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FIXED POINT THEOREMS FOR GENERALIZED
CONTRACTIVE AND EXPANSIVE TYPE MAPPINGS

OVER A C∗−ALGEBRA VALUED METRIC SPACE

KUSHAL ROY AND MANTU SAHA

Abstract. In this paper, fixed points of generalized contrac-
tive mappings and n−times reasonable expansive mappings over a
C∗−algebra valued metric space have been investigated. The results
obtained so far are the existence of fixed points of generalized contrac-
tive mappings via the notion of d−point of a lower semi-continuous
function on the underlying space. Also a result on coincidence point
of two mappings has been established. Some examples are given in
support of fixed points of expansive mappings.

1. Introduction

The theory of fixed points is an emerging area for various branches
of Mathematics, especially for non-linear functional analysis, due to
its wide applicability. The field of the fixed point theory is vast and
open for a great variety of techniques and ideas. Applications of metric
fixed point theory play a fundamental role in numerical analysis and
approximation theory, in solving matrix equations, functional equa-
tions, integral equations, etc.
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functional differential equations, functional partial differential equa-
tions, functional integral equations etc. In 1977 J.D. Weston (See
[12]) gave a necessary and sufficient condition for the completness of
a metric space, introducing the notion of d−point for a lower-semi
continuous function which is bounded from below. In 1973 Hardy and
Rogers [5] proved a fixed point theorem for a mapping T satisfying
the contractive condition given by
(1)
d(Tx, Ty) ≤ a[d(x, Tx) + d(y, Ty)] + b[d(x, Ty) + d(y, Tx)] + cd(x, y)

for all x, y ∈ X, where a, b and c are non-negative numbers such that
2a+2b+c < 1. In [3], J. Caristi and W.A. Kirk introduced an extension
of Banach contraction principle [1], which states that: if (X, d) is a
complete metric space and φ : X → [0,∞) is a lower semi continuous
map, then a mapping T : X → X satisfying

(2) d(x, Tx) ≤ φ(x)− φ(Tx)

for each x ∈ X, has a fixed point in X. Subsequently, in 1983 a
coincidence point theorem for two mappings has been proved by S.
Park [9]. Shehwar et.al. [10] extended the Caristi’s fixed point theorem
for mappings defined on a C∗-algebra valued metric space. Motivated
by the surveys on C∗−algebras (see [8]) and C∗−algebra valued metric
spaces (see [7]), some fixed point theorems for mappings satisfying
contractive conditions on C∗−algebra valued metric spaces have been
established. It is worthwhile to note that fixed point theorems for
mappings on these underlying spaces are obtained via the notion of
d−point for a lower semi continuous function.

In light of the work of Chen and Zhu [4] we prove some fixed point
theorems for various types of expansive mappings over a C∗−algebra
valued metric space. Based on the concept of expansive mapping, the
existence of fixed points for n−times reasonable expansive mappings
over a C∗−algebra valued metric space has been proved.

2. Some important definitions and lemmas

Before going into discussion on a C∗−algebra valued metric space,
we recall some notions from the theory of C∗−algebras (see [8]).

Let A be a unital algebra. An involution on A is a conjugate-linear
mapping x → x∗ on A such that x∗∗ = x and (xy)∗ = y∗x∗ for any
x, y ∈ A. The pair (A, ∗) is called a ∗−algebra.
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A ∗−algebra A together with a complete submultiplicative norm
such that ||x∗|| = ||x|| is called a Banach∗−algebra. Furthermore, a
C∗−algebra A is a Banach∗−algebra with ||x∗x|| = ||x||2, for all x ∈ A.

An element a ∈ A is said to be a positive element if a∗ = a and
σ(a) ⊂ R+, where σ(a) = {λ ∈ C: λI − a is not invertible, I is the
unity in A }. If a is positive we write it as a � θ, where θ is the zero
element of A.

A partial ordering on A is defined by a � b if and only if (a− b) �
θ whenever a, b ∈ A.

We denote the set of all positive elements of A by A+ that is A+={
a ∈ A: a � θ }. Also by Á+ we denote the set of all positive elements
in A which commutes with each element of A. Each positive element
of a C∗-algebra A has a unique positive square root.

Definition 2.1. [7] Let X be a non-empty set. Suppose the mapping
d : X ×X → A satisfying the following conditions.

1. d(x, y) � θ ∀x, y ∈ X and d(x, y) = θ if and only if x = y,
2. d(x, y) = d(y, x) ∀x, y ∈ X,
3. d(x, y) � d(x, z) + d(z, y) ∀x, y, z ∈ X.

Then d is called a C∗-algebra valued metric on X and (X,A, d) is
called a C∗-algebra valued metric space.

Example 2.2. [7] Let X = R and A = M2×2(R) with ||A|| =
max{|a1|, |a2|, |a3|, |a4|}, where ai

′s are the entries of the matrix A ∈
M2×2(R). Then (X,A, d) is a C∗−algebra valued metric space, where

d(x, y) =

(
|x− y| 0

0 α|x− y|

)
, α ≥ 0

and the partial ordering on A is given by(
a1 a2
a3 a4

)
�
(
b1 b2
b3 b4

)
iff ai ≥ bi for i = 1, 2, 3, 4.

Definition 2.3. [7] (i) A sequence { xn } in a C∗-algebra valued metric
space (X,A, d) is called convergent and converges to some x ∈ X with
respect to A if for any ε > 0 there existsN ∈ N such that ||d(xn, x)||< ε
whenever n ≥ N i.e. d(xn, x)→ θ as n→ ∞ and we write xn → x as
as n→ ∞ in X.

(ii) A sequence { xn } in a C∗-algebra valued metric space (X,A, d)
is said to be cauchy with respect to A if for any ε > 0 there exists N ∈
N such that ||d(xn, xm)||< ε whenever n,m ≥ N i.e. d(xn, xm)→ θ as
n,m→ ∞.
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(iii) A C∗-algebra valued metric space (X,A, d) is called complete
if any cauchy sequence in X with respect to A is convergent.

Definition 2.4. [2] Let (X,A, d) be a C∗-algebra valued metric space.
A mapping T : X → X is said to be continuous at a ∈ X with respect
to A if for any ε > 0 there exists δ > 0 such that ||d(Tx, Ta)|| < ε
whenever ||d(x, a)|| < δ. T is called continuous on X with respect
to A if it is continuous at any point a ∈ X. Evidently if {xn} be a
sequence in X such that {xn} → x as n→∞⇒ Txn → Tx as n→∞
in X that is d(xn, x) → θ ⇒ d(Txn, Tx) → θ as n → ∞ then T is
continuous at x ∈ X.

Definition 2.5. [10] Let (X,A, d) be a C∗-algebra valued metric
space. A mapping φ : X → A is called lower semi-continuous at
t0 with respect to A if

(3) ||φ(t0)|| ≤ liminf t→t0||φ(t)||

that is for any ε > 0 ||φ(t0)|| < ||φ(t)|| + ε ∀t ∈ B(t0, δε) for some
δε > 0, where B(t0, δε) = {x ∈ X : ||d(x, t0)|| < δε}.

Lemma 2.6. [6] We state some results that hold in a C∗-algebra with
the partial ordering generated by the positive elements.

1. A+={a∗a : a ∈ A},
2. If a∗ = a, b∗ = b, a � b and c ∈ A then c∗ac � c∗bc,
3. For all a, b ∈ A such that a∗ = a, b∗ = b if θ � a � b then
||a|| ≤ ||b||.

Lemma 2.7. [7] Suppose that A is a unital C∗-algebra with a unity I.
1. If a ∈ A+ with ||a|| < 1

2
, then I − a is invertible and

||a(I − a)−1|| < 1,
2. Suppose that a, b ∈ A with a, b � θ and ab = ba then ab � θ,
3. By Á we denote the set {a ∈ A : ab = ba ∀ b ∈ A}. Let a ∈ Á.

If b, c ∈ A with b � c � θ and I−a ∈ Á+ is invertible, then (I−a)−1b
� (I − a)−1c.

Lemma 2.8. Let A be an unital C∗-algebra with unity I.
1.[8] If a, b are positive elements of A, then the inequality a � b

implies a
1
2 � b

1
2 .

2.[11] If A be commutative then the ordered structure on A forms a
lattice.



FIXED POINT THEOREMS FOR GENERALIZED CONTRACTIVE... 119

3. Main results on fixed points of some C∗−algebra
valued generalized contractive type mappings

Definition 3.1. Let (X,A, d) be a C∗−algebra valued metric space
and T be a self map on X. Then T is said to be orbitally continuous
at u ∈ X if for any x ∈ X ||d(T nix, u)|| → 0 as i → ∞ implies
||d(T ni+1x, Tu)|| → 0 as i→∞.

Lemma 3.2. A is a commutative C∗-algebra then
(a) For some positive element h in A, (h− I) is invertible implying

that (
√
h− I) is invertible in A.

(b) h � I, h 6= I and (h− I) is invertible then (h− I)−1 � θ.

Proof. (a) If (h − I)−1 = u then we get (h − I)u = I implies (
√
h −

I)(
√
h+I)u = I, if we take (

√
h+I)u = v then we have (

√
h−I)v = I

and thus (
√
h− I) is invertible in A.

(b) It is sufficient to prove that if a � θ and a−1 exists then a−1 �
θ. If a � θ and a−1 exists then σ(a) = {λ ∈ C : (λI − a) is not
invertible} ⊂ (0,∞). Now σ(a−1) = {µ ∈ C : (µI − a−1) is not
invertible} ⊂ R since (a−1)∗ = a−1. If λ ∈ σ(a) then λ 6= 0 and
λI − a is not invertible implying that ( 1

λ
a− I) is not invertible that is

a−1( 1
λ
a−I) is not invertible. So ( 1

λ
I−a−1) is not invertible and we get

1
λ
∈ σ(a−1). Similarly if µ ∈ σ(a−1) then clearly 1

µ
∈ σ(a). Therefore

it follows that σ(a−1) ⊂ (0,∞). Hence a−1 � θ.

Lemma 3.3. Let (X,A, d) be a C∗−algebra valued metric space. If
φ : X → A+ is a lower semi-continuous function then the set Kη =
{x ∈ X : ||φ(x)|| ≤ η}, η > 0 is closed in X.

Proof. Let z ∈ Kη, for some η > 0. So for all δ > 0, B(z, δ) ∩Kη 6= φ.
Let yδ ∈ B(z, δ) ∩ Kη for each δ > 0. This implies that ∀ δ > 0,
||d(yδ, z)|| < δ and ||φ(yδ)|| ≤ η for each δ > 0. Since φ is lower semi-
continuous in X, then for each ε > 0 there exists a δε > 0 such that
||φ(z)|| < ||φ(x)||+ε ∀x ∈ B(z, δε). Now yδε ∈ Kη and ||d(yδε , z)|| < δε.
Therefore ||φ(yδε)|| ≤ η. Therefore ||φ(z)|| < ||φ(yδε)||+ε ≤ η+ε Since
ε > 0 is arbitrary, ||φ(z)|| ≤ η. So z ∈ Kη and hence Kη is closed.

Lemma 3.4. Every lower semi-continuous function φ from a complete
C∗-algebra valued metric space X into A+ has a d−point p in X, that
is we get

(4) φ(p)− φ(x) � d(p, x) and φ(p)− φ(x) 6= d(p, x)

for each point x(6= p) ∈ X.
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Proof. If possible, let φ has no d−point in X. Then for each p ∈ X
there exists some xp ∈ X such that p 6= xp and d(p, xp) � φ(p)−φ(xp).
For each p ∈ X we choose one and only one xp ∈ X and then we get
a map h : X → X defined by h(p) = xp,∀p ∈ X.
Then d(p, h(p)) � φ(p) − φ(h(p)). So by applying Caristi-Kirk fixed
point theorem on a C∗−algebra valued metric space we see that h has
a fixed point in X, a contradiction. Therefore φ has a d−point p in
X.

Lemma 3.5. Let (X,A, d) be a C∗−algebra valued metric space. Also
let φ : X → A+ be a lower semi-continuous function. We define a
relation � φ on X by x � φy iff φ(y) − φ(x) � d(x, y)(6= θ). If f
is a function on X and � φ has the property that if f(x) 6= x then
f(x)� φx, then any d−point of φ is a fixed point of f.

Proof. Let p be a d−point of φ. Then φ(p)−φ(x) � d(p, x) and φ(p)−
φ(x) 6= d(p, x) for all x 6= p. Now let f(p) 6= p then by the given
property f(p)� φp.
Therefore φ(p) − φ(f(p)) � d(p, f(p)) but since p is a d−point of φ
then φ(p) − φ(f(p)) � d(p, f(p)) and φ(p) − φ(f(p)) 6= d(p, f(p)), a
contradiction.
Thus f(p) = p and so p is a fixed point of f.

Lemma 3.6. Let (X,A, d) be a complete C∗−algebra valued metric
space and Y ⊂ X. Suppose f, g : Y → X satisfy the following condi-
tions:

(1) f is surjective mapping,
(2)There exists a function φ : X → A+ which is lower semi-

continuous such that d(f(x), g(x)) � φ(f(x))− φ(g(x)) ∀x ∈ Y. Then
f and g have a coincidence point in X.

Proof. Since φ is lower semi-continuous on X, by Theorem 3.4 we have
φ has a d−point p in X. So φ(p)− φ(x) � d(p, x) with φ(p)− φ(x) 6=
d(p, x) for every x(6= p) ∈ X.
Since f is surjective, there exists t0 ∈ Y such that f(t0) = p and we
get φ(f(t0))−φ(x) � d(f(t0), x) with φ(f(t0))−φ(x) 6= d(f(t0), x) for
every x(6= f(t0)) ∈ X. Now if g(t0) 6= f(t0) then φ(f(t0))− φ(g(t0)) �
d(f(t0), g(t0)) with φ(f(t0))− φ(g(t0)) 6= d(f(t0), g(t0)).
But it is given that d(f(t0), g(t0)) � φ(f(t0)) − φ(g(t0)), a contradic-
tion. So f(t0) = g(t0). Thus f and g have a coincidence point.

Lemma 3.7. Let (X,A, d) be a complete C∗−algebra valued metric
space and f : X → X be a C∗−algebra valued Hardy-Rogers type
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mapping that is for any x, y ∈ X

d(fx, fy) � a[d(x, fx) + d(y, fy)] + b[d(x, fy) + d(y, fx)] + cd(x, y)

where a, b, c ∈ Á+ and 2||a|| + 2||b|| + ||c|| < 1. Let X = o(x0) for
some x0 ∈ X, where o(x0) = {x0, f(x0), f

2(x0), ...}. Then the function

φ : X → A+ defined by φ(x) = βd(x, fx) for all x ∈ X; β ∈ Á+, is
lower semi-continuous function on X.

Proof. Let Kη = {x ∈ X : ||φ(x)|| ≤ η}, η > 0 and let y ∈ Kη. Then

y ∈ o(x0). Therefore clearly there exists a sequence {yn} in o(x0)∩Kη
such that yn → y as n → ∞. Since f is orbitally continuous on X so
f(yn)→ f(y) as n→∞.
Now,

φ(y) = βd(y, fy) � β [d(y, yn) + d(yn, fyn) + d(fyn, fy)]

= β [d(y, yn) + d(fyn, fy)] + φ(yn).

Which implies that,

||φ(y)|| ≤ ||β|| [||d(y, yn)||+ ||d(fyn, fy)||] + ||φ(yn)||
≤ ||β|| [||d(y, yn)||+ ||d(fyn, fy)||] + η, ∀n ∈ N.

Taking n → ∞ we get, ||φ(y)|| ≤ η. Therefore y ∈ Kη and so Kη is
closed. Since η > 0 is arbitrary therefore φ is a lower semi-continuous
function on X.

Theorem 3.8. Let (X,A, d) be a complete C∗−algebra valued metric
space and f : X → X be a C∗−algebra valued Hardy-Rogers type
mapping that is for any x, y ∈ X

d(fx, fy) � a[d(x, fx) + d(y, fy)] + b[d(x, fy) + d(y, fx)] + cd(x, y)

where a, b, c ∈ Á+ and 2||a||+ 2||b||+ ||c|| < 1. If X = o(x0) for some
x0 ∈ X, where o(x0) = {x0, f(x0), f

2(x0), ...} and φ : X → A+ is
defined by φ(x) = [I − (2a + 2b + c)]−1[I − (a + b)]d(x, fx),∀x ∈ X
then by defining the relation � φ in X we get f has a fixed point in
X which is also unique.

Proof. For any x ∈ X we get

d(fx, f 2x) � a[d(x, fx) + d(fx, f 2x)] + b[d(x, f 2x) + d(fx, fx)]

+cd(x, fx)

� a[d(x, fx) + d(fx, f 2x)] + b[d(x, fx) + d(fx, f 2x)]

+cd(x, fx),
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which implies that (I − a− b) d(fx, f 2x) � (a+ b+ c) d(x, fx) that is
d(fx, f 2x) � (I − a− b)−1(a+ b+ c) d(x, fx). Now,

φ(x)− φ(fx) = [I − (2a+ 2b+ c)]−1[I − (a+ b)]

.[d(x, fx)− d(fx, f 2x)]

� [I − (2a+ 2b+ c)]−1[I − (a+ b)][I − (a+ b)]−1

.[I − (2a+ 2b+ c)]d(x, fx),

implying that φ(x)− φ(fx) � d(x, fx).
Thus � φ has the property that whenever fx 6= x then fx � φx.
Now by Lemma 3.4 φ has atleast one d−point in X, so f has atleast
one fixed point in X by Lemma 3.5.
Now let u and v be two fixed points of f then d(u, v) = d(fu, fv) �
(2a+ 2b+ c)d(u, v) implying that

||d(u, v)|| ≤ ||2a+ 2b+ c||||d(u, v)||
≤ (2||a||+ 2||b||+ ||c||)||d(u, v)||.

This implies ||d(u, v)|| = 0 and so u = v. Therefore f has a unique
fixed point in X.

Corollary 3.9. (a) If in Theorem 3.8 we put a = b = θ then f will
reduce to a Banach contraction mapping and for this case φ is given
by φ(x) = (I− c)−1d(x, fx) ∀x ∈ X consequently f will have a unique
fixed point in X.

(b) If in Theorem 3.8 we put b = c = θ then f will reduce
to a Kannan type mapping and for this case φ is given by
φ(x) = (I − 2a)−1(I − a)d(x, fx) ∀x ∈ X and hence f has a
unique fixed point in X.

(c) If in Theorem 3.8 we put a = c = θ then f will reduce
to a Chatterjee type mapping and for this case φ is given by
φ(x) = (I − 2b)−1(I − b)d(x, fx) ∀x ∈ X. So f must have a unique
fixed point in X.

4. Main results on fixed point of C∗−algebra valued
n−times reasonable expansive mapping

Now let (X,A, d) be a commutative C∗−algebra valued metric
space. Here the following definitions are analouge of the work of Chen
and Zhu [4].
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Definition 4.1. A mapping T : X → X is called C∗−algebra valued
expansive mapping if there exists a fixed element(constant) h � I such
that

(5) d(Tx, Ty) � hd(x, y) ∀ x, y ∈ X.

We now give the following definitions.

Definition 4.2. A mapping T : X → X is called C∗−algebra valued
generalized expansive mapping of metric-1 type if there exists a fixed
element(constant) h � I, (h 6= I) such that

(6) d(Tx, Ty) � h inf{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}

for all x, y ∈ X.

Definition 4.3. A mapping T : X → X is called C∗−algebra valued
generalized expansive mapping of metric-2 type if there exists a fixed
element(constant) h � I, (h 6= I) such that

(7) d2(Tx, Ty) � h inf{d2(x, y), d(x, y).d(x, Tx), d(x, Tx).d(y, Ty),

d2(x, Tx), d(y, Ty).d(x, Ty), d(y, Ty).d(y, Tx)}

for all x, y ∈ X.

Definition 4.4. A mapping T : X → X is called C∗−algebra val-
ued n−times reasonable expansive mapping if there exists a fixed ele-
ment(constant) h � I(h 6= I) such that

(8) d(x, T nx) � h d(x, Tx) ∀x ∈ X(n ≥ 2, n ∈ N).

Definition 4.5. A mapping T : X → X is called C∗−algebra valued
n−times reasonable expansive mapping of metric-1 type if there exists
a fixed element(constant) h � I, h 6= I such that

(9) d(T n−1x, T n−1y) � h inf{d(x, y), d(x, Tx), d(T n−2y, T n−1y),

d(x, T n−1y), d(T n−2y, T n−1x)}

for all x, y ∈ X(n ≥ 2, n ∈ N).

Definition 4.6. A mapping T : X → X is called C∗−algebra valued
n−times reasonable expansive mapping of metric-2 type if there exists
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a fixed element(constant) h � I, h 6= I such that

d2(T n−1x, T n−1y) � h inf{d2(x, y), d(x, y).d(x, Tx),

d(x, Tx).d(T n−2y, T n−1y),

d2(x, Tx), d(T n−2y, T n−1y).d(x, T n−1y),

d(T n−2y, T n−1y).d(T n−2y, T n−1x)}(10)

for all x, y ∈ X(n ≥ 2, n ∈ N).

Theorem 4.7. Let (X,A, d) be a complete commutative C∗−algebra
valued metric space and let T : X → X be a continuous and surjective
mapping. If there exists a fixed element(constant) h � I such that
(h− I) is invertible (h 6= I) and

(11) d(T n−1x, T nx) � h d(x, Tx) ∀x ∈ X(n ≥ 2, n ∈ N).

Then T has a fixed point in X.

Proof. Given that, d(T n−1x, T nx) � h d(x, Tx) ∀ x ∈ X. Then we get,
d(T n−1x, T nx)−d(x, Tx) � hd(x, Tx)−d(x, Tx) that is (h−I)d(x, Tx)
� d(T n−1x, T nx)− d(x, Tx), which implies that d(x, Tx) �
(h− I)−1[d(T n−1x, T nx)− d(x, Tx)] ∀x ∈ X.
Let us take φ(x) = (h − I)−1[d(x, Tx) + d(Tx, T 2x) + . . . +
d(T n−3x, T n−2x)
+d(T n−2x, T n−1x)] for all x ∈ X. So d(x, Tx) � φ(Tx)−φ(x) ∀x ∈ X.
From the continuity of T , we know that φ is continuous.

Now in Lemma 3.6 if we take Y = X and g = IX then T = f
satisfies d(f(x), x) � φ(f(x)) − φ(x) ∀x ∈ X (i.e Caristi fixed point
theorem in C∗−algebra valued metric space). Hence f has a fixed
point in X. Therefore T has a fixed point in X.

Theorem 4.8. Let (X,A, d) be a complete commutative C∗−algebra
valued metric space and let T : X → X be a continuous, surjective
C∗−algebra valued n−times reasonable expansive mapping which sat-
isfies d(T n−1x, T nx) � d(x, Tx) ∀x ∈ X. Assume that either (i) or
(ii) holds.

(i) T is a C∗−algebra valued n−times reasonable expansive mapping
of metric-1 type.

(ii) T is a C∗−algebra valued n−times reasonable expansive map-
ping of metric-2 type.
For the same constant h � I(h 6= I) such that (h − I) is invertible,
then T has a fixed point in X(n ≥ 2, n ∈ N).
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Proof. case (i): Let x ∈ X. If Tx = x then T has a fixed point in X.
So let Tx 6= x.
Taking y = Tx in (9) we get,

d(T n−1x, T nx) � h inf{d(x, Tx), d(x, Tx), d(T n−1x, T nx), d(x, T nx),

d(T n−1x, T n−1x)}
= h inf{d(x, Tx), d(T n−1x, T nx), d(x, T nx)}.

As T is a C∗−algebra valued n-times resonable expansive mapping,
we have d(x, T nx) � h d(x, Tx) � d(x, Tx) and h d(x, Tx) 6= d(x, Tx).
Thus we obtain, d(T n−1x, T nx) � h inf{d(x, Tx), d(T n−1x, T nx)}.
Since d(T n−1x, T nx) � d(x, Tx) ∀x ∈ X then d(T n−1x, T nx) �
h d(x, Tx) ∀x ∈ X. So from Theorem 4.7 we obtain that T has a
fixed point in X.
case (ii): Let us take x ∈ X. If Tx = x then x is a fixed point of T
in X.

So let Tx 6= x. Taking y = Tx in (10) we get,

d2(T n−1x, T nx) � h inf{d2(x, Tx), d(x, Tx).d(x, Tx),

d(x, Tx).d(T n−1x, T nx), d2(x, Tx),

d(T n−1x, T nx).d(x, T nx),

d(T n−1x, T nx).d(T n−1x, T n−1x)}
= h inf{d2(x, Tx), d(x, Tx).d(T n−1x, T nx),

d(T n−1x, T nx).d(x, T nx)}.

We have, d(x, T nx) � h d(x, Tx) � d(x, Tx) and h d(x, Tx) 6=
d(x, Tx), since T is a C∗−algebra valued n-times resonable expansive
mapping. Hence d(x, T nx).d(T n−1x, T nx) � d(x, Tx).d(T n−1x, T nx)
and d(x, T nx).d(T n−1x, T nx) 6= d(x, Tx).d(T n−1x, T nx). Therefore,
we have d2(T n−1x, T nx) � h inf{d2(x, Tx), d(x, Tx).d(T n−1x, T nx)}.

Now, d(T n−1x, T nx) � d(x, Tx) implying that
d(x, Tx).d(T n−1x, T nx)
� d2(x, Tx). Therefore d2(T n−1x, T nx) � h d2(x, Tx) which implies

that, d(T n−1x, T nx) �
√
h d(x, Tx) ∀x ∈ X(n ≥ 2, n ∈ N).

It is given that h � I and h 6= I so
√
h � I,

√
h 6= I and (

√
h − I)−1

exists. So by Theorem 4.7 we get T has a fixed point in X.

Corollary 4.9. Let (X,A, d) be a complete commutative C∗−algebra
valued metric space. If T : X → X is a continuous and surjective gen-
eralized expansive mapping of metric-1 type and a C∗−algebra valued
two times reasonable expansive mapping which satisfies d(Tx, T 2x) �
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d(x, Tx) ∀x ∈ X, where the fixed element(constant) h satisfies h �
I, h 6= I and (h− I)−1 exists, then T has a fixed point in X.

Proof. Taking n = 2 in (9) and denoting y = T 0y we get T is a
generalized expansive mapping of metric-1 type. So using theorem 4.8
under condition 4.8(i) it follows that T has a fixed point in X.

Corollary 4.10. Let (X,A, d) be a complete commutative C∗−algebra
valued metric space. If T : X → X is a continuous and surjective gen-
eralized expansive mapping of metric-2 type and a C∗−algebra valued
two times reasonable expansive mapping which satisfies d(Tx, T 2x) �
d(x, Tx) ∀x ∈ X, where the fixed element(constant) h satisfies h �
I, h 6= I and (h− I)−1 exists, then T has a fixed point in X.

Proof. In (10) taking n = 2 and denoting y = T 0y we get T is a
generalized expansive mapping of metric-2 type. So using theorem 4.8
under condition 4.8(ii) it follows that T has a fixed point in X.

Theorem 4.11. Let (X,A, d) be a complete commutative C∗−algebra
valued metric space. If T : X → X is a continuous and surjective
C∗−algebra valued n-times resonable expansive mapping which satis-
fies
(12)
d(T nx, T ny) � h inf{d(x, y), d(y, T ny)} ∀ x, y ∈ X(n ≥ 2, n ∈ N)

and the fixed element(constant) h � I, h 6= I with (h−I) is invertible,
then T has a fixed point in X.

Proof. Letting x = Ty in (12) we get d(T n+1y, T ny) � h inf{d(Ty, y),
d(y, T ny)} ∀ y ∈ X.
Since T is a C∗−algebra valued n−times resonable expansive mapping
then d(y, T ny) � h d(y, Ty) � d(y, Ty) ∀ y ∈ X. Therefore we get
d(T ny, T n+1y) � h d(y, Ty) ∀ y ∈ X.
So by Theorem 4.7 it follws that T has a fixed point in X.

Here we cite the following examples which are on n−times reason-
able expansive mapping with fixed points.

Example 4.12. Let X = R be the metric space with usual metric.
Then it is a C∗−algebra valued metric space with the C∗−algebra
A = R.

(a) The identity mapping on X is clearly a n−times reasonable
expansive mapping for any constant h > 1 and for any n(≥ 2) ∈ N.

(b) The mapping T : X → X is defined by Tx = k x ∀x ∈ X,
where k > 1, is clearly a n−times reasonable expansive mapping for
the constant h = k + 1 and for any n(≥ 2) ∈ N.
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Example 4.13. Let B1 = {z ∈ C : |z| = 1} = {eiθ : eiθ ∈ C,−∞ <
θ <∞} be a unit circular ring in the complex plane C. Then B1 is a
C∗−algebra valued metric space with the C∗−algebra A = R. Suppose
that for n(≥ 2) ∈ N T : B1 → B1 is a mapping defined as follows:

(13) Tz = T (eiθ) =

{
ei(θ+

2π
3n

), if θ 6= 2mπ,m ∈ Z
1, if θ = 2mπ,m ∈ Z

For every z = eiθ ∈ B1, θ 6= 2mπ,m ∈ Z we have
Tz = Teiθ = ei(θ+

2π
3n

),
T 2z = T (Tz) = T (Teiθ) = Tei(θ+

2π
3n

) = ei(θ+2( 2π
3n

)),
...
T nz = ei(θ+n(

2π
3n

)) = ei(θ+
2π
3
)

Thus we obtain,

d(z, T nz) = |T nz − z| = |ei(θ+
2π
3
) − eiθ| = |eiθ||ei

2π
3 − 1|

= | cos(
2π

3
) + i sin(

2π

3
)− 1| = | − 1

2
+ i

√
3

2
− 1| =

√
3

d(z, Tz) = |Tz − z| = |ei(θ+
2π
3n

) − eiθ| = |eiθ||ei
2π
3n − 1|

= | cos(
2π

3n
) + i sin(

2π

3n
)− 1| = 2 sin(

π

3n
).

Since n ≥ 2 then sin( π
3n

) ≤ 1
2

and so d(T nz, z) ≥
√

3d(z, Tz), ∀z(6=
1) ∈ B1. Now if θ = 2mπ for some m ∈ Z then z = 1 and by the
definition of mapping Tz = 1 and consequently T nz = 1 so in this
case also clearly d(T nz, z) ≥

√
3d(z, Tz). Therefore T is a n−times

reasonable expansive mapping with the constant h =
√

3.
Here 1 is the unique fixed point of T. Clearly the mapping is surjective
but not continuous on B1.

But the following examples (See Chen and Zhu [4]) are given for
n−times reasonable expansive mapping without having any fixed
point.

Example 4.14. [4] Let B1 be the unit circle in the complex plane
having origin as its center and 1 as its radius, that is B1 = {z ∈ C :
|z| = 1}. B1 can also be written as {eiθ : eiθ ∈ C,−∞ < θ < ∞}.
Then B1 is a C∗−algebra valued metric space with the C∗−algebra
A = R. Suppose that for n(≥ 2) ∈ N, T : B1 → B1 is a mapping
defined as follows:

(14) Tz = T (eiθ) = ei(θ+
2π
3n

) ∀ θ ∈ R



128 K. ROY AND M. SAHA

Then T is a n−times reasonable expansive mapping with the constant
h =

√
3. Since eiθ 6= ei(θ+

2π
3n

), then Tz 6= z, ∀z ∈ B1. This shows
that T has no fixed points in X. Clearly the mapping is surjective and
continuous in B1.

Example 4.15. [4] Let X = R be the metric space with usual metric.
Then it is a C∗−algebra valued metric space with the C∗−algebra
A = R. Suppose that T : X → X is a mapping defined as Tx = x+ 1
∀x ∈ X. Then T is a n−times reasonable expansive mapping with
the constant h = 2. Clearly T is continuous and Surjective in X but
it has no fixed point in X.
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