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ON DUAL TOPOLOGIES FOR FUNCTION SPACES
OVER Cµ,ν(Y, Z)

ANKIT GUPTA AND RATNA DEV SARMA

Abstract. Dual topologies for function space topologies between
generalized topological spaces are defined. The point-open topology,
compact-open topology and (µ, ν)-topology on Cµ,ν(Y, Z) are shown
to be family-open. The notions of splittingness and admissibility for
such spaces are introduced. It is proved that a topology on Cµ,ν(Y, Z)
is splitting (respectively, admissible) if and only if its dual topology is
splitting ((respectively, admissible). Similarly, a topology on OZ(Y )
is splitting ((respectively, admissible) if and only if its dual topology
on Cµ,ν(Y, Z) is so.

1. Introduction

In the recent years, function space topologies have turned out to be
an area of active research [2, 5, 6, 7, 8, 10, 11, 12]. While a unified
theory of function spaces and hyperspaces is investigated in [6], dual
topologies for function space topologies are discussed in [7]. Some
open problems regarding function space topologies are presented in
[8]. Usually continuous functions between topological spaces are con-
sidered for these studies. However, there are some weaker forms of
continuous functions which are no less important than the continuous
functions themselves.
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For example, semi-continuous mappings are increasingly being used
in the field of stochastic analysis [2, 12], theory of optimization [5, 11],
multifunction analysis [10, 12] etc. Due to this, there arises the need
to investigate these functions in a systematic manner. In [3], Császár
has provided an integrated study of some weaker forms of continuity
such as semi-continuity, α-continuity, β-continuity etc. Investigation
about their function space topologies was initiated in [9]. There several
topologies on the continuous functions between generalized topologies
were introduced and studied. Important properties like splittingness,
admissibility etc. of these spaces have been studied in that paper.
Topologies of spaces of semi-continuous mappings, α-continuous map-
pings, β-continuous mappings etc. are particular cases of this study.
The present paper is a sequel to the studies carried out in [9]. Here,
we introduce the concept of dual topologies for such function space
topologies. We show that each topology on Cµ,ν(Y, Z), the class of con-
tinuous functions between two generalized topological spaces Y and
Z, generates a dual topology on OZ(Y ), the family of inverse images
of open sets of Z, and vice-versa. The notions of splittingness and
admissibility for dual topologies are introduced. Using the concept
of dual topology, it is shown that the point-open topology, compact-
open topology and (µ, ν)-topology on Cµ,ν(Y, Z) are family-open. It is
found that a topology on Cµ,ν(Y, Z) is splitting (resp. admissible) if
and only if its dual topology is splitting (resp. admissible). Similarly,
a topology on OZ(Y ) is splitting (resp. admissible) if and only if its
dual topology on Cµ,ν(Y, Z) is so.

2. Preliminaries

Á. Császár has defined a generalized topology on a set X in the
following way:

Definition 2.1. [3] Let X be a non empty set. A collection G of
subsets of X is called a generalized topology (GT , in brief) on X if

(i) ∅ ∈ G,
(ii) G is closed under arbitrary union.

The members of G are called generalized open sets (g-open sets, in
brief), their complements are called generalized closed sets (g-closed
sets, in brief).

Definition 2.2. [3] Let (X,µ) and (Y, ν) be two GTS ′s. Then a map
f : X → Y is said to be (µ, ν)-continuous if f−1(U) ∈ µ for every
U ∈ ν.
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With the help of generalized nets (g-nets, in brief), regular
points and saddle points, some equivalent characterizations of (µ, ν)-
continuity has been provided in [9, 17]:

Proposition 2.3. Let (X,µ) and (Y, ν) be two GTS ′s and f : X → Y
be any mapping. Then the following are equivalent:

(i) (f is (µ, ν)-continuous;
(ii) inverse image of each generalized closed sets is closed;
(iii) for each regular point x and any neighbourhood V of f(x), there

exists a neighbourhood U of x such that f(U) ⊆ V ;
(iv) for each g-net {sn}n∈D converging to x, the image g-net
{f(sn)}n∈D converges to f(x);

(v) f is (µ, ν)-continuous at each x ∈ X, that is, for each neigh-
bourhood V of f(x), there exists a neighbourhood U of x such that
f(U) ⊆ V .

Now onward we shall write (µ, ν)-continuity as simply continuity
unless there is any ambiguity.
Let (X, τ1) and (Y, τ2) be two topological spaces. If σ(τ1), α(τ1), β(τ1)
and π(τ1) represent the families of semi-open [13], α-open [15], β-
open[1] and pre-open[14] sets of (X, τ1) respectively, then (X, σ(τ1)),
(X,α(τ1)), (X, β(τ1)) and (X, π(τ1)) are different generalized topolo-
gies on X. Then a function f : X → Y is (τ1, τ2)-semi-continuous
if and only if it is (σ(τ1), τ2)-continuous. Similar is the case for α-
continuous, β-continuous and pre-continuous mappings.
Let (Y, µ) and (Z, ν) be two generalized topological spaces and
Cµ,ν(Y, Z) be the class of all continuous mappings form the GTS’s
Y to Z. In [9], several topologies have been defined for Cµ,ν(Y, Z).
Some important amongst them are mentioned below:
The (µ, ν)-topology τµ,ν on Cµ,ν(Y, Z) is the topology for which the
family of subbasic open sets are of the form

(U, V ) = {f ∈ Cµ,ν(Y, Z) | f(U) ⊆ V }
where U ∈ µ and V ∈ ν.
Similarly, let (Y, µ) and (Z, ν) be two GTS’s with Z ∈ ν. Then the
point-open topology τ pµ,ν on Cµ,ν(Y, Z) is the topology for which the
family of subbasic open sets are of the form

({y}, V ) = {f ∈ Cµ,ν(Y, Z) | f(y) ∈ V }
where y ∈ Y and V ∈ ν.
Let (Y, µ) and (Z, ν) be two GTS’s with Z ∈ ν. Then the compact-
open topology τ cµ,ν on Cµ,ν(Y, Z) is the topology for which the family
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of subbasic open sets are of the form

(C, V ) = {f ∈ Cµ,ν(Y, Z) | f(C) ⊆ V }
where C is a compact subset of Y and V ∈ ν.
For two GTS ′s (Y, µ) and (Z, ν), one can define a GT on Y ×Z in the
following way [4]: a subset of Y ×Z is open in the product topology of
Y ×Z if it can be expressed as a union of members of the type Ui×Vj,
where Ui ∈ µ, Vj ∈ ν. The GT obtained this way is defined to be the
product GT of µ and ν on Y × Z and is denoted by µ× ν.

Definition 2.4. Let (Y, µ) and (Z, ν) be two GTS ′s. Let (X,λ) be
another GTS. For a function g : X×Y → Z, we can define a mapping
g∗ : X → Cµ,ν(Y, Z) by g∗(x)(y) = g(x, y).

The mappings g and g∗ related in this way are called associated
maps.

Definition 2.5. Let (Y, µ) and (Z, ν) be two GTS’s. A topology τ
on Cµ,ν(Y, Z) is called

(i) admissible if the evaluation mapping e : Cµ,ν(Y, Z) × Y → Z
defined by e(f, y) = f(y) is continuous;

(ii) splitting if for each GTS X, continuity of the map g : X×Y → Z
implies continuity of the map g∗ : X → Cµ,ν(Y, Z), where g∗ is the
associated map of g.

Below, we provide some important results concerning these topolo-
gies [9]:

Theorem 2.6. Let (Y, µ) and (Z, ν) be two GTS’s. Then the following
hold:

(i) (µ, ν)-topology is always admissible on Cµ,ν(Y, Z).
(ii) Basic separation axioms Ti, where i = 0, 1, 2 on (µ, ν)-topology

depends on (Z, ν), that is, τµ,ν is Ti for i = 0, 1, 2, if (Z, ν) is Ti for
i = 0, 1, 2.

(iii) τ pµ,ν and τ cµ,ν on Cµ,ν(Y, Z) are always splitting.
(iv) τ pµ,ν is the coarsest topology on Cµ,ν(Y, Z), which is coordinately

admissible.

3. Dual Topology Concerning Cµ,ν(Y, Z)

Now we introduce the concept of a dual topology for topologies on
Cµ,ν(Y, Z).

Definition 3.1. Let (Y, µ) and (Z, ν) be two GTS ′s. Then we define

OZ(Y ) = {f−1(U) | f ∈ Cµ,ν(Y, Z), U ∈ ν}.



ON DUAL TOPOLOGIES FOR FUNCTION SPACES OVER Cµ,ν(Y,Z) 45

Definition 3.2. Let (Y, µ) and (Z, ν) be two GTS ′s and Cµ,ν(Y, Z)
be the class of all continuous mappings from Y to Z. Then for subsets
H ⊆ OZ(Y ), H ⊆ Cµ,ν(Y, Z) and U ∈ ν, we define

(H, U) = {f ∈ Cµ,ν(Y, Z) | f−1(U) ∈ H}
(H, U) = {f−1(U) | f ∈ H}

Definition 3.3. Let (Y, µ) and (Z, ν) be two GTS ′s. Let T be any
topology on OZ(Y ) generated by Cµ,ν(Y, Z). Then, we define

S(T) = {(H, U) |H ∈ T, U ∈ ν}

Lemma 3.4. S(T) forms a subbasis for a topology on Cµ,ν(Y, Z).

Proof. Let f ∈ Cµ,ν(Y, Z) and U ∈ ν. Since f is continuous, f−1(U) ∈
µ. Therefore f ∈ (H, U) for some H ∈ T. This holds for all f ∈
Cµ,ν(Y, Z). Thus Cµ,ν(Y, Z) ⊆

⋃
(H, U). Hence S(T) forms a subbasis

for a topology on Cµ,ν(Y, Z).

The topology generated by the subbasis S(T) is called the dual
topology to T and is denoted by T(T).
On a similar note, we have

Lemma 3.5. Let (Y, µ) and (Z, ν) be two GTS ′s and T be any topology
on Cµ,ν(Y, Z). We define

S(T) = {(H, U) |H ∈ T, U ∈ ν}.

Then S(T) forms a subbasis for a topology on OZ(Y ).

Proof. Let V ∈ OZ(Y ). Then there exists a function f ∈ Cµ,ν(Y, Z)
and a set U ∈ ν such that V = f−1(U). Now, for H = Cµ,ν(Y, Z) ∈ T,
we have V ∈ (H, U). Hence OZ(Y ) ⊆

⋃
(H, U) and hence S(T) forms

a subbasis for a topology on OZ(Y ).

The topology generated by the subbasis S(T) is called the dual
topology to T and is denoted by T(T).

Definition 3.6. A topology τ on Cµ,ν(Y, Z) is called family-open if it
is dual of a topology on OZ(Y ).

Now, we show that some known topologies such as point-open topol-
ogy, compact-open topology and (µ, ν)-topology etc. on Cµ,ν(Y, Z) are
family-open.
First we show that the point-open and compact-open topologies are
family-open.
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Lemma 3.7. Let (Y, µ) and (Z, ν) be two GTS ′s with Z ∈ ν. For
y ∈ Y , let OZ(y) be the subfamiliy of OZ(Y ) consisting of the open
neighbourhoods of y in Y . Then {OZ(y) | y ∈ Y } forms a subbasis for
a topology T on OZ(Y ).

Proof. We have to show that OZ(Y ) =
⋃
y∈Y

OZ(y). Clearly⋃
y∈Y

OZ(y) ⊆ OZ(Y ). Let f−1(V ) ∈ OZ(Y ) for some V ∈ ν. If

f−1(V ) 6= ∅, then there exists a y ∈ Y such that y ∈ f−1(V ) and

hence f−1(V ) ∈ OZ(y) and we have OZ(Y ) ⊆
⋃
y∈Y

OZ(y). Since

Z ∈ ν, therefore f−1(Z) 6= ∅ for every f ∈ Cµ,ν(Y, Z). Hence
f−1(Z) ∈ {OZ(y) | y ∈ Y }. Therefore {OZ(y) | y ∈ Y } forms a subba-
sis for a topology on OZ(Y ).

Now, we show that the point-open topology τ pµ,ν is family-open.

Theorem 3.8. Let (Y, µ) and (Z, ν) be two GTS ′s with Z ∈ ν. Let Tp
be the topology on OZ(Y ) generated by the subbasis {OZ(y) | y ∈ Y }.
Then T(Tp) ≡ τ pµ,ν.

Proof. Let U ∈ ν and f ∈ Cµ,ν(Y, Z). Consider f ∈ ({y}, U), that
is f(y) ∈ U . Since f is continuous and U ∈ ν, therefore there exists
an open neighbourhood V ∈ µ of y such that f(V ) ⊆ U . Hence y ∈
V ⊆ f−1(U). Thus f ∈ (OZ(y), U). Therefore ({y}, U) ⊆ (OZ(y), U).
Similarly, we have (OZ(y), U) ⊆ ({y}, U). Thus T(Tp) ≡ τ pµ,ν .

Corollary 3.9. τ pµ,ν is family-open.

Working on the same line as above, we obtain the following results:

Theorem 3.10. Let (Y, µ) and (Z, ν) be two GTS ′s.

(1) [(i)]
(2) If Z ∈ ν, then {OZ(K) |K ⊆ Y , K is compact }, where OZ(K)

is the subfamily of OZ(Y ) consisting of all open subsets of Y
containing K, forms a subbasis for a topology Tc on OZ(Y )
with T(Tc) ≡ τ cµ,ν.

(3) {OZ(U) |U ⊆ Y , U is open }, where OZ(U) is the subfamily of
OZ(Y ) consisting of all open subsets of Y containing U , forms
a subbasis for a topology To on OZ(Y ) with T(To) ≡ τµ,ν.

Corollary 3.11. τ cµ,ν and τµ,ν on Cµ,ν(Y, Z) are family-open.
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4. Splittingness, admissibility and Dual Topology

In this section, we introduce the notion of admissibility and split-
tingness for a topology T on OZ(Y ). We also investigate the relation-
ship of admissibility and splittingness of T and that of its dual.

Definition 4.1. Let (Y, µ) and (Z, ν) be two GTS ′s. Let (X,λ) be
another GTS and g : X × Y → Z be a continuous map. Then
a map g : X × ν → OZ(Y ) is defined by g(x, U) = g−1x (U), for
every x ∈ X and U ∈ ν, where gx : Y → Z is defined by gx(y) =
g(x, y). Equivalently, g(x, U) = [g∗(x)]−1(U) = g−1x (U), where g∗ :
X → Cµ,ν(Y, Z) is the associated map of g.

Definition 4.2. Let (Y, µ) and (Z, ν) be two GTS ′s. Let (X,λ) be
another GTS. A map M : X × ν → OZ(Y ) is called continuous with
respect to the first variable if the map MU : X → OZ(Y ) defined by
MU(x) = M(x, U) is continuous for every x ∈ X and for some fixed
U ∈ ν.

Now, we are in a position to define admissibility and splittingness
of the topological space (OZ(Y ),T).

Definition 4.3. Let (Y, µ) and (Z, ν) be two GTS ′s. Let (X,λ) be
another GTS. Then a topology T on OZ(Y ) is called

(i) splitting if continuity of the map g : X×Y → Z implies continu-
ity with respect to the first variable of the map g : X × ν → OZ(Y ).

(ii) admissible if for every map g∗ : X → Cµ,ν(Y, Z), continuity with
respect to the first variable of the map g : X × ν → OZ(Y ) implies
continuity of the map g : X × Y → Z.

Below we provide the proof of our main theorems.

Theorem 4.4. A topology T on OZ(Y ) is splitting if and only if its
dual topology T(T) on Cµ,ν(Y, Z) is splitting.

Proof. Let the topology T on OZ(Y ) be splitting, that is, for every
GTS (X,λ), continuity of the map f : X ×Y → Z implies continuity
with respect to the first variable of the map f : X × ν → OZ(Y ). We
have to show that its dual topology T(T) is splitting, that is, continuity
of the map f : X × Y → Z implies continuity of its associated map
f ∗ : X → Cµ,ν(Y, Z). It is sufficient to show that the map f ∗ : X →
Cµ,ν(Y, Z) is continuous provided the map f : X × ν → OZ(Y ) is
continuous with respect to the first variable and vice-versa.
Let x ∈ X and (H, U) be any open neighbourhood of f ∗(x), that is
f ∗(x) ∈ (H, U). Thus [f ∗(x)]−1(U) ∈ H and hence f(x, U) ∈ H. We
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have fU(x) ∈ H. Since H is a subbasic open set in OZ(Y ). Also
for fixed U ∈ ν, the map f is continuous with respect to the first
variable. Therefore, there exists an open neighbourhood V of x such
that fU(V ) ⊆ H. Consider an element y ∈ V , we have fU(y) ∈ H,
that is, f(y, U) ∈ H and hence [f ∗(y)]−1(U) ∈ H. Therefore, we have
f ∗(y) ∈ (H, U) for every y ∈ V which implies f ∗(V ) ⊆ (H, U). Hence
the map f ∗ is continuous.

Conversely, let the map f ∗ : X → Cµ,ν(Y, Z) be continuous. We

have to show that the map f : X × ν → OZ(Y ) is continuous with
respect to the first variable.
For a fixed U ∈ ν and x ∈ X, let H be an open neighbourhood
of fU(x). Then fU(x) ∈ H. That is f(x, U) ∈ H. Thus we have,
[f ∗(x)]−1(U) ∈ H which implies f ∗(x) ∈ (H, U). Now f ∗ is continuous
and (H, U) is a subbasic open set in Cµ,ν(Y, Z). Therefore there exists
an open neighbourhood V of x such that f ∗(V ) ⊆ (H, U). Consider
an element y ∈ V , we have f ∗(y) ∈ (H, U), that is [f ∗(y)]−1(U) ∈ H.
We have f(y, U) ∈ H. Therefore fU(y) ∈ H for every y ∈ V . Hence
fU(V ) ⊆ H and f is continuous with respect to the first variable.
Hence the result.

Our next result is about the counterpart of the previous result, that
is

Theorem 4.5. A topology T on Cµ,ν(Y, Z) is splitting if and only if
its dual topology T(T) on OZ(Y ) is splitting.

Proof. Let the dual topology T(T) on OZ(Y ) be splitting. We have
to show that the topology T is splitting and vice-versa. For this, it
is sufficient to show that the map f ∗ : X → Cµ,ν(Y, Z) is continuous

provided the map f : X × ν → OZ(Y ) is continuous with respect to
the first variable and vice-versa.
Let x ∈ X and H be any open neighbourhood of f ∗(x). For any fixed
U ∈ ν, we have [f ∗(x)]−1(U) ∈ (H, U). Therefore f(x, U) ∈ (H, U)
and we have fU(x) ∈ (H, U). Since (H, U) is a subbasic open set in
OZ(Y ) and for fixed U ∈ ν, the map f is continuous with respect to
the first variable. Therefore, there exists an open neighbourhood V of
x such that fU(V ) ⊆ (H, U). Now, consider an element y ∈ V , then
fU(y) ∈ (H, U). Thus f(y, U) ∈ (H, U) and hence [f ∗(y)]−1(U) ∈
(H, U). Therefore, we have f ∗(y) ∈ H for every y ∈ V which implies
f ∗(V ) ⊆ H. Hence the map f ∗ is continuous.

Conversely, let the map f ∗ : X → Cµ,ν(Y, Z) be continuous. We

have to show that the map f : X × ν → OZ(Y ) is continuous with
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respect to the first variable.
For fixed U ∈ ν and x ∈ X, consider fU(x) ∈ (H, U), where H ∈ T.
Thus we have, f(x, U) ∈ (H, U) which implies [f ∗(x)]−1(U) ∈ (H, U).
Hence f ∗(x) ∈ H. Now f ∗ is continuous and H is a subbasic open
neighbourhood of f ∗(x) in Cµ,ν(Y, Z). Therefore there exists an open
neighbourhood V of x such that f ∗(V ) ⊆ H. Consider, an element
y ∈ V , we have f ∗(y) ∈ H, that is [f ∗(y)]−1(U) ∈ (H, U). Hence
f(y, U) ∈ (H, U), therefore, for every y ∈ V , we have fU(y) ∈ (H, U).
Hence fU(V ) ⊆ (H, U) and f is continuous with respect to the first
variable.

Our next set of theorems provide the relationship between the topol-
ogy on Cµ,ν(Y, Z) and its dual in the light of admissibility and vice-
versa.

Theorem 4.6. A topology T on OZ(Y ) is admissible if and only if its
dual topology T(T) over Cµ,ν(Y, Z) is admissible.

Proof. Let the topology T on OZ(Y ) be admissible, that is, for every
GTS (X,λ) and for every map g∗ : X → Cµ,ν(Y, Z), continuity of the
map g : X × ν → OZ(Y ) with respect the first variable implies conti-
nuity of the map g : X × Y → Z. We have to show that the topology
T(T) is admissible, that is, continuity of the map g∗ : X → Cµ,ν(Y, Z)
implies continuity of its associated map g : X × Y → Z. Thus it is
sufficient to prove that g : X × ν → OZ(Y ) is continuous with respect
to the first variable provided the map g∗ : X → Cµ,ν(Y, Z) is continu-
ous.
Let us consider, for fixed U ∈ ν and x ∈ X, H be a subbasic open
neighbourhood of g(x, U). That is, g(x, U) ∈ H. Hence gU(x) ∈ H
which implies [g∗(x)]−1(U) ∈ H. Thus g∗(x) ∈ (H, U). Since the
map g∗ is given to be continuous and (H, U) is a subbsaic open neigh-
bourhood of g∗(x), therefore there exists an open neighbourhood V
of x such that g∗(V ) ⊆ (H, U). Now, for an element y ∈ V , we have
g∗(y) ∈ (H, U), that is [g∗(y)]−1(U) ∈ H. Thus gU(y) ∈ H for all
y ∈ V . Hence, gU(V ) ⊆ H. Therefore the map g is continuous with
respect to the first variable. Hence the topology T(T) is admissible.

Conversely, let T(T) be admissible. We have to show that the
topology T on Cµ,ν(Y, Z) is admissible. For this, it is sufficient to
show that continuity with respect to the first variable of the map
g : X×ν → OZ(Y ) implies continuity of the map g∗ : X → Cµ,ν(Y, Z).
Let x ∈ X and (H, U) be a subbasic open neighbourhood of g∗(x), that
is g∗(x) ∈ (H, U). Thus [g∗(x)]−1(U) ∈ H. Hence gU(x) ∈ H. Since
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the map g is given to be continuous with respect to the first variable
and H is a subbaisc open neighbourhood of gU(x), thus there exists an
open neighbourhood V of x such that gU(V ) ⊆ H. Hence for y ∈ V , we
have gU(y) ∈ H, which implies g(y, U) ∈ H. Hence [g∗(y)]−1(U) ∈ H.
Therefore g∗(y) ∈ (H, U) for all y ∈ V . Thus, we have g∗(V ) ⊆ (H, U).
Hence the topology T is admissible.

Theorem 4.7. A topology T on Cµ,ν(Y, Z) is admissible if and only if
its dual topology T(T) on OZ(Y ) is admissible.

Proof. Similar to the proof of the previous theorem.

Conclusion. In this paper, we have introduced and investigated the
dual topologies for the function spaces over generalized topological
spaces. We have also investigated the family-open topologies on
Cµ,ν(Y, Z). Properties such as splittingness, admissibility etc hold good
in such a topology if and only if they hold good in its dual. Further
investigation may be carried out to find the effect of the greatest split-
ting topology on the dual topology.
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