-1}\left(1_{Y} \backslash O\right)\right)=O$ (as f is injective). As $1_{Y} \backslash V$ is $f g \delta$-semiclosed in $Y, \delta \operatorname{scl}(f(F)) \leq \delta s c l\left(1_{Y} \backslash V\right)$ (by (iv)) $=1_{Y} \backslash V \leq f(F)$ (by (ii)) $\leq O$ (by (i)) and so $f(F)$ is $f g \delta$-semiclosed in Y. Consequently, f is $f g \delta$-semiclosed function.

Now we recall the next two definitions from $[8,14]$ for ready references.

Definition 3.24 [14]. A function $f: X \rightarrow Y$ is said to be fuzzy presemiopen (resp., fuzzy presemiclosed) function if $f(V)$ is fuzzy semiopen (resp., fuzzy semiclosed) in Y for every fuzzy semiopen (resp., fuzzy semiclosed) set V in X.

Definition 3.25 [8]. A function $f: X \rightarrow Y$ is said to be fuzzy β-open (resp., fuzzy β-closed) function if $f(V)$ is fuzzy β-open (resp., fuzzy β-closed) in Y for every fuzzy β-open (resp., fuzzy β-closed) set V in X.

Theorem 3.26. If a function $f: X \rightarrow Y$ is fuzzy presemiclosed, continuous and $f g \delta$-semiclosed function and $A\left(\in I^{X}\right)$ is $f g \delta$-semiclosed set in X, then $f(A)$ is $f g s$-closed set in Y.
Proof. Let O be any fuzzy set in Y such that $f(A) \leq O$. Then $A \leq f^{-1}(f(A)) \leq f^{-1}(O)$ which is fuzzy open in X as f is continuous. Since A is $f g \delta$-semiclosed, scl $A \leq \delta s c l A \leq f^{-1}(O)$. scl A being fuzzy semiclosed in $X, f($ scl $A)$ is fuzzy semiclosed in Y as f is fuzzy presemiclosed and so $\operatorname{scl}(f(s c l A))=f(s c l A) \leq f(\delta s c l A) \leq f\left(f^{-1}(O)\right) \leq O$. Now $f(A) \leq \operatorname{scl}(f(A)) \leq \operatorname{scl}(f(s c l A)) \leq O$ which implies that $\operatorname{scl}(f(A)) \leq O$ and so $f(A)$ is $f g s$-closed in Y.

Theorem 3.27. If a function $f: X \rightarrow Y$ is fuzzy β-closed, continuous and $f g \delta$-semiclosed function and $A\left(\in I^{X}\right)$ is $f g \delta$-semiclosed set in X, then $f(A)$ is $f g \beta$-closed set in Y.
Proof. The proof is same as that of the proof of Theorem 3.26.

Remark 3.28. Composition of two $f g \delta$-semiclosed functions may not be so as it seen from the following example.

Example 3.29. Let $X=\{a, b\}, \tau_{1}=\left\{0_{X}, 1_{X}, A\right\}, \tau_{2}=\left\{0_{X}, 1_{X}\right\}$, $\tau_{3}=\left\{0_{X}, 1_{X}, A, B\right\}$ where $A(a)=0.5, A(b)=0.6, B(a)=0.5, B(b)=$ 0.55. Then $\left(X, \tau_{1}\right),\left(X, \tau_{2}\right)$ and $\left(X, \tau_{3}\right)$ are fts's. Consider two identity functions $i_{1}:\left(X, \tau_{1}\right) \rightarrow\left(X, \tau_{2}\right)$ and $i_{2}:\left(X, \tau_{2}\right) \rightarrow\left(X, \tau_{3}\right)$. Clearly i_{1} and i_{2} are $f g \delta$-semiclosed functions. Now $1_{X} \backslash A \in \tau_{1}^{c}$. Then $\left(i_{2} \circ i_{1}\right)\left(1_{X} \backslash A\right)=1_{X} \backslash A<B\left(\in \tau_{3}\right)$. Now $\operatorname{F\delta SC}\left(X, \tau_{3}\right)=\left\{0_{X}, 1_{X}\right\}$ and so $\delta s c l_{\tau_{3}}\left(1_{X} \backslash A\right)=1_{X} \not \leq B$ and so $1_{X} \backslash A$ is not $f g \delta$-semiclosed in $\left(X, \tau_{3}\right)$ and so $i_{2} \circ i_{1}$ is not $f g \delta$-semiclosed function.

Theorem 3.30. If $f: X \rightarrow Y$ is fuzzy closed function and $g: Y \rightarrow Z$ is $f g \delta$-semiclosed function, then $g \circ f: X \rightarrow Z$ is $f g \delta$-semiclosed function.
Proof. Let U be a fuzzy closed set in X. As f is fuzzy closed function $f(U)$ is fuzzy closed set in Y. Again g is $f g \delta$-semiclosed function, $g(f(U))=(g \circ f)(U)$ is $f g \delta$-semiclosed set in Z. Hence $g \circ f$ is $f g \delta$-semiclosed function.

Definition 3.31. An fts (X, τ) is called fuzzy δ-seminormal if for any two fuzzy closed sets A, B in X with $A \not q B$, there exist two $f g \delta$-semiopen sets U, V in X such that $A \leq U, B \leq V$ and $U \not q V$.

Theorem 3.32. If $f: X \rightarrow Y$ is $f g \delta$-semiclosed, continuous, bijective function from a fuzzy normal space X onto an fts Y, then Y is fuzzy δ-seminormal.
Proof. Let A, B be two fuzzy closed sets in Y with $A / q B$, Then $f^{-1}(A), f^{-1}(B)$ are fuzzy closed sets in X with $f^{-1}(A) / q f^{-1}(B)$ (as f is fuzzy continuous function). Since X is fuzzy normal, there exist two fuzzy open sets U, V in X such that $f^{-1}(A) \leq U, f^{-1}(B) \leq V$ and $U / q V$. By Theorem 3.23, there are $f g \delta$-semiopen sets G, H in Y such that $A \leq G, B \leq H$ and $f^{-1}(G) \leq U, f^{-1}(H) \leq V$. We claim that $G / q H$. Indeed, if $G q H$, then there exists $y \in Y$ such that $G(y)+H(y)>1$ and so $[f(U)](y)+[f(V)](y)>1$ (as f is bijective) which implies that $U\left(f^{-1}(y)\right)+V\left(f^{-1}(y)\right)>1$ and so $U q V$, a contradiction. Hence Y is fuzzy δ-seminormal space.

4. Fuzzy Generalized δ-Semiclosure Operator and Fuzzy Generalized δ-Semicontinuous Function

In this section we first introduce and study fuzzy generalized δ semiclosure operator and then introduce fuzzy generalized δ-semiopen function. Afterwards, fuzzy generalized δ-semicontinuous function is introduced and studied.

Definition 4.1. The intersection of all $f g \delta$-semiclosed sets containing a fuzzy set A in an $\mathrm{fts}(X, \tau)$ is called fuzzy generalized δ semiclosure of A, denoted by $g \delta \operatorname{scl}(A)$, i.e., $g \delta \operatorname{scl}(A)=\bigwedge\{F: A \leq F$ and F is $f g \delta$-semiclosed set in $X\}$.

Remark 4.2. For any fuzzy set A in an $\mathrm{fts}(X, \tau)$, we have $A \leq g \delta \operatorname{scl}(A)$. If A is $f g \delta$-semiclosed, then $A=g \delta s c l(A)$. But $g \delta s c l$ may not be $f g \delta$-semiclosed follows from the fact that intersection of two $f g \delta$-semiclosed sets need not be so, as it is seen in Example 3.9(ii).

Proposition 4.3. Let (X, τ) be an fts and $A \in I^{X}$. Then for a fuzzy point x_{t} in $X, x_{t} \in \operatorname{g\delta scl}(A)$ if and only if every $f g \delta$-seniopen set $U, x_{t} q U$ implies $U q A$.
Proof. Let $x_{t} \in g \delta \operatorname{scl}(A)$ for any $A \in I^{X}$ and U be any $f g \delta$ semiopen set in X with $x_{t} q U$. Now $x_{t} \in g \delta \operatorname{scl}(A) \Rightarrow x_{t} \in F$, for all $f g \delta$-semiclosed sets $F \geq A$. Now $U(x)+t>1$ implies that $t>1-U(x)$ and so $x_{t} \notin 1_{X} \backslash U$ which is $f g \delta$-semiclosed in X. Then by definition, $A \not \not 1_{X} \backslash U$ and so there exists $y \in X$ such that $A(y)>\left(1_{X} \backslash U\right)(y)=1-U(y)$. Hence $A q U$.
Conversely, let for every $f g \delta$-semiopen set U in $X, x_{t} q U$ imply $U q A$. We have to prove that $x_{t} \in F$, for all $f g \delta$-semiclosed set $F \geq A$. Let F be $f g \delta$-semiclosed set in X with $F \geq A$. If possible, let $x_{t} \notin F$. Then $F(x)<t$ and so $1-F(x)>1-t$ which implies that $x_{t} q\left(1_{X} \backslash F\right)$ where $1_{X} \backslash F$ is $f g \delta$-semiopen in X. By hypothesis, $\left(1_{X} \backslash F\right) q A$. As $1_{X} \backslash F \leq 1_{X} \backslash A,\left(1_{X} \backslash A\right) q A$, a contradiction. The claim follows.

Theorem 4.4. Let (X, τ) be an fts and $A, B \in I^{X}$. Then the following statements are true :
(i) $g \delta \operatorname{scl}\left(0_{X}\right)=0_{X}$,
(ii) $g \delta \operatorname{scl}\left(1_{X}\right)=1_{X}$,
(iii) if $A \leq B$, then $g \delta \operatorname{scl}(A) \leq g \delta \operatorname{scl}(B)$,
(iv) $g \delta \operatorname{scl}(A \bigvee B)=g \delta \operatorname{scl}(A) \bigvee g \delta \operatorname{scl}(B)$,
(v) $g \delta \operatorname{scl}(A \bigwedge B) \leq g \delta \operatorname{scl}(A) \bigwedge g \delta \operatorname{scl}(B)$, equality does not hold, in
general, follows from Remark 4.2,
(vi) $g \delta \operatorname{scl}(g \delta \operatorname{scl}(A))=g \delta \operatorname{scl}(A)$.

Proof. (i), (ii) and (iii) are obvious.
(iv) By (iii), $g \delta \operatorname{scl}(A) \bigvee g \delta \operatorname{scl}(B) \leq g \delta \operatorname{scl}(A \bigvee B)$.

To prove the converse, let $x_{t} \in \operatorname{g\delta scl}(A \bigvee B)$. Then by Result 4.3, for any $f g \delta$-semiopen set U in $X, x_{t} q U$ implies $U q(A \bigvee B)$. Then there exists $y \in X$ such that $U(y)+\max \{A(y), B(y)\}>1$ which implies that either $U(y)+A(y)>1$ or $U(y)+B(y)>1$ and so either $U q A$ or $U q B$. Then either $x_{t} \in g \delta s c l(A)$ or $x_{t} \in g \delta s c l(B)$. So $x_{t} \in g \delta \operatorname{scl}(A) \bigvee g \delta \operatorname{scl}(B)$.
(v) Follows from (iii).
(vi) From (iii) as $A \leq g \delta \operatorname{scl}(A), g \delta \operatorname{scl}(A) \leq g \delta \operatorname{scl}(g \delta \operatorname{scl}(A))$.

Conversely, let $x_{t} \in g \delta \operatorname{scl}(g \delta s c l(A))=g \delta \operatorname{scl}(B)$ where $B=g \delta \operatorname{scl}(A)$.
Let U be any $f g \delta$-semiopen set in X with $x_{t} q U$. Then $U q B$ which implies that there exists $y \in X$ such that $U(y)+B(y)>1$. Let $B(y)=s$. Then $y_{s} \in B=g \delta \operatorname{scl}(A)$. Now $y_{s} q U$ where U is $f g \delta$-semiopen in X and so $U q A$ and so $x_{t} \in g \delta \operatorname{scl}(A)$ and so $g \delta \operatorname{scl}(g \delta \operatorname{scl}(A)) \leq g \delta \operatorname{scl}(A)$. The claim follows.

Theorem 4.5. If $f: X \rightarrow Y$ is $f g \delta$-semiclosed function, then $g \delta \operatorname{scl}(f(A)) \leq f(c l A)$, for all $A \in I^{X}$.
Proof. Let $A \in I^{X}$. Then $c l A$ is fuzzy closed in X. As f is $f g \delta$-semiclosed function, $f(c l A)$ is $f g \delta$-semiclosed in Y. Now $f(A) \leq f(c l A)$. So $g \delta \operatorname{scl}(f(A)) \leq g \delta \operatorname{scl}(f(c l A))=f(c l A)$.

Definition 4.6. The union of all $f g \delta$-semiopen sets contained in a fuzzy set A in an $\mathrm{fts} X$ is called fuzzy $g \delta$-semiinterior of A, denoted by $g \delta \operatorname{sint}(A)$.

Lemma 4.7. For a fuzzy set A in an fts (X, τ), the following statements are true:
(i) $g \delta \operatorname{scl}\left(1_{X} \backslash A\right)=1_{X} \backslash g \delta \operatorname{sint}(A)$
(ii) $g \delta \operatorname{sint}\left(1_{X} \backslash A\right)=1_{X} \backslash g \delta \operatorname{scl}(A)$.

Proof (i). Let $x_{t} \in g \delta s c l\left(1_{X} \backslash A\right)$. If possible, let $x_{t} \notin 1_{X} \backslash g \delta \operatorname{sint}(A)$. Then $1-(g \delta \sin t(A))(x)<t$ which implies that $[g \delta \sin t(A)](x)+t>1$ and so $g \delta \operatorname{sint}(A) q x_{t}$. Then there exists at least one $f g \delta$-semiopen set $F \leq A$ with $x_{t} q F$ which shows that $x_{t} q A$. As $x_{t} \in g \delta \operatorname{scl}\left(1_{X} \backslash\right.$ $A), F q\left(1_{X} \backslash A\right)$ and so $A q\left(1_{X} \backslash A\right)$, a contradiction. Hence

$$
g \delta \operatorname{scl}\left(1_{X} \backslash A\right) \leq 1_{X} \backslash g \delta \operatorname{sint}(A) \ldots(1)
$$

Conversely, let $x_{t} \in 1_{X} \backslash g \delta \operatorname{sint}(A)$. Then $1-[(g \delta \operatorname{sint}(A)](x) \geq t$ which implies that $x_{t} / q(g \delta \operatorname{sint}(A))$ and so $x_{t} / q F$ where F is $f g \delta$ semiopen set in X contained in $A \ldots$ (2).
Let U be any $f g \delta$-semiclosed set in X such that $1_{X} \backslash A \leq U$. Then $1_{X} \backslash U \leq A$. Now $1_{X} \backslash U$ is $f g \delta$-semiopen set in X contained in A. By (2), $x_{t} \not \not q\left(1_{X} \backslash U\right)$. Then $x_{t} \in U$ and so $x_{t} \in g \delta \operatorname{scl}\left(1_{X} \backslash A\right)$ which implies that

$$
1_{X} \backslash g \delta \operatorname{sint}(A) \leq g \delta \operatorname{scl}\left(1_{X} \backslash A\right) \ldots(3) .
$$

Combining (1) and (3), (i) follows.
(ii) Putting $1_{X} \backslash A$ for A in (i), we get $g \delta \operatorname{scl}(A)=1_{X} \backslash g \delta \operatorname{sint}\left(1_{X} \backslash A\right)$ which implies that $g \delta \operatorname{sint}\left(1_{X} \backslash A\right)=1_{X} \backslash g \delta \operatorname{scl}(A)$.

Definition 4.8. A function $f: X \rightarrow Y$ is called $f g \delta$-semiopen if for each fuzzy open set U in $X, f(U)$ is $f g \delta$-semiopen in Y.

The next theorem characterizes $f g \delta$-semiopen function.
Theorem 4.9. For a bijective function $f: X \rightarrow Y$, the following statements are equivalent:
(i) f is $f g \delta$-semiopen,
(ii) $f(\operatorname{int} A) \leq g \delta \operatorname{sint}(f(A))$, for all $A \in I^{X}$,
(iii) for each fuzzy point x_{t} in X and each fuzzy open set U in X containing x_{t}, there exists an $f g \delta$-semiopen set V containing $f\left(x_{t}\right)$ such that $V \leq f(U)$.
Proof (i) \Rightarrow (ii). Let $A \in I^{X}$. Then int A is fuzzy open in X. By (i), $f($ int A) is $f g \delta$-semiopen in Y. Since $f(\operatorname{int} A) \leq f(A)$ and $g \delta \operatorname{sint}(f(A))$ is the union of all $f g \delta$-semiopen sets contained in $f(A)$, we have $f(\operatorname{int} A) \leq g \delta \operatorname{sint}(f(A))$.
(ii) \Rightarrow (i). Let U be a fuzzy open set in X. Then $f(U)=f(\operatorname{int} U) \leq g \delta \operatorname{sint}(f(U))$ (by (ii)) and so $f(U)$ is $f g \delta$ semiopen in Y.
(ii) \Rightarrow (iii). Let x_{t} be a fuzzy point in X and U, a fuzzy open set in X such that $x_{t} \in U$. Then $f\left(x_{t}\right) \in f(U)=f(\operatorname{int} U) \leq g \delta \operatorname{sint}(f(U))$ (by (ii)). Then $f(U)$ is $f g \delta$-semiopen set in Y. Let $V=f(U)$. Then $f\left(x_{t}\right) \in V$ and $V \leq f(U)$.
(iii) \Rightarrow (i). Let U be any fuzzy open set in X and y_{t} be any fuzzy point in $f(U)$, i.e., $y_{t} \in f(U)$. Then there exists $x \in X$ such that $f(x)=y$ (as f is bijective). Then $[f(U)](y) \geq t$ and so $U\left(f^{-1}(y)\right) \geq t$. Then $U(x) \geq t$ which implies that $x_{t} \in U$. By (iii), there exists an $f g \delta$-semiopen set V in Y such that $f\left(x_{t}\right) \in V$ and
$V \leq f(U)$. Then $f\left(x_{t}\right) \in V=g \delta \operatorname{sint}(V) \leq g \delta \operatorname{sint}(f(U))$. Since x_{t} is taken arbitrarily and $f(U)$ is the union of all fuzzy points in $f(U)$, $f(U) \leq g \delta \operatorname{sint}(f(U))$ and so $f(U)$ is $f g \delta$-semiopen in Y. Hence f is $f g \delta$-semiopen function.

Theorem 4.10. If $f: X \rightarrow Y$ is $f g \delta$-semiopen bijective function, then the following statements are true:
(i) for each fuzzy point x_{t} in X and each fuzzy open set U with $x_{t} q U$, there exists $f g \delta$-semiopen set V with $f\left(x_{t}\right) q V$ such that $V \leq f(U)$,
(ii) $f^{-1}(g \delta \operatorname{scl}(B)) \leq \operatorname{cl}\left(f^{-1}(B)\right)$, for all $B \in I^{Y}$.

Proof (i). Let x_{t} be any fuzzy point in X and U be any fuzzy open set in X with $x_{t} q U=\operatorname{int} U$ which implies that $f\left(x_{t}\right) q f($ int $U) \leq$ $g \delta \operatorname{sint}(f(U))$ (by Theorem 4.9). Hence $f\left(x_{t}\right) q g \delta \operatorname{sint}(f(U))$ and so there exists $f g \delta$-semiopen set V in Y such that $f\left(x_{t}\right) q V$ and $V \leq f(U)$. (ii) Let x_{t} be any fuzzy point in X such that $x_{t} \notin c l\left(f^{-1}(B)\right)$ for any $B \in I^{Y}$. Then there exists a fuzzy open set U in X with $x_{t} q U$, $U \nexists f^{-1}(B)$. Now

$$
f\left(x_{t}\right) q f(U) \ldots(i)
$$

where $f(U)$ is $f g \delta$-semiopen in Y (as f is $f g \delta$-semiopen function). Now $f^{-1}(B) \leq 1_{X} \backslash U$. Then $B \leq f\left(1_{X} \backslash U\right) \leq 1_{Y} \backslash f(U)$ and so $B / q f(U)$. Let $V=1_{Y} \backslash f(U)$. Then V is $f g \delta$-semiclosed in Y with $B \leq V$. We claim that $f\left(x_{t}\right) \notin V$. If possible, let $f\left(x_{t}\right) \in V=1_{Y} \backslash f(U)$. Then $1-[f(U)](f(x)) \geq t$ and so $f(U) \not q f\left(x_{t}\right)$, contradicts (i). So $f\left(x_{t}\right) \notin V$, then $f\left(x_{t}\right) \notin g \delta \operatorname{scl}(B)$ which implies that $x_{t} \notin f^{-1}(g \delta s c l(B))$ and hence $f^{-1}(g \delta s c l(B)) \leq \operatorname{cl}\left(f^{-1}(B)\right)$.

Theorem 4.11. An injective function $f: X \rightarrow Y$ is $f g \delta$-semiopen if and only if for each $B \in I^{Y}$ and F, a fuzzy closed set in X with $f^{-1}(B) \leq F$, there exists an $f g \delta$-semiclosed set V in Y such that $B \leq V$ and $f^{-1}(V) \leq F$.
Proof. The proof is same as that of the proof of Theorem 3.23.
Definition 4.12. A function $f: X \rightarrow Y$ is called $f g \delta$ semicontinuous if $f^{-1}(V)$ is $f g \delta$-semiclosed in X for every fuzzy closed set V in Y.

Remark 4.13. $f g$-continuity and $f g \delta$-semicontinuity are independent concepts follows from next two examples.

Example 4.14. Not every $f g \delta$-semicontinuity is $f g$-continuity Let $X=\{a, b\}, \tau=\left\{0_{X}, 1_{X}, A, B\right\}, \tau_{1}=\left\{0_{X}, 1_{X}, C\right\}$ where $A(a)=$ $0.5, A(b)=0.3, B(a)=0.6, B(b)=0.4, C(a)=0.5, C(b)=0.6$. Then (X, τ) and $\left(X, \tau_{1}\right)$ are fts's. Now $\operatorname{F\delta SC}(X, \tau)=\left\{0_{X}, 1_{X}, U\right\}$ where $A \leq U \leq 1_{X} \backslash A$. Consider the identity function $i:(X, \tau) \rightarrow\left(X, \tau_{1}\right)$. Now $1_{X} \backslash C \in \tau_{1}^{c}$ and $i^{-1}\left(1_{X} \backslash C\right)=1_{X} \backslash C<B(\in \tau)$. Then $\delta \operatorname{scl}_{\tau}\left(1_{X} \backslash C\right)=1_{X} \backslash C<B$ and so $1_{X} \backslash C$ is $f g \delta$-semiclosed in (X, τ). Hence i is $f g \delta$-semicontinuous function. But $c l_{\tau}\left(1_{X} \backslash C\right)=1_{X} \backslash A \not \leq B$ implies that $1_{X} \backslash C$ is not $f g$-closed in (X, τ) which shows that i is not $f g$-continuous function.

Example 4.15. Not every $f g$-continuity implies $f g \delta$ semicontinuity
Let $X=\{a, b\}, \tau=\left\{0_{X}, 1_{X}, A, B\right\}, \tau_{1}=\left\{0_{X}, 1_{X}, C\right\}$ where $A(a)=$ $0.5, A(b)=0.6, B(a)=0.5, B(b)=0.55, C(a)=0.5, C(b)=0.6$. Then (X, τ) and $\left(X, \tau_{1}\right)$ are fts's. Now $F \delta S C(X, \tau)=\left\{0_{X}, 1_{X}\right\}$. Consider the identity function $i:(X, \tau) \rightarrow\left(X, \tau_{1}\right)$. Now $1_{X} \backslash C \in \tau_{1}^{c}$ and $i^{-1}\left(1_{X} \backslash C\right)=1_{X} \backslash C<B(\in \tau)$ and $c l_{\tau}\left(1_{X} \backslash C\right)=1_{X} \backslash A \leq B$. So $1_{X} \backslash C$ is $f g$-closed in (X, τ) which shows that i is $f g$-continuous function. But $\delta \operatorname{scl}_{\tau}\left(1_{X} \backslash C\right)=1_{X} \not \leq B$ and so $1_{X} \backslash C$ is not $f g \delta$-semiclosed in (X, τ). Hence i is not $f g \delta$-semicontinuous function.

Theorem 4.16. Let $f: X \rightarrow Y$ be a function. Then the following statements are equivalent:
(i) f is $f g \delta$-semicontinuous,
(ii) for each fuzzy point x_{t} in X and each fuzzy open set V in Y containing $f\left(x_{t}\right)$, there exists an $f g \delta$-semiopen set U containing x_{t} such that $f(U) \leq V$,
(iii) $f(g \delta \operatorname{scl}(A)) \leq c l(f(A))$, for all $A \in I^{X}$,
(iv) $g \delta s c l\left(f^{-1}(B)\right) \leq f^{-1}(c l B)$, for all $B \in I^{Y}$.

Proof (i) \Rightarrow (ii). Let x_{t} be a fuzzy point in X and V be any fuzzy open set in Y with $f\left(x_{t}\right) \in V$. Then $x_{t} \in f^{-1}(V)$. Let $U=f^{-1}(V)$. Then U is $f g \delta$-semiopen in X (by (i)) with $x_{t} \in U$ and $f(U) \leq V$.
(ii) \Rightarrow (i). Let A be any fuzzy open set in Y and x_{t} be a fuzzy point in X such that $x_{t} \in f^{-1}(A)$. Then $f\left(x_{t}\right) \in A$. By (ii), there exists an $f g \delta$-semiopen set U in X with $x_{t} \in U$ such that $f(U) \leq A$. Then $x_{t} \in U \leq f^{-1}(A)$. Then $x_{t} \in U=g \delta \sin t(U) \leq g \delta \sin t\left(f^{-1}(A)\right)$. Since x_{t} is taken arbitrarily and $f^{-1}(A)$ is the union of all fuzzy points in $f^{-1}(A), f^{-1}(A) \leq g \delta \operatorname{sint}\left(f^{-1}(A)\right)$ and so $f^{-1}(A)$ is $f g \delta$-semiopen in X. Hence f is $f g \delta$-semicontinuous function.
(i) \Rightarrow (iii). Let $A \in I^{X}$. Then $c l(f(A))$ is fuzzy closed set in Y. Now $A \leq f^{-1}(f(A)) \leq f^{-1}(c l(f(A)))$ which is $f g \delta$-semiclosed in X (by (i)) and so $g \delta \operatorname{scl}(A) \leq g \delta \operatorname{scl}\left(f^{-1}(c l(f(A)))\right)=f^{-1}(c l(f(A)))$ which implies that $f(g \delta \operatorname{scl}(A)) \leq \operatorname{cl}(f(A))$.
(iii) \Rightarrow (i). Let V be a fuzzy closed set in Y. Put $U=f^{-1}(V)$. By (iii), $f(g \delta s c l(U)) \leq c l(f(U))=c l\left(f\left(f^{-1}(V)\right)\right) \leq c l V=V$ which shows that $g \delta \operatorname{scl}(U) \leq f^{-1}(V)=U$. Then U is $f g \delta$-semiclosed in X and hence f is $f g \delta$-semicontinuous function.
(iii) \Rightarrow (iv). Let $B \in I^{Y}$ and $A=f^{-1}(B)$. Then $A \in I^{X}$. By (iii), $f(g \delta \operatorname{scl}(A)) \leq \operatorname{cl}(f(A))$ which implies that $f\left(g \delta \operatorname{scl}\left(f^{-1}(B)\right)\right) \leq c l\left(f\left(f^{-1}(B)\right)\right) \leq c l B$ and hence $g \delta \operatorname{scl}\left(f^{-1}(B)\right) \leq f^{-1}(c l B)$.
(iv) \Rightarrow (iii). Let $A \in I^{X}$. Then $f(A) \in I^{Y}$. By (iv), $\quad g \delta \operatorname{scl}\left(f^{-1}(f(A))\right) \leq f^{-1}(c l(f(A)))$ and so $g \delta \operatorname{scl}(A) \leq$ $g \delta \operatorname{scl}\left(f^{-1}(f(A))\right) \leq f^{-1}(c l(f(A)))$. Hence $f(g \delta \operatorname{scl}(A)) \leq \operatorname{cl}(f(A))$.

Remark 4.17. Composition of two $f g \delta$-semicontinuous functions need not be so, as it seen from the following example.

Example 4.18. Let $X=\{a, b\}, \tau_{1}=\left\{0_{X}, 1_{X}, A, B\right\}$, $\tau_{2}=\left\{0_{X}, 1_{X}\right\}, \tau_{3}=\left\{0_{X}, 1_{X}, C\right\}$ where $A(a)=0.5, A(b)=0.6$, $B(a)=0.5, B(b)=0.55, C(a)=0.5, C(b)=0.6$. Then $\left(X, \tau_{1}\right)$, $\left(X, \tau_{2}\right)$ and $\left(X, \tau_{3}\right)$ are fts's. Consider two identity functions $i_{1}:\left(X, \tau_{1}\right) \rightarrow\left(X, \tau_{2}\right)$ and $i_{2}:\left(X, \tau_{2}\right) \rightarrow\left(X, \tau_{3}\right)$. Clearly i_{1} and i_{2} are $f g \delta$-semicontinuous functions (as every fuzzy set in $\left(X, \tau_{2}\right)$ is $f g \delta$-semiclosed set in $\left.\left(X, \tau_{2}\right)\right)$. Let $i_{3}=i_{2} \circ i_{1}:\left(X, \tau_{1}\right) \rightarrow\left(X, \tau_{3}\right)$. We claim that i_{3} is not $f g \delta$-semicontinuous function. Now $1_{X} \backslash C \in \tau_{3}^{c}$. $i_{3}^{-1}\left(1_{X} \backslash C\right)=1_{X} \backslash C<B\left(\in \tau_{1}\right)$. But $\delta s c l_{\tau_{1}}\left(1_{X} \backslash C\right)=1_{X} \not \leq B$. Hence i_{3} is not $f g \delta$-semicontinuous function.

Theorem 4.19. If $f: X \rightarrow Y$ is $f g \delta$-semicontinuous function and $g: Y \rightarrow Z$ is fuzzy continuous function, then $g \circ f: X \rightarrow Z$ is $f g \delta$ semicontinuous function.
Proof. Let U be a fuzzy closed set in Z. As g is fuzzy continuous function, $g^{-1}(U)$ is fuzzy closed set in Y. Again f is $f g \delta$-semicontinuous function, $f^{-1}\left(g^{-1}(U)\right)=(g \circ f)^{-1}(U)$ is $f g \delta$-semiclosed set in X. Hence $g \circ f$ is $f g \delta$-semicontinuous function.
5. $f g \delta$-Semiregular and $f g \delta$-Seminormal Spaces

Definition 5.1. An fts (X, τ) is said to be $f g \delta$-semiregular space if for any fuzzy point x_{t} in X and each $f g \delta$-semiclosed set F with $x_{t} \notin F$, there exist $U, V \in F \delta S O(X)$ such that $x_{t} \in U, F \leq V$ and $U \not q V$.

Definition 5.2. A fuzzy set A in an $\mathrm{fts}(X, \tau)$ is called an $f g \delta$ q-nbd of a fuzzy point x_{α} in X if there is an $f g \delta$-semiopen set U in X such that $x_{\alpha} q U \leq A$. If, in addition, A is $f g \delta$-semiopen in X, then A is called an $f g \delta$-semiopen q-nbd of x_{α}.

Theorem 5.3. In an fts (X, τ), the following statements are equivalent:
(i) X is $f g \delta$-semiregular,
(ii) for each fuzzy point x_{t} in X and any $f g \delta$-semiopen q-nbd U of x_{t}, there exists $V \in F \delta S O(X)$ such that $x_{t} \in V$ and $\delta s c l V \leq U$,
(iii) for each fuzzy point x_{t} in X and each $f g \delta$-semiclosed set A of X with $x_{t} \notin A$, there exists $U \in F \delta S O(X)$ with $x_{t} \in U$ such that $\delta s c l U \not q A$.
Proof (i) \Rightarrow (ii). Let x_{t} be a fuzzy point in X and U, any $f g \delta$-semiopen q-nbd of x_{t}. Then $x_{t} q U$. Then $U(x)+t>1$ and so $x_{t} \notin 1_{X} \backslash U$ which is $f g \delta$-semiclosed in X. By (i), there exist $V, W \in F \delta S O(X)$ such that $x_{t} \in V, 1_{X} \backslash U \leq W$ and $V \not q W$. Then $V \leq 1_{X} \backslash W$ which implies that $\delta \operatorname{scl} V \leq \delta \operatorname{scl}\left(1_{X} \backslash W\right)=1_{X} \backslash W \leq U$. (ii) \Rightarrow (iii). Let x_{t} be a fuzzy point in X and A, an $f g \delta$-semiclosed set in X with $x_{t} \notin A$. Then $A(x)<t \Rightarrow x_{t} q\left(1_{X} \backslash A\right)$ which is $f g \delta$-semiopen in X. By (ii), there exists $V \in F \delta S O(X)$ such that $x_{t} \in V$ and $\delta s c l V \leq 1_{X} \backslash A$. Hence $\delta s c l V \not q A$.
(iii) \Rightarrow (i). Let x_{t} be a fuzzy point in X and F be any $f g \delta$-semiclosed set in X with $x_{t} \notin F$. Then by (iii), there exists $U \in F \delta S O(X)$ such that $x_{t} \in U$ and $\delta s c l U \not q F$ which implies that $F \leq 1_{X} \backslash \delta s c l U$ ($=W$, say). Then $W \in F \delta S O(X)$ and $U \not q W$ (as $U \not q\left(1_{X} \backslash \delta s c l U\right)$) and so X is $f g \delta$-semiregular space.

Definition 5.4. An fts (X, τ) is called $f g \delta$-seminormal if for each pair of $f g \delta$-semiclosed sets A, B in X with $A / q B$, there exist $U, V \in F \delta S O(X)$ such that $A \leq U, B \leq V$ and $U \not q V$.

Theorem 5.5. An fts (X, τ) is $f g \delta$-seminormal if and only if for every $f g \delta$-semiclosed set F and every $f g \delta$-semiopen set G with
$F \leq G$, there exists $H \in F \delta S O(X)$ such that $F \leq H \leq \delta s c l H \leq G$.
Proof. Let X be $f g \delta$-seminormal and let F be $f g \delta$-semiclosed set and G be $f g \delta$-semiopen set with $F \leq G$. Then $F \not q\left(1_{X} \backslash G\right)$ where $1_{X} \backslash G$ is $f g \delta$-semiclosed in X. By hypothesis, there exist $H, T \in F \delta S O(X)$ such that $F \leq H, 1_{X} \backslash G \leq T$ and $H \not q T$. Then $H \leq 1_{X} \backslash T$ and so $\delta s c l H \leq \delta \operatorname{scl}\left(1_{X} \backslash T\right)=1_{X} \backslash T \leq G$. Hence $F \leq H \leq \delta s c l H \leq G$.

Conversely, let A, B be two $f g \delta$-semiclosed sets in X with $A / q B$. Then $A \leq 1_{X} \backslash B$. By hypothesis, there exists $H \in F \delta S O(X)$ such that $A \leq H \leq \delta \operatorname{scl} H \leq 1_{X} \backslash B$ implies that $A \leq H, B \leq 1_{X} \backslash \delta \operatorname{scl} H=\delta \operatorname{sint}\left(1_{X} \backslash H\right) \in F \delta S O(X)$ and $H \not q\left(1_{X} \backslash \delta s c l H\right)$. Hence X is $f g \delta$-seminormal space.

Definition 5.6. A function $f: X \rightarrow Y$ is said to be $f g \delta$ semiirresolute if $f^{-1}(V)$ is $f g \delta$-semiclosed in X for all $f g \delta$-semiclosed set V in Y.

Theorem 5.7. Let X be an $f g \delta$-seminormal space and $f: X \rightarrow Y$ be an $f g \delta$-semiirresolute, fuzzy δ-semiopen bijective function from X onto Y. Then Y is $f g \delta$-seminormal space.
Proof. Let A, B be two $f g \delta$-semiclosed sets in Y with $A \not q B$. As f is $f g \delta$-semiirresolute, $f^{-1}(A), f^{-1}(B)$ are $f g \delta$-semiclosed sets in X with $f^{-1}(A) \not q f^{-1}(B)$. Since X is $f g \delta$-seminormal space, there exist $U, V \in$ $F \delta S O(X)$ such that $f^{-1}(A) \leq U, f^{-1}(B) \leq V$ and $U / q V$. Since f is bijective, fuzzy δ-semiopen, $A \leq f(U), B \leq f(V)$ and $f(U) \not q f(V)$ where $f(U), f(V) \in F \delta S O(Y)$. Hence Y is $f g \delta$-seminormal space.

6. $f g \delta$-SEMI T_{2}-Space

In this section we first introduce a new type of separation axiom, viz., $f g \delta$-semi T_{2}-space and then it is shown that the inverse image of fuzzy T_{2}-space [13] under $f g \delta$-semicontinuous function is $f g \delta$-semi T_{2} space. Afterwards three different types of fuzzy continuous-like functions are introduced and shown that the inverse image of $f g \delta$-semi T_{2} space under these functions are fuzzy T_{2}-space. Lastly some mutual relationships of these newly defined functions and $f g \delta$-semicontinous functions are established.

We first recall the following definition and theorem from [13] for ready references.

Definition 6.1 [13]. An fts (X, τ) is called fuzzy T_{2}-space if for any two distinct fuzzy points x_{α} and $y_{\beta}:$ when $x \neq y$, there exist
fuzzy open sets $U_{1}, U_{2}, V_{1}, V_{2}$ such that $x_{\alpha} \in U_{1}, y_{\beta} q V_{1}, U_{1} / q V_{1}$ and $x_{\alpha} q U_{2}, y_{\beta} \in V_{2}, U_{2} / q V_{2}$; when $x=y$ and $\alpha<\beta$ (say), there exist fuzzy open sets U and V such that $x_{\alpha} \in U, y_{\beta} q V$ and $U \not q V$.

Theorem 6.2 [13]. If an $\mathrm{fts}(X, \tau)$ is fuzzy T_{2}, then for any two distinct fuzzy points x_{α} and y_{β} in X; when $x \neq y$, there exist $U, V \in \tau$ such that $x_{\alpha} q U, y_{\beta} q V$ and $U \not q V$; when $x=y$ and $\alpha<\beta$ (say), x_{α} has a fuzzy open nbd U and y_{β} has a fuzzy open q-nbd V such that $U \not q V$.

Definition 6.3. An fts (X, τ) is said to be $f g \delta$-semi T_{2}-space if for any two distinct fuzzy points x_{α} and y_{β} in X; when $x \neq y$, there exist $f g \delta$-semiopen sets U, V in X such that $x_{\alpha} q U, y_{\beta} q V, U \not q V$; when $x=y$ and $\alpha<\beta$ (say), x_{α} has an $f g \delta$-semiopen nbd U and y_{β} has an $f g \delta$-semiopen q-nbd V such that $U \not q V$.

Theorem 6.4. If an injective function $f: X \rightarrow Y$ is $f g \delta$ semicontinuous from an fts X onto a fuzzy T_{2}-space Y, then X is fg δ-semi T_{2}-space.
Proof. Let x_{α} and y_{β} be two distinct fuzzy points in X. Then $f\left(x_{\alpha}\right)=z_{\alpha}$ and $f\left(y_{\beta}\right)=w_{\beta}$ are two distinct fuzzy points in Y (as f is injective). Let $f(x)=z, f(y)=w$.
Case-1. When $x \neq y$. Then z_{α}, w_{β} are two distinct fuzzy points in Y. As Y is fuzzy T_{2}-space, by Theorem 6.2 , there exist fuzzy open sets U, V in Y such that $z_{\alpha} q U, w_{\beta} q V$ and $U / q V$. As f is $f g \delta$-semicontinuous, $f^{-1}(U), f^{-1}(V)$ are $f g \delta$-semiopen in X with $x_{\alpha} q f^{-1}(U), y_{\beta} q f^{-1}(V)$ and $f^{-1}(U) / q f^{-1}(V)$ [Indeed, $z_{\alpha} q U$ implies that $U(z)+\alpha>1$ and so $U(f(x))+\alpha>1$. Then $\left[f^{-1}(U)\right](x)+\alpha>1$. Hence $\left.x_{\alpha} q f^{-1}(U)\right]$.
Case-2. When $x=y$ and $\alpha<\beta$ (say). As Y is fuzzy T_{2}-space, by Theorem 6.2, there exist fuzzy open sets U, V in Y such that $z_{\alpha} \in U, w_{\beta} q V$ and $U \not q V$. Then $U(z) \geq \alpha$ implies that $U(f(x)) \geq \alpha$ and so $\left[f^{-1}(U)\right](x) \geq \alpha$. Then $x_{\alpha} \in f^{-1}(U), y_{\beta} q f^{-1}(V)$ and $f^{-1}(U) \not q^{-1}(V)$, where $f^{-1}(U)$ and $f^{-1}(V)$ are $f g \delta$-semiopen in X. Consequently, X is $f g \delta$-semi T_{2}-space.
In a similar manner we can easily state the following theorem.
Theorem 6.5. If an injective function $f: X \rightarrow Y$ is $f g \delta$ semiirresolute from an fts X into an $f g \delta$-semi T_{2}-space Y, then X is $f g \delta$-semi T_{2}-space.

Definition 6.6. An fts (X, τ) is said to be fuzzy δ-semi T_{2}-space if for any two distinct fuzzy points x_{α} and y_{β} in X; when $x \neq y$, there exist $U, V \in F \delta S O(X)$ such that $x_{\alpha} q U, y_{\beta} q V$ and $U \not q V$; when $x=y$ and $\alpha<\beta$ (say), x_{α} has a fuzzy δ-semiopen nbd U and y_{β} has a fuzzy δ-semiopen q-nbd V such that $U \not q V$.

Definition 6.7. A function $f: X \rightarrow Y$ is called
(i) strongly $f g \delta$-semicontinuous if $f^{-1}(V)$ is fuzzy open in X for every $f g \delta$-semiopen set V of Y,
(ii) weakly $f g \delta$-semicontinuous if $f^{-1}(V) \in F \delta S O(X)$ for every $f g \delta$-semiopen set V of Y,
(iii) $f g \delta^{*}$-semicontinuous if $f^{-1}(V)$ is $f g \delta$-semiopen in X for every $V \in F \delta S O(Y)$.

Now we can easily state the following theorems the proof of which are similar as that of Theorem 6.4.

Theorem 6.8. If an injective function $f: X \rightarrow Y$ is strongly $f g \delta$-semicontinuous from an fts X into an $f g \delta$-semi T_{2}-space Y, then X is fuzzy T_{2}-space.

Theorem 6.9. If an injective function $f: X \rightarrow Y$ is weakly $f g \delta$-semicontinuous from an fts X into an $f g \delta$-semi T_{2}-space Y, then X is fuzzy δ-semi T_{2}-space.

Theorem 6.10. If an injective function $f: X \rightarrow Y$ is $f g \delta^{*}$ semicontinuous from an fts X into a fuzzy δ-semi T_{2}-space Y, then X is $f g \delta$-semi T_{2}-space.

Remark 6.11. Strongly $f g \delta$-semicontinuity and weakly $f g \delta$ semicontinuity are independent notions follows from the next two examples.

Example 6.12. Not every Strongly $f g \delta$-semicontinuity implies weakly $f g \delta$-semicontinuity
Let $X=\{a\}, \tau_{1}=\left\{0_{X}, 1_{X}, A\right\}, \tau_{2}=\left\{0_{X}, 1_{X}, B\right\}$ where $A(a) \leq 0.4, B(a)=0.6$. Then $\left(X, \tau_{1}\right)$ and $\left(X, \tau_{2}\right)$ are fts's. Consider the identity function $i:\left(X, \tau_{1}\right) \rightarrow\left(X, \tau_{2}\right)$. Now $\operatorname{F\delta SO}\left(X, \tau_{1}\right)=\left\{0_{X}, 1_{X}, M\right\}$ where $M(a)=0.4$ and $F \delta S C\left(X, \tau_{1}\right)=\left\{0_{X}, 1_{X}, 1_{X} \backslash M\right\}$ where $\left(1_{X} \backslash M\right)(a)=0.6$. Clearly any fuzzy set $C>B$ is $f g \delta$-semiclosed in $\left(X, \tau_{2}\right)$. Then
$i^{-1}(C)=C \in \tau_{1}^{c}$ which shows that i is strongly $f g \delta$-semicontinuous. Let D be a fuzzy set in X defined by $D(a)=0.7$. Now $i^{-1}(D)=D$. Then $D \notin F \delta S C\left(X, \tau_{1}\right)$ and so i is not weakly $f g \delta$-semicontinuous.

Example 6.13. Not every Weakly $f g \delta$-semicontinuity implies strongly $f g \delta$-semicontinuity
Let $X=\{a\}, \tau_{1}=\left\{0_{X}, 1_{X}, A\right\}, \tau_{2}=\left\{0_{X}, 1_{X}, B\right\}$ where $A(a)=0.3, B(a)=0.6$. Then $\left(X, \tau_{1}\right)$ and $\left(X, \tau_{2}\right)$ are fts's. Consider the identity function $i:\left(X, \tau_{1}\right) \rightarrow\left(X, \tau_{2}\right)$. Now $\operatorname{F\delta SO}\left(X, \tau_{1}\right)=\left\{0_{X}, 1_{X}, U\right\}$ where $A \leq U \leq 1_{X} \backslash A$ and $F \delta S C\left(X, \tau_{1}\right)=\left\{0_{X}, 1_{X}, 1_{X} \backslash U\right\}$ where $A \leq 1_{X} \backslash U \leq 1_{X} \backslash A$. Again, $\operatorname{F\delta SO}\left(X, \tau_{2}\right)=F \delta S C\left(X, \tau_{2}\right)=\left\{0_{X}, 1_{X}\right\}$. Now any fuzzy set $C>B$ is $f g \delta$-semiclosed in $\left(X, \tau_{2}\right)$. Let D be a fuzzy set in X defined by $D(a)=0.65$. Then D is $f g \delta$-semiclosed in $\left(X, \tau_{2}\right)$. Then $i^{-1}(D)=D$. Now $\operatorname{int}_{\tau_{1}}\left(\delta c l_{\tau_{1}} D\right)=\operatorname{int}_{\tau_{1}}\left(1_{X} \backslash A\right)=A<D$ which shows that i is weakly $f g \delta$-semicontinuous function. But $D \notin \tau_{1}^{c}$ and hence i is not strongly $f g \delta$-semicontinuous function.

Remark 6.14. Weakly $f g \delta$-semicontinuous function is $f g \delta^{*}$ semicontinuous, but not conversely follows from the next example.

Example 6.15. $f g \delta^{*}$-semicontinuity may not imply weakly $f g \delta$-semicontinuity
Consider Example 6.12. Here i is not weakly $f g \delta$-semicontinuous. Now $\operatorname{F\delta SO}\left(X, \tau_{2}\right)=\operatorname{F\delta SC}\left(X, \tau_{2}\right)=\left\{0_{X}, 1_{X}\right\}$ and so obviously i is $f g \delta^{*}$-semicontinuous.

Remark 6.16. In Example 3.29, it is shown that fuzzy closed set need not be $f g \delta$-semiclosed and so we can conclude that strongly $f g \delta$-semicontinuity does not imply $f g \delta^{*}$-semicontinuity. The next example shows that $f g \delta^{*}$-semicontinuity does not imply strongly $f g \delta$-semicontinuity, i.e., strongly $f g \delta$-semicontinuity and $f g \delta^{*}$ semicontinuity are independent concepts.

Example 6.17. $f g \delta^{*}$-semicontinuity may not imply strongly fg δ-semicontinuity
Let $X=\{a\}, \tau_{1}=\left\{0_{X}, 1_{X}\right\}, \tau_{2}=\left\{0_{X}, 1_{X}, B\right\}$ where $B(a)=0.6$. Then $\left(X, \tau_{1}\right)$ and $\left(X, \tau_{2}\right)$ are fts's. Consider the identity function $i:\left(X, \tau_{1}\right) \rightarrow\left(X, \tau_{2}\right)$. Now $F \delta S O\left(X, \tau_{2}\right)=F \delta S C\left(X, \tau_{2}\right)=\left\{0_{X}, 1_{X}\right\}$ and so obviously i is $f g \delta^{*}$-semicontinuous function. Now any fuzzy
set $C>B$ is $f g \delta$-semiclosed in $\left(X, \tau_{2}\right)$. Let D be a fuzzy set in X defined by $D(a)=0.7$. Then D is $f g \delta$-semiclosed in $\left(X, \tau_{2}\right)$. Then $i^{-1}(D)=D \notin \tau_{1}^{c}$ and hence i is not strongly $f g \delta$-semicontinuous function.

Remark 6.18. The next examples establish the mutual relationships between $f g \delta$-semicontinuity with the functions defined in Definition 6.7.

Example 6.19. $f g \delta$-semicontinuity may not imply $f g \delta^{*}$ semicontinuity
Let $X=\{a\}, \tau_{1}=\left\{0_{X}, 1_{X}, B\right\}, \tau_{2}=\left\{0_{X}, 1_{X}, A\right\}$ where $A(a)=0.3, B(a)=0.1$. Then $\left(X, \tau_{1}\right)$ and $\left(X, \tau_{2}\right)$ are fts's. Consider the identity function $i:\left(X, \tau_{1}\right) \rightarrow\left(X, \tau_{2}\right)$. Now $F \delta S O\left(X, \tau_{1}\right)=F \delta S C\left(X, \tau_{1}\right)=\left\{0_{X}, 1_{X}\right\}$ and $\operatorname{F\delta SO}\left(X, \tau_{2}\right)=$ $F \delta S C\left(X, \tau_{2}\right)=\left\{0_{X}, 1_{X}, U\right\}$ where $A \leq U \leq 1_{X} \backslash U$. Now $1_{X} \backslash A \in \tau_{2}^{c}$. Then $i^{-1}\left(1_{X} \backslash A\right)=1_{X} \backslash A<1_{X}$ only in $\left(X, \tau_{1}\right)$ and so $\delta s c l_{\tau_{1}}\left(1_{X} \backslash A\right) \leq 1_{X}$. Then i is $f g \delta$-semicontinuous function. Now $V \in F \delta S C\left(X, \tau_{2}\right)$ where $V(a)=0.5$. Then $i^{-1}(V)=V<B \in \tau_{1}$. But $\delta s c l_{\tau_{1}} V=1_{X} \not \leq B$ which shows that i is not $f g \delta^{*}$-semicontinuous function.

Example 6.20. $f g \delta^{*}$-semicontinuity may not imply $f g \delta$ semicontinuity
Let $X=\{a\}, \tau_{1}=\left\{0_{X}, 1_{X}, A\right\}, \tau_{2}=\left\{0_{X}, 1_{X}, B\right\}$ where $A(a) \leq 0.4, B(a)=0.62$. Then $\left(X, \tau_{1}\right)$ and $\left(X, \tau_{2}\right)$ are fts's. Consider the identity function $i:\left(X, \tau_{1}\right) \rightarrow\left(X, \tau_{2}\right)$. Now $\operatorname{F\delta SO}\left(X, \tau_{1}\right)=\left\{0_{X}, 1_{X}, U\right\}$ where $A \leq U \leq 1_{X} \backslash A$ and $F \delta S C\left(X, \tau_{1}\right)=\left\{0_{X}, 1_{X}, 1_{X} \backslash U\right\}$ where $A \leq 1_{X} \backslash U \leq 1_{X} \backslash A$. Also $F \delta S O\left(X, \tau_{2}\right)=F \delta S C\left(X, \tau_{2}\right)=\left\{0_{X}, 1_{X}\right\}$. Then clearly i is $f g \delta^{*}$-emicontinuous. Now $1_{X} \backslash B \in \tau_{2}^{c}$. Then $i^{-1}\left(1_{X} \backslash B\right)=1_{X} \backslash B \leq 1_{X} \backslash B \in \tau_{1}$. But $\delta s c l_{\tau_{1}}\left(1_{X} \backslash B\right)=M \not \leq 1_{X} \backslash B$ where $M(a)=0.4$ which shows that $1_{X} \backslash B$ is not $f g \delta$-semiclosed in (X, τ_{1}) and hence i is not $f g \delta$-semicontinuous.

Example 6.21. Strongly $f g \delta$-semicontinuity may not imply $f g \delta$-semicontinuity
Consider Example 6.20. Here i is not $f g \delta$-semicontinuous. Now any fuzzy set $C>B$ is $f g \delta$-semiclosed in $\left(X, \tau_{2}\right)$. Here $i^{-1}(C)=C \in \tau_{1}^{c}$
which implies that i is strongly $f g \delta$-semicontinuous.
Example 6.22. fgd-semicontinuity may not imply strongly $f g \delta$-semicontinuity, weakly $f g \delta$-semicontinuity Let $X=\{a\}, \tau_{1}=\left\{0_{X}, 1_{X}, A\right\}, \tau_{2}=\left\{0_{X}, 1_{X}\right\}$ where $A(a)=0.5$. Then $\left(X, \tau_{1}\right)$ and $\left(X, \tau_{2}\right)$ are fts's. Consider the identity function $i:\left(X, \tau_{1}\right) \rightarrow\left(X, \tau_{2}\right)$. Clearly i is $f g \delta$-semicontinuous function. Now every fuzzy set in $\left(X, \tau_{2}\right)$ is $f g \delta$-semiclosed. Consider the fuzzy set B, defined by $B(a)=0.2$. Then B is $f g \delta$-semiclosed in $\left(X, \tau_{2}\right)$. But $i^{-1}(B)=B \notin \tau_{1}^{c}$ which shows that i is not strongly $f g \delta$-semicontinuous function. Again $B \notin F \delta S C\left(X, \tau_{1}\right)$. Indeed, $\operatorname{int}_{\tau_{1}}\left(\delta c l_{\tau_{1}} B\right)=\operatorname{int}_{\tau_{1}} A=A \not \leq B$ and so i is not weakly $f g \delta$ semicontinuous function.

Example 6.23. Weakly $f g \delta$-semicontinuity may not imply $f g \delta$ semicontinuity
Let $X=\{a\}, \tau_{1}=\left\{0_{X}, 1_{X}, A\right\}, \tau_{2}=\left\{0_{X}, 1_{X}, B\right\}$ where $A(a)=$ $0.55, B(a) \geq 0.6$. Then $\left(X, \tau_{1}\right)$ and $\left(X, \tau_{2}\right)$ are fts's. Consider the identity function $i:\left(X, \tau_{1}\right) \rightarrow\left(X, \tau_{2}\right)$. The collection of all $f g \delta$-semiclosed sets in $\left(X, \tau_{2}\right)=\left\{0_{X}, 1_{X}\right\}$ as $F \delta S O\left(X, \tau_{2}\right)=F \delta S C\left(X, \tau_{2}\right)=$ $\left\{0_{X}, 1_{X}\right\}$ and so i is clearly weakly $f g \delta$-semicontinuous function. Now $F \delta S O\left(X, \tau_{1}\right)=F \delta S C\left(X, \tau_{1}\right)=\left\{0_{X}, 1_{X}\right\}$. Consider the fuzzy set C, defined by $C(a)=0.4$. Then $C \in \tau_{2}^{c}$. Now $i^{-1}(C)=C<A \in \tau_{1}$. But $\delta s c l_{\tau_{1}} C=1_{X} \not \leq A$ and so i is not $f g \delta$-semicontinuous function.

A. BHATTACHARYYA

References

[1] Azad, K.K.; On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J.Math. Anal. Appl., 82 (1981), 14-32.
[2] Balasubramanian, G. and Sundaram, P.; On some generalizations of fuzzy continuous functions, Fuzzy Sets and Syatems, Vol. 86 (1997), 93-100.
[3] Bhattacharyya, Anjana; $f g^{*} \alpha$-continuous functions in fuzzy topological spaces, International Journal of Scientific and Engineering Research, Vol. 4, Issue 8 (2013), 973-979.
[4] Bhattacharyya, Anjana; Fuzzy generalized continuity, Annals of Fuzzy Mathematics and Informatics, Vol. 11, No. 4 (April 2016), 645-659.
[5] Bhattacharyya, Anjana; Several concepts of continuity in fuzzy setting, e Proceedings, The 10th International Conference MSAST, 5(2016), 282-293.
[6] Bhattacharyya, Anjana; Fuzzy generalized closed sets in a fuzzy topological space, The Journal of Fuzzy Mathematics, Vol. 25, No. 2 (2017), 285-301.
[7] Chang, C.L.; Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182190.
[8] Fath Alla, M.A.; On fuzzy topological spaces, Ph.D. Thesis, Assiut Univ., Sohag, Egypt (1984).
[9] Ganguly, S. and Saha, S.; A note on δ-continuity and δ-connected sets in a fuzzy set theory, Simon Stevin, 62 (1988), 127-141.
[10] Hutton, B.; Normality in fuzzy topological spaces, J. Math Anal. Appl., 50 (1975), 74-79.
[11] Pu, Pao Ming and Liu, Ying Ming; Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith Convergence, J. Math Anal. Appl., 76 (1980), 571-599.
[12] Pu, Pao Ming and Liu, Ying Ming; Fuzzy topology II. Product and Quotient spaces, J. Math. Anal. Appl., 77 (1980), 20-37.
[13] Sinha, S.P.; Study of some fuzzy topological problems, Ph.D. Thesis, University of Calcutta (1990).
[14] Thakur, S.S. and Saraf, R.K.; Fuzzy pre-semiclosed mappings, Ind. Sci. Cong (CHENNAI) 1999.
[15] Wong, C.K.; Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl., 46 (1974), 316-328.
[16] Zadeh, L.A.; Fuzzy Sets, Inform. Control, 8 (1965), 338-353.

Victoria Institution (College), Department of Mathematics, 78B, A.P.C. Road, Kolkata-700009, India e-mail: anjanabhattacharyya@hotmail.com

