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APPROXIMATE DIFFERENTIABILITY IN
NEWTONIAN SPACES

BASED ON BANACH FUNCTION SPACES

MARCELINA MOCANU

Abstract. In this note we investigate the approximate differen-
tiability of Newtonian functions on a doubling metric measure space.
The Newtonian space under consideration consists of functions be-
longing to a rearrangement invariant Banach function space E and
possesing an upper gradient which also belongs to E. Our main tools
are a Poincaré inequality and a noncentered maximal operator, both
defined via the Banach function space E. Under our assumptions,
considering for a Newtonian function u an upper gradient g belonging
to the given Banach function space E, it turns out that a Haj lasz gra-
dient of u is a constant multiple of the maximal functionMEg, which
is Borel measurable and finite almost everywhere.

1. Introduction

Approximate differentiability is a generalization of the concept of
differentiability, obtained by replacing the limit by an approximate
limit at a point of Lebesgue density 1. The almost everywhere ap-
proximate differentiability of a real function on a measurable subset
A of Rn can be characterized using the existence almost everywhere
of the partial derivatives [13, Theorem 3.1.4]. Important examples of
classes of maps between Euclidean spaces, that are almost everywhere
differentiable, are Sobolev classes W 1,p and the BV class [12].
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Poincaré inequality, maximal operator.
(2010) Mathematics Subject Classification: 46E30, 46E35

177



178 M. MOCANU

The notion of approximate differentiability is very useful in the the-
ory of optimal transport in noncompact Riemannian manifolds, play-
ing an important role in establishing the existence and differentiability
of optimal transport maps [2], [28].

The extension of first order differential calculus to metric spaces
progressed from the introduction of the notion of upper gradient [16]
to the study of measurable differentiable structures [7]. The following
theorem of Cheeger, a deep extension of Rademacher’s theorem, shows
that a metric space equipped with a doubling measure and supporting
a weak (1, p)−Poincaré inequality admits a differentiable structure for
which Lipschitz functions are a.e. differentiable.

Theorem 1.1. [7] Let (X, d, µ) be a doubling metric measure space
supporting a weak (1, p)−Poincaré inequality for some 1 ≤ p < ∞.
Then there exists a countable collection {(Xα, ϕα)}α∈Λ of measurable
sets Xα ⊂ X with positive measure and Lipschitz coordinates

ϕα = (ϕ1
α, ..., ϕ

N(α)
α ) : X → RN(α) , with the following properties:

(i) µ(X \
⋃
α∈Λ

Xα) = 0;

(ii) There exists a non-negative integer N such that N(α) ≤ N for
each α ∈ Λ;

(iii) If f : X → R is Lipschitz, then for each (Xα, ϕα), there exists a
unique (up to a set of zero measure) measurable bounded vector valued
function dαf : Xα → RN(α) such that

(1) lim
y→x
y 6=x

|f(y)− f(x)− dαf(x) · (ϕα(y)− ϕα(x))|
d(y, x)

= 0,

for µ−almost every x ∈ Xα.
In (1), ” · ” denotes the usual inner product on RN(α).
The collection {(Xα, ϕα)}α∈Λ of Theorem 1.1. is said to be a strong

measurable differentiable structure for (X, d, µ). A function f : X → R
is said to be (Cheeger) differentiable at a point x ∈ Xα with respect to
the strong measurable differentiable structure {(Xα, ϕα)}α∈Λ if there
exists a unique vector dαf(x) ∈ RN(α) (called Cheeger differential of
f at x) such that (1) holds.

Keith [17] obtained a refinement of Cheeger’s theorem, showing
that the existence of a strong measurable differentiable structure is
still obtained if we replace the conditions that the metric measure
space supports a doubling measure and a (1, p)−Poincaré inequality
by some weaker ones: the property of chunky measure, respectively
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the comparability of the pointwise upper and lower Lipschitz constants
of Lipschitz functions.

In [11] {(Xα, ϕα)}α∈Λ is said to be an approximate measurable dif-
ferentiable structure for (X, d, µ) if the metric measure space satisfies
the conclusion of Theorem 1.1, but with the limit in (1) replaced by
an approximate limit. Furthermore, a function f : X → R is said
to be approximately differentiable at x ∈ Xα with respect to the ap-
proximate measurable differentiable structure {(Xα, ϕα)}α∈Λ if there
exists a vector dαf(x) ∈ RN(α) such that the analogue of (1) with the
limit replaced by approximate limit holds [11]. Note that the notion of
approximate differentiability in the setting of metric measure spaces
has been considered earlier by Keith [18].

Using Theorem 1.1, Balogh, Rogovin and Zürcher [6] obtained the
following generalization of Stepanov’s theorem: if (X, d, µ) is a dou-
bling metric measure space, with a strong measurable differentiable
structure {(Xα, ϕα)}α∈Λ, then every function f : X → R is µ−a.e.
differentiable in the set Sf := {x ∈ X : Lip f (x) <∞} with respect
to the given strong measurable differentiable structure. The pointwise
upper Lipschitz constant of f at x is given by

Lip f (x) = lim sup
y→x

|f (y)− f (x)|
d (y, x)

.

This Stepanov theorem is very useful in proving the a.e. Cheeger dif-
ferentiability of some classes of functions on a metric measure space
endowed with a strong measurable differentiable structure, e.g. in
extending to metric measure spaces Cesari-Calderón theorem [6, The-
orem 4.1] and the theorem on the differentiability of monotone con-
tinuous functions u ∈ W 1,p (Ω), where Ω ⊂ Rn and p > n − 1 [23,
Theorem 4.2].

Durand-Cartagena, Ihnatsyeva, Korte and Szumańska [11] extended
to the metric setting a theorem of Whitney, that characterizes ap-
proximately differentiable functions on sets in Rn as functions hav-
ing Lipschitz Luzin approximations. Then they proved the follow-
ing Stepanov type characterization of approximate differentiability
[11, Corollary 2.4]: given a complete doubling metric measure space
(X, d, µ), endowed with an approximate differentiable structure, a
function f : X → R is µ−a.e. approximately differentiable in a
bounded measurable set E ⊂ X if and only if
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(2) ap lim sup
y→x

|f (y)− f (x)|
d (y, x)

<∞, µ− a.e. in E.

It was shown in [11, Corollary 3.1] that the above theorem yields the
approximate differentiability of functions from the Newtonian space
N1,p (X) if µ is doubling and (X, d, µ) supports a (1, p)−Poincaré
inequality, where 1 ≤ p <∞.

This result was extended to Orlicz-Sobolev spaces in [22, Theorem
3.1], proving that every f ∈ N1,Φ (X) satisfies the condition (5), pro-
vided that the Young function Φ is strictly increasing and satisfies the
∆2−condition, while the metric measure space (X, d, µ) is complete,
doubling and supports a (1,Φ)−Poincaré inequality.

The purpose of this note is to prove a further extension of the re-
sult regarding the approximate differentiability of Newtonian functions
from [11, Corollary 3.1], where the role of the Lebesgue space Lp is
played by a Banach function space E, defined as in [4].

Given a doubling metric measure space (X, d, µ) and a rearrange-
ment invariant Banach function space E on X and assuming that
(X, d, µ) supports a weak (1,E)−Poincaré inequality, it follows that
every function u belonging to the Newtonian space N1,E (X) satisfies
the condition (2) for µ−a.e. x ∈ X. In particular, when (X, d, µ) is
complete and endowed with an approximate differentiable structure,
we see that every u ∈ N1,E (X) is approximately differentiable µ−a.e.
in X with respect to the given approximate differentiable structure.

We use as a basic tool a noncentered maximal operator associ-
ated to the Banach function space E [24], [21], an analogue of the
maximal operator studied in Euclidean spaces by [3], defined for any
µ−measurable real function f on X, by

MEf(x) = sup
B3x

‖fχB‖E
‖χB‖E

,

where the supremum is taken over all balls B ⊂ X containing the
point x ∈ X.

We use the (1,E)−Poincaré inequality introduced in [24] as an ex-
tension of several types of Poincaré inequalities on metric measure
spaces: the weak (1, p)−Poincaré inequality with 1 ≤ p < ∞ [16],
a version of the Orlicz-Poincaré inequality introduced by Aı̈ssaoui
[1], the Poincaré inequality based on Lorentz spaces [8] and the
∞−Poincaré inequality [9]. For u ∈ N1,E (X) and g ∈ E an upper
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gradient of u, using (1,E)−Poincaré inequality it turns out thatMEg
is a Haj lasz gradient of u, that is finite a.e. under our assumptions.

2. Preliminaries

A metric measure space (X, d, µ) is a metric space (X, d) with an
outer Borel regular measure µ : P (X)→ [0,∞].

A measure µ in a metric space (X, d) is said to be doubling if there
is a constant Cd > 1 such that

µ(B(x, 2r)) ≤ Cd µ(B(x, r))

for every ball B(x, r) ⊂ X. The metric measure space (X, d, µ) is
called doubling if the measure µ is doubling.

Lebesgue’s differentiation theorem, having as a special case
Lebesgue’s density theorem, holds in doubling metric measure spaces
[15, Theorem 1.8].

In the setting of metric spaces, a substitute for the length of the
gradient of a smooth function is the notion of upper gradient [16].
Newtonian spaces are analogues of Sobolev spaces on metric measure
spaces, based on the notion of upper gradient [26]. A Borel function
g : X → [0,∞] is said to be an upper gradient of a function u : X → R
if for all compact rectifiable curves γ : [a, b]→ X we have

(3) |u(γ(b))− u(γ(a))| ≤
∫
γ

g ds.

We use the definition given by Bennet and Sharpley [4] for a Banach
function norm ρ defined on the set of all non-negative measurable
functions on a σ− finite measure space (X,µ). The collection E of all
µ−measurable functions f : X → R for which ρ(|f |) < ∞ is called a
Banach function space on X. For f ∈ E define ‖f‖E = ρ(|f |).

Then (E, ‖·‖E) is a seminormed space, that induces a normed space
via the equivalence of functions that coincide µ−a.e. The correspond-
ing normed space, that will be still denoted by (E, ‖·‖E), is complete
[4, Theorem I.1.6]. Recall that E ⊂L1

loc (X).
Notable examples of Banach function spaces are Orlicz spaces and

Lorentz spaces, both generalizing Lebesgue spaces.

The E−modulus of a family Γ of curves in X is defined by
ModE(Γ) = inf ‖ρ‖E , where the infimum is taken over all Borel



182 M. MOCANU

functions ρ : X → [0,∞] with
∫
γ

ρ ds ≥ 1 for all locally rectifi-

able curves γ ∈ Γ [25]. Note that, in the case E =Lp (X) we have

ModE(Γ) = (Modp (Γ))1/p for 1 ≤ p < ∞ and ModE(Γ) = Mod∞ (Γ)
for p = ∞. Here Modp (Γ) is the p−modulus of Γ [15], [9, Theorem
4.7].

A non-negative Borel function g on X is said to be a E−weak upper
gradient of u : X → R if inequality (3) holds for all rectifiable curves
γ except those that belong to a family Γ with ModE (Γ) = 0. Note
that for every E−weak upper gradient g of a function u on X there
is a decreasing sequence (gi)i≥1 of upper gradients of u, such that
lim
i→∞
‖gi − g‖E = 0 [25, Proposition 2].

The Newtonian space N1,E (X) based on a Banach function space

E was introduced in [25]. Let Ñ1,E (X) be the class of all functions
u ∈ E such that u has a E−weak upper gradient in E. Then that

each u ∈ E has an upper gradient in E. For u ∈ Ñ1,E (X) we define
‖u‖Ñ1,E(X) = ‖u‖E + inf ‖g‖E, where the infimum is taken over all

E−weak upper gradients g ∈ E of u. The quotient space N1,E (X) =

Ñ1,E (X) / ∼, where u ∼ v if and only if ‖u− v‖Ñ1,E(X) = 0, is a vector

space, equipped with the norm ‖u‖N1,E(X) := ‖u‖Ñ1,E(X). Note that

for E = Lp (X) the space N1,E (X) is the Newtonian space N1,p(X)
introduced in [26].

Let (X,A, µ) be a measure space. Given any all real-valued measur-
able function u in X, we denote by u∗ : [0,∞)→ [0,∞] its decreasing
rearrangement, defined for s ≥ 0 as

u∗ (s) = inf {t > 0 : µ ({x ∈ X : |u (x)| > t}) > s} .

Let f : X → R be a µ−measurable function. The distribution
function of f is defined by df (t) = µ ({x ∈ X : |f (x)| > t}), where
t ≥ 0. The nonincreasing rearrangement of f is defined by f ∗ (t) =
inf {s ≥ 0 : df (s) ≤ t}, where t ≥ 0.

A Banach function space (E, ‖·‖E) is said to be rearrangement in-
variant if f ∗ = g∗ implies ‖f‖E = ‖g‖E , whenever f, g ∈ E. The
most well-known examples of rearrangement invariant Banach function
spaces are the Orlicz spaces LΨ (X) and the Lorentz spaces Lp,q (X)
with 1 ≤ q ≤ p <∞ [4, Theorem IV.4.3].

Let E be a rearrangement invariant space over (X,µ). The funda-
mental function of E is defined by ΦE (t) = ‖χA‖E, for t ≥ 0, where
A ⊂ X is any µ−measurable set with µ (A) = t. The definition is
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unambiguous, since the characteristic functions of two sets with equal
measures have the same distribution function.

We recall that (X,µ) is resonant if µ is σ−finite and nonatomic.
If the measure µ is doubling, then µ has as atoms only singletons
consisting of isolated points [19]. Thus, a doubling metric measure
space without isolated point is resonant.

3. Approximate differentiability of measurable
functions with upper gradients in a Banach function

spaces

In order to discuss about approximate differentiability, we need to
define the notion of approximate limit. We say that l ∈ R is the
approximate limit of a function f : X → R at a point x ∈ X
and write aplim

y→x
f (y) = l if x is a density point for all the sets

{y ∈ X : |f (y)− l| < ε}.
Definition 3.1. [11, Definition 1.8]A function f : X → R is said

to be approximately differentiable at a point x ∈ Xα with respect to
the approximate differentiable structure {(Xα, ϕα)}α∈Λ if there exists
a vector Lαf(x) ∈ RN(α) (called approximate differential of f at x)
such that

(4) ap lim
y→x

|f(y)− f(x)− Lαf(x) · (ϕα(y)− ϕα(x))|
d(y, x)

= 0,

It is proved in [11, Lemma 1.10] that for every α ∈ Λ the approx-
imate differential Lαf(x) is unique for almost every point x ∈ Xα.
Moreover, if f : X → R is a measurable function that is approxi-
mately differentiable at almost every x ∈ Xα, then the approximate
differential Lαf : Xα → RN(α) is µ−measurable on Xα.

Durand-Cartagena, Ihnatsyeva, Korte and Szumańska proved, in
the setting of metric measure spaces, a Whitney-type characterization
of approximate differentiability and a Stepanov-type characterization
of functions that can be approximated by Lipschitz functions in Luzin
sense. These results yield the following

Theorem 3.2. [11, Corollary 2.4] Let (X, d, µ) be a complete and
doubling metric measure space, endowed with an approximate differ-
entiable structure {(Xα, ϕα)}α∈Λ. A function f : X → R is µ−a.e.
approximately differentiable in a bounded measurable set E ⊂ X if



184 M. MOCANU

and only if

(5) ap lim sup
y→x

|f(y)− f(x)|
d(y, x)

<∞

for µ−a.e. x ∈ E.
For a function v : X → R, the approximate upper limit ap

lim sup
y→x

v (y) is defined as the infimum of all numbers a ∈ R for which

the set {y ∈ X : v (y) > a} has density zero at the point x ∈ X.
Below we will call the left hand side in (5) the approximate pointwise

upper Lipschitz constant of the function f at x.
The existence of a Haj lasz gradient that is finite a.e., for a real-

extended measurable function f that is finite a.e., implies the finite-
ness a.e. of the approximate pointwise upper Lipschitz constant of f
appearing in (5).

Lemma 3.3. Let (X, d, µ) be a doubling metric measure space.
Assume that f : X → R is a µ−measurable function, which is finite
almost everywhere for which there exists a µ−measurable function h :
X → [0,∞], which is also finite almost everywhere, such that

|f (x)− f (y)| ≤ C d (x, y) (h (x) + h (y)) for µ− a.e. x, y ∈ X.

Then (5) holds.

Proof. There exist some sets E1, E2 ⊂ X with µ (E1) = µ(E2) = 0
such that

|f (x)− f (y)|
d (x, y)

≤ C (h (x) + h (y))

for every distinct x, y ∈ X \ E1 and h(x) <∞ for every x ∈ E2.
Since µ is doubling, a Luzin type theorem, Theorem 1.4 from [11],

shows that the µ−measurable function h is approximately continuous
outside some set F with µ (F ) = 0.

Let x ∈ X \ (E1 ∪ E2 ∪ F ). Taking approximate supremum limits
for y → x in both members of the above inequality we get

ap lim sup
y→x

|f(y)−f(x)|
d(y,x)

≤ 2Ch (x) <∞.

We introduced in [24] a new type of first order Poincaré inequal-
ity for functions defined on a metric measure space, that extends the
Orlicz-Poincaré inequality introduced by Aı̈ssaoui [1] and the Poincaré
inequality based on Lorentz spaces, introduced by Costea and Miranda
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[8], that in turn generalize the well-known weak (1, p)−Poincaré in-
equality [16]. Note that the Orlicz-Poincaré inequalities introduced by
Aı̈ssaoui [1] and by Tuominen [27] are different, but each implies the
other under some assumptions on the underlying Young function [24,
Remark 2.2].

Let u ∈ L1
loc(Ω), where Ω ⊂ X is an open set. Let g : Ω → [0,∞]

be Borel measurable and 1 ≤ p < ∞. We denote the average value
of u on A by uA = 1

µ(A)

∫
A

u dµ for every measurable set A ⊂ Ω with

0 < µ (A) <∞.

Definition 3.4. Let (X, d, µ) be a metric measure space and let E
be a Banach function space over (X,µ). Consider a locally integrable
function u : X → R and a Borel measurable function g : X → [0,∞].
We say that the pair (u, g) satisfies a weak (1,E)−Poincaré inequality
if there exist some constants C > 0 and τ ≥ 1 such that for all balls
B = B (x, r) ⊂ X we have

(6)
1

µ(B)

∫
B

|u− uB| dµ ≤ Cr
‖gχτB‖E
‖χτB‖E

.

The space (X, d, µ) is said to support a weak (1,E)−Poincaré in-
equality if (6) holds for every pair (u, g) with u : X → R locally
integrable and g an upper gradient of u, with fixed constants C > 0
and τ ≥ 1.

Here ‖gχτB‖E stands for ρ (gχτB), even in the case ρ (gχτB) = ∞,
where ρ is the Banach function norm from the definition of E. See
also [24, Definition 2.3].

Note that, if (X, d, µ) supports a weak (1,E)−Poincaré inequality,
then (6) holds whenever g is a E−weak upper gradient of u, as we see
using the approximation of weak upper gradients by upper gradients
in the norm of E [25, Proposition 2].

If a metric measure space supports a weak (1,E)−Poincaré in-
equality, for some Banach function space E, then it supports a weak
∞−Poincaré inequality [24, Lemma 2.5] and also it supports a first
order Poincaré inequality for F = N1,∞ (X), versions of Poincaré in-
equality that have been introduced and studied in [9], respectively in
[10].

Let E be a Banach function space over (X,µ). We will consider an
analogue of the maximal operator from [3], which was defined in the
case X = Rn using cubes. In our case, balls are replacing cubes.



186 M. MOCANU

Assume that f : X → R is a µ−measurable function. If fχB /∈ E
for some ball B, then ρ (fχB) =∞ and we write ‖fχB‖E =∞.

Definition 3.5. [21] The noncentered maximal operator associated
with the Banach function space E is defined by

MEf(x) = sup
B3x

‖fχB‖E
‖χB‖E

,

where the supremum is taken over all balls B ⊂ X containing the
point x. Here f : X → R is any µ−measurable function.

Note that in the case when E =Lp (X), 1 ≤ p <∞, we haveMEf =

(M∗ (|f |p))1/p
.

As in the classical case of the noncentered version of the Hardy-
Littlewood maximal operator, it turns out that, for every measurable
function f , the functionMEf : X → [0,∞] is Borel measurable, since
the preimage of any interval (α,∞] under MEf is an open subset of
X.

We proved in [24] that the validity of the Poincaré inequality based
on a Banach function space, on a doubling metric measure space, im-
plies a pointwise estimate involving an appropriate maximal operator.
The following result partially extends Theorem 3.2 from [14].

Lemma 3.6. [24, Proposition 3.2] Let (X, d, µ) be a doubling metric
measure space and let E be a Banach function space over (X,µ). Let
u : X → R be a locally integrable function and g : X → [0,∞] be
a Borel measurable function. Assume that the pair (u, g) satisfies a
weak (1,E)−Poincaré inequality with constants C and τ . Then

(7) |u(x)− u(y)| ≤ C ′d (x, y) (MEg (x) +MEg (y))

for almost every x, y ∈ X. Here C ′ is some constant depending only
on C and the doubling constant Cd of the measure µ.

Remark 3.7. The above lemma shows that MEg is a Haj lasz
gradient of u, provided that (u, g) satisfies a weak (1,E)−Poincaré
inequality.

We need some estimates for the distribution function of this oper-
ator, that generalize a result proved by Bastero, Milman and Ruiz
[3, Theorem 1] in the Euclidean case and a similar result proved by
Costea and Miranda [8, Lemma 6.3] for Newtonian Lorentz spaces on
doubling metric spaces. These results are generalizations of the classi-
cal weak-type estimate, the Hardy-Littlewood maximal inequality for
L1, which has been extended to doubling metric measure spaces in [15,
Theorem 2.2].
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Lemma 3.8. [21, Theorem 2] Let E be a rearrangement invariant
Banach function space on a doubling metric measure space (X, d, µ)
without isolated points. Let ΦE and ME be the corresponding funda-
mental function and maximal operator, respectively. If E satisfies a
lower ΦE−estimate, then there exists a positive constant C <∞ such
that for every f ∈ E we have

(8) ΦE (µ ({x ∈ X :MEf (x) > λ})) ≤ C

λ
‖f‖E .

Moreover, if the norm of E is absolutely continuous, then

(9) lim
λ→∞

λΦE (µ ({x ∈ X :MEf (x) > λ})) = 0.

Corollary 3.9. Assume that E is a rearrangement invariant Ba-
nach function space on a doubling metric measure space (X, d, µ) with-
out isolated points, such that E satisfies a lower ΦE−estimate. Then
MEf is finite almost everywhere for every f ∈ E.

Proof. Since ΦE is strictly increasing [4, Corollary II.5.3.], inequal-
ity (8) implies

ΦE (µ ({x ∈ X :MEf (x) =∞})) ≤ ΦE (µ ({x ∈ X :MEf (x) > λ}))

≤ C

λ
‖f‖E ,

for all λ > 0.
The claim follows letting λ tend to infinity.

Theorem 3.10. Let (X, d, µ) a doubling metric measure space. Let
E be a rearrangement invariant Banach function space over (X,µ),
such that E satisfies a lower ΦE−estimate. Assume that (X, d, µ)
supports a weak (1,E)−Poincaré inequality. Then every function u ∈
N1,E (X) satisfies the condition

(10) ap lim sup
y→x

|u(y)− u(x)|
d(y, x)

<∞

for µ−a.e. x ∈ X.
If in addition (X, d, µ) is complete and endowed with an approximate

differentiable structure, then u is approximately differentiable µ−a.e.
in X with respect to the given approximate differentiable structure.
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Proof. As (X, d, µ) supports a weak (1,E)−Poincaré inequality, it sup-
ports a weak ∞−Poincaré inequality [24, Lemma 2.5]. A space sup-
porting a Poincaré inequality is connected and thus has no isolated
points.

Let u ∈ N1,E (X). Then u ∈ E ⊂L1
loc (X) and u has an upper gradi-

ent g ∈ E. Since (X, d, µ) supports a weak (1,E)−Poincaré inequality,
the pair (u, g) satisfies a weak (1,E)−Poincaré inequality. By Lemma
3.6, the pointwise estimate (7) holds for almost all points x, y ∈ X.

As MEg : X → [0,∞] is µ−measurable and finite almost every-
where (by Corollary 3.9), applying Lemma 3.3 with h = MEg we
obtain that (10) holds for µ−a.e. x ∈ X.

In case (X, d, µ) is complete and endowed with an approximate dif-
ferentiable structure, we appeal to Theorem 3.2 to finish the proof.

Remark 3.11. Every Orlicz space E =LΨ (X) corresponding to an
N−function Ψ satisfies a lower ΦE−estimate [21, Corollary 1]. Ev-
ery Lorentz space E =Lp,q (X) with 1 ≤ q ≤ p < ∞ satisfies a a
lower ΦE−estimate, see [8, Proposition 2.4]. Since the above Banach
function spaces are also rearrangement invariant, Theorem 3.11 can
be used for the corresponding Newtonian spaces N1,E (X), provided
that the doubling metric measure space supports the (1,E)−Poincaré
inequality.
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and in the space of probability measures, Lectures in Mathematics ETH
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