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Abstract.The theory of convex sets is a vibrant and classical field
of modern mathematics with rich applications. If every points of a
line segment that connects any two points of the set are in the same
set, then it is convex. The more geometric aspects of convex sets
are developed introducing some notions, but primarily polyhedra. A
polyhedra, when it is convex, is an extremely important special solid
in Rn. Some examples of convex subsets of Euclidean 3-dimensional
space are Platonic Solids, Archimedean Solids and Archimedean Duals
or Catalan Solids. In this study, we give two new metrics to be their
spheres a truncated rhombicuboctahedron and a truncated rhombici-
cosidodecahedron.

1. Introduction

Polyhedra have very interesting symmetries. For example, they have
symmetries about a plane, a line and a point. Therefore they have at-
tracted the attention of scientists and artists from past to present.
Thus mathematicians, geometers, physicists, chemists, artists have
studied and continue to study on polyhedra.
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Consequently, polyhedra take place in many studies with respect to
different fields. As it is stated in [3] and [6], polyhedra have been used
for explaining the world around us in philosophical and scientific way.
There are only five regular convex polyhedra known as the platonic
solids.
These regular polyhedra were known by the Ancient Greeks. They are
generally known as the ”Platonic” or ”cosmic” solids because Plato
mentioned them in his dialogue Timeous, where each is associated
with one of the five elements - the cube with earth, the icosahedron
with water, the octahedron with air, the tetrahedron with fire and
the dodecahedron with universe ( or with ether, the material of the
heavens). The story of the rediscovery of the Archimedean polyhedra
during the Renaissance is not that of the recovery of a ’lost’ classical
text. Rather, it concerns the rediscovery of actual mathematics, and
there is a large component of human muddle in what with hindsight
might have been a purely rational process. The pattern of publication
indicates very clearly that we do not have a logical progress in which
each subsequent text contains all the Archimedean solids found by its
author’s predecessors. In fact, as far as we know, there was no classi-
cal text recovered by Archimedes. The Archimedean solids have that
name because in his Collection, Pappus stated that Archimedes had
discovered thirteen solids whose faces were regular polygons of more
than one kind. Pappus then listed the numbers and types of faces of
each solid. Some of these polyhedra have been discovered many times.
According to Heron, the third solid on Pappus’ list, the cuboctahe-
dron, was known to Plato. During the Renaissance, and especially
after the introduction of perspective into art, painters and craftsmen
made pictures of platonic solids. To vary their designs they sliced off
the corners and edges of these solids, naturally producing some of the
Archimedean solids as a result.For more detailed knowledge, see [3]
and [6].

Minkowski geometry is non-Euclidean geometry in a finite number
of dimensions. Here the linear structure is the same as the Euclidean
one but distance is not uniform in all directions. That is, the points,
lines and planes are the same, and the angles are measured in the
same way, but the distance function is different. Instead of the usual
sphere in Euclidean space, the unit ball is a general symmetric convex
set [17].

Some mathematicians have studied and improved metric space ge-
ometry. According to the mentioned researches it is found that unit
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spheres of these metrics are associated with convex solids. For exam-
ple, unit sphere of maximum metric is a cube which is a Platonic Solid.
Taxicab metric’s unit sphere is an octahedron, another Platonic Solid.
In [1, 2, 4, 5, 7, 8, 9, 10] the authors give some metrics which the
spheres of the 3-dimensional analytical space furnished by these met-
rics are some of Platonic solids, Archimedian solids and Catalan solids.
So there are some metrics which unit spheres are convex polyhedrons.
That is, convex polyhedrons are associated with some metrics. When
a metric is given, we can find its unit sphere in related space geom-
etry. This enforce us to the question ”Are there some metrics whose
unit sphere is a convex polyhedron?”. For this goal, firstly, the related
polyhedra are placed in the 3-dimensional space in such a way that
they are symmetric with respect to the origin. And then the coordi-
nates of vertices are found. Later one can obtain metric which always
supply plane equation related with solid’s surface. In this study, two
new metrics are introduced, and showed that the spheres of the 3-
dimensional analytical space furnished by these metrics are truncated
rhombicuboctahedron and truncated rhombicosidodecahedron. Also
some properties about these metrics are given.

2. Truncated Rhombicuboctahedron Metric and Some
Properties

It has been stated in [16], there are many variations on the theme
of the regular polyhedra. First one can meet the eleven which can be
made by cutting off (truncating) the corners, and in some cases the
edges, of the regular polyhedra so that all the faces of the faceted poly-
hedra obtained in this way are regular polygons. These polyhedra were
first discovered by Archimedes (287-212 B.C.E.) and so they are often
called Archimedean solids. Notice that vertices of the Archimedean
polyhedra are all alike, but their faces, which are regular polygons, are
of two or more different kinds. For this reason they are often called
semiregular. Archimedes also showed that in addition to the eleven
obtained by truncation, there are two more semiregular polyhedra:
the snub cube and the snub dodecahedron.

Two of Archimedian solids, the Truncated Cuboctahedron (also
called Great Rhombicuboctahedron) and the Truncated Icosidodeca-
hedron (also called Great Rhombicosidodecahedron) apparently seem
to be derived from truncating the two preceding ones. However, it is
apparent from the above discussion on the percentage of truncation
that one cannot truncate a solid with unequally shaped faces and end
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up with regular polygons as faces. Therefore, these two solids need be
constructed with another technique. Actually, the can be built from
the original platonic solids by a process called expansion. It consists
on separating apart the faces of the original polyhedron with spherical
symmetry, up to a point where they can be linked through new faces
which are regular polygons. The name of the Truncated Cuboctahe-
dron (also called Great Rhombicuboctahedron) and of the Truncated
Icosidodecahedron (also called Great Rhombicosidodecahedron) again
seem to indicate that they can be derived from truncating the Cuboc-
tahedron and the Icosidodecahedron. But, as reasoned above, this is
not possible [18].

One of the solids which is obtained by truncating from another
solid is the truncated rhombicuboctahedron. It has 6 regular octag-
onal faces, 12 bi-mirror-symmetric octagonal faces, 8 regular hexago-
nal faces, 24 square faces, 96 vertices and 144 edges. The truncated
rhombicuboctahedron can be obtained by truncating operation from
rhombicuboctahedron. Figure 1 shows the rhombicuboctahedron, the
truncated rhombicuboctahedron, and the transparent truncated rhom-
bicuboctahedron, respectively.

Figure 1: Rhombicuboctahedron, Truncated Rhombicuboctahedron

Before we give a description of the truncated rhombicuboctahedron
distance function, we must agree on some impressions. Therefore U ,
V , W denote the maximum, the middle and the minimum of quan-
tities {|x1 − x2|, |y1 − y2|, |z1 − z2|}, respectively for P1 = (x1, y1, z1),
P2 = (x2, y2, z2) ∈ R3. The metric that unit sphere is the truncated
rhombicuboctahedron is described as following:

Definition 1. Let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be two points
in R3. The distance function dTRC : R3 × R3 → [0,∞) truncated
rhombicuboctahedron distance between P1 and P2 is defined by

dTRC(P1, P2) = max {U, k1 (U + V ) , k2 (2U + V +W ) , k3 (U + V +W )}
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where k1 =
106 + 57

√
2 + 44

√
3− 28

√
6

46
,

k2 =
2000− 213

√
2− 56

√
3 + 212

√
6

5422
and k3 =

73− 3
√

2− 10
√

3 + 12
√

6

141
.

According to truncated rhombicuboctahedron distance, there are
four different paths from P1 to P2. These paths are
i) a line segment which is parallel to a coordinate axis.
ii) union of two line segments each of which is parallel to a coordi-

nate axis.
iii) union of three line segments which one is parallel to a coordi-

nate axis and other line segments makes arctan
(
3
4

)
angle with another

coordinate axes.
iv) union of three line segments each of which is parallel to a coor-

dinate axis.
Thus truncated rhombicuboctahedron distance between P1 and P2

is for (i) Euclidean length of mentioned the line segments, for (ii) k1
times the sum of Euclidean lengths of mentioned two line segments,
for (iii) k2 times the sum of Euclidean lengths of mentioned three line
segments, for (iv) k3 times the sum of Euclidean lengths of mentioned
three line segments.

In case of |y1 − y2| ≥ |x1 − x2| ≥ |z1 − z2|, Figure 2 illustrates some
of truncated rhombicuboctahedron way from P1 to P2

Figure 2: Some TRC way from P1 to P2
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In [14], the authours introduce a metric and show that sphere of
3-dimensional analytical space furnished by this metric is the the
rhombicuboctahedron. These metrics for P1 = (x1, y1, z1), P2 =
(x2, y2, z2)∈ R3 are defined as follows:

dRC(P1, P2) = max{U, 7
√

2

2
(U + V ) ,

2
√

2 + 1

7
(U + V +W )}.

Lemma 2. Let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be distinct two
points in R3. U12, V12, W12 denote the maximum, the middle and the
minimum of quantities of {|x1 − x2| , |y1 − y2| , |z1 − z2|} , respectively.
Then

dTRC(P1, P2) ≥ U12

dTRC(P1, P2) ≥ k1 (U12 + V12)
dTRC(P1, P2) ≥ k2 (2U12 + V12 +W12)
dTRC(P1, P2) ≥ k3 (U12 + V12 +W12)

Proof. Proof is trivial by the definition of maximum function.

Theorem 3. The distance function dTRC is a metric. Also according
to dTRC, the unit sphere is a truncated rhombicuboctahedron in R3.

Proof. Let dTRC : R3 × R3 → [0,∞) be the truncated rhombicuboc-
tahedron distance function and P1=(x1, y1, z1) , P2=(x2, y2, z2) and
P3=(x3, y3, z3) are distinct three points in R3. U12, V12, W12 de-
note the maximum, the middle and the minimum of quantities of
{|x1 − x2| , |y1 − y2| , |z1 − z2|} , respectively. To show that dTRC is
a metric in R3, the following axioms hold true for all P1, P2 and P3 ∈
R3.
M1) dTRC(P1, P2) ≥ 0 and dTRC(P1, P2) = 0 iff P1 = P2

M2) dTRC(P1, P2) = dTRC(P2, P1)
M3) dTRC(P1, P3) ≤ dTRC(P1, P2) + dTRC(P2, P3).

Since absolute values is always nonnegative value dTRC(P1, P2) ≥ 0
. If dTRC(P1, P2)=0 then
max {U, k1 (U + V ) , k2 (2U + V +W ) , k3 (U + V +W )}=0,
where U, V,W are the maximum, the middle and the minimum
of quantities {|x1 − x2|, |y1 − y2|, |z1 − z2|}, respectively. Therefore,
U=0, k1 (U + V ) = 0, k2 (2U + V +W ) = 0 and k3 (U + V +W ) = 0.
Hence, it is clearly obtained by x1 = x2, y1 = y2, z1 = z2. That is,
P1 = P2. Thus it is obtained that dTRC(P1, P2) = 0 iff P1 = P2.

Since |x1 − x2| = |x2 − x1| , |y1 − y2|=|y2 − y1| and |z1 − z2| =
|z2 − z1|, obviously dTRC(P1, P2) = dTRC(P2, P1). That is, dTRC is sym-
metric.
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U13, V13, W13 and U23, V23, W23 denote the maximum, the middle
and the minimum of quantities of {|x1 − x3| , |y1 − y3| , |z1 − z3|} and
{|x2 − x3| , |y2 − y3| , |z2 − z3|}, respectively.

dTTD(P1, P3)
= max {U13, k1 (U13 + V13) , k2 (2U13 + V13 +W13) , k3 (U13 + V13 +W13)}

≤ max

 U12 + U23, k1 (U12 + U23 + V12 + V23) ,
k2 (2 (U12 + U23) + V12 + V23 +W12 +W23) ,

k3 (U12 + U23 + V12 + V23 +W12 +W23)


=I.

Therefore one can easily find that I ≤ dTRC(P1, P2) + dTRC(P2, P3)
from Lemma 1. So dTRC(P1, P3) ≤ dTRC(P1, P2) + dTRC(P2, P3). Con-
sequently, the truncated rhombicuboctahedron distance is a metric in
3-dimensional analytical space.
Finally, the set of all points X = (x, y, z) ∈ R3 that truncated rhom-
bicuboctahedron distance is 1 from O = (0, 0, 0) is

STRC =
{(x, y, z) : max {U, k1 (U + V ) , k2 (2U + V +W ) , k3 (U + V +W )} = 1} ,

where U, V,W are the maximum, the middle and the minimum of
quantities {|x|, |y|, |z|}, respectively. Thus the graph of STRC is as in
the figure 3:

Figure 3 The unit sphere in terms of dTRC : Truncated rhombicuboctahedron

Corollary 4. The equation of the truncated rhombicuboctahedron with
center (x0, y0, z0) and radius r is

max {U0, k1 (U0 + V0) , k2 (2U0 + V0 +W0) , k3 (U0 + V0 +W0)} = r,
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which is a polyhedron which has 50 faces and
96 vertices, where U0, V0,W0 are the maxi-
mum, the middle and the minimum of quantities
{|x− x0|, |y − y0|, |z − z0|}, respectively. Coordinates of the ver-
tices are translation to (x0, y0, z0) all permutations of the three axis
components and all possible +/- sign changes of each axis component

of (C1r, C4r, r) and (C0r, C2r, C3r) , where C0 = 199−126
√
2+118

√
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√
6

167
,

C1 = 51+81
√
2−52

√
3−4
√
6

167
, C2 = 139−15

√
2+22

√
3−24

√
6

167
, C3 =

79+96
√
2−74

√
3+20

√
6

167
and C4 = 111−30

√
2+44

√
3−48

√
6

167
.

Lemma 5. Let l be the line through the points P1=(x1, y1, z1) and
P2=(x2, y2, z2) in the analytical 3-dimensional space and dE denote
the Euclidean metric. If l has direction vector (p, q, r), then

dTRC(P1, P2) = µ(P1P2)dE(P1, P2)

where

µ(P1P2) =
max {Ud, k1 (Ud + Vd) , k2 (2Ud + Vd +Wd) , k3 (Ud + Vd +Wd)}√

p2 + q2 + r2
,

Ud, Vd,Wd are the maximum, the middle and the minimum of quanti-
ties {|p|, |q|, |r|}, respectively.

Proof. Equation of l gives us x1− x2 = λp, y1− y2 = λq, z1− z2 = λr,
λ ∈ R. Thus,

dTRC(P1, P2) =
|λ| (max {Ud, k1 (Ud + Vd) , k2 (2Ud + Vd +Wd) , k3 (Ud + Vd +Wd)}) ,

where Ud, Vd,Wd are the maximum, the middle and the minimum of
quantities {|p|, |q|, |r|}, respectively, and dE(A,B) = |λ|

√
p2 + q2 + r2

which implies the required result.

The above lemma says that dTRC-distance along any line is some
positive constant multiple of Euclidean distance along same line. Thus,
one can immediately state the following corollaries:

Corollary 6. If P1, P2 and X are any three collinear points in R3, then
dE(P1, X) = dE(P2, X) if and only if dTRC(P1, X) = dTRC(P2, X) .

Corollary 7. If P1, P2 and X are any three distinct collinear points
in the real 3-dimensional space, then

dTRC(X,P1) / dTRC(X,P2) = dE(X,P1) / dE(X,P2) .

That is, the ratios of the Euclidean and dTRC−distances along a line
are the same.
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3. Truncated Rhombicosidodecahedron Metric and Some
Properties

The truncated rhombicosidodecahedron can be obtained by trun-
cating operation from rhombicosidodecahedron. The truncated rhom-
bicosidodecahedron has 12 regular decagonal faces, 30 bi-mirror-
symmetric octagonal faces, 20 regular hexagonal faces, 60 square faces,
240 vertices and 360 edges. Figure 4 show the rhombicosidodeca-
hedron, the truncated rhombicosidodecahedron, and the transparent
truncated rhombicosidodecahedron.

Figure 4: Rhombicosidodecahedron, Truncated rhombicosidodecahedron

Before we give a description of the truncated truncated dodecahe-
dron distance function, we must agree on some impressions. Therefore
U denote the maximum of quantities {|x1 − x2|, |y1 − y2|, |z1 − z2|} for
P1 = (x1, y1, z1), P2 = (x2, y2, z2) ∈ R3. Also, X − Y −Z −X orienta-
tion and Z − Y −X − Z orientation are called positive (+) direction
and negative (−) directions, respectively. Accordingly, U+ and U−

will display the next term in the respective direction according to U .
For example, if U = |y1− y2|, then U+ = |z1− z2| and U− = |x1−x2|.
The metric that unit sphere is the truncated rhombicosidodecahedron
is described as following:

Definition 8. Let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be two points
in R3. The distance function dTRI : R3 × R3 → [0,∞) truncated
rhombicosidodecahedron distance between P1 and P2 is defined by

dTRI(P1, P2) = max


U, k1U + k2U

+, k3U + k4U
+ + k5U

−,
k6U + k7U

−, k8U + k9U
+ + k10U

−,
k11U + k12U

−, k13 (U + U+ + U−) ,
k14U + k15U

+ + k16U
−


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where k1 =
355 + 21

√
5 +

(
42− 22
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5
)√
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√

5
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,

k2 =
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5
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+
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√

5
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,
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1455− 547

√
5
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(
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√
5
)√

25 + 10
√

5

122
,

k9 =
355
√

5− 774

122
+

(
512
√

5− 1145
)√

25 + 10
√

5

305
,

k10 =
1001− 419

√
5

244
+

(
1415− 633

√
5
)√

25 + 10
√

5

610
,

k11 =
291
√

5− 547

122
, k12 = 2k9, k13 =

32 + 49
√

5

237
+(

195− 89
√

5
)√

25 + 10
√

5

1185
,

k14 =
227− 64

√
5

122
+

(
270− 121

√
5
)√

25 + 10
√

5

305
,

k15 =
1001
√

5− 2095

244
+

(
283
√

5− 633
)√

25 + 10
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122
and

k16 =
291
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5− 547

244
+

(
391
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5− 875
)√

25 + 10
√

5

610
.

According to truncated rhombicosidodecahedron distance, there are
eight different paths from P1 to P2. These paths are
i) a line segment which is parallel to a coordinate axis.
ii) union of two line segments which one is parallel to a coordi-

nate axis and other line segment makes arctan
(
1
2

)
angle with another

coordinate axis.
iii) union of three line segments one of which is parallel to a coor-

dinate axis and the others line segments makes one of arctan(
√
5
2

) and

arctan
(
1
2

)
angles with one of the other coordinate axes .

iv) union of two line segments which one is parallel to a coordinate

axis and other line segment makes arctan
(√

5
2

)
angle with another

coordinate axis.
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v) union of three line segments one of which is parallel to a coor-

dinate axis and the others line segments makes one of arctan(15+6
√
5

10
)

and arctan
(

10+3
√
5

10

)
angles with one of the other coordinate axes .

vi) union of two line segments which one is parallel to a coordi-
nate axis and other line segment makes arctan

(
1
2

)
angle with another

coordinate axis.
vii) union of three line segments each of which is parallel to a coor-

dinate axis.
viii) union of three line segments one of which is parallel to a coor-

dinate axis and the others line segments makes one of arctan(15−6
√
5

10
)

and arctan
(
1
2

)
angles with one of the other coordinate axes .

Thus truncated rhombicosidodecahedron distance between P1 and
P2 is for (i) Euclidean length of mentioned the line segments, for (ii)
k1 times the sum of Euclidean lengths of mentioned two line segments,
for (iii) k3 times the sum of Euclidean lengths of mentioned three line
segments, for (iv) k6 times the sum of Euclidean lengths of mentioned
two line segments, for (v) k8 times the sum of Euclidean lengths of
mentioned three line segments, for (vi) k11 times the sum of Euclidean
lengths of mentioned two line segments, for (vii) k13 times the sum of
Euclidean lengths of mentioned three line segments, and for (viii) k14
times the sum of Euclidean lengths of mentioned three line segments.
In case of |y1 − y2| ≥ |x1 − x2| ≥ |z1 − z2|, Figure 5 shows that some
of the TRI−path between P1 and P2.
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Figure 5: TRI way from P1 to P2

In [14], the authours introduce a metric and show that spheres of
3-dimensional analytical space furnished by these metric are the rhomi-
cosidodecahedron. This metric for P1 = (x1, y1, z1), P2 = (x2, y2, z2)∈
R3 is defined as follows:

dRI(P1, P2) = max

{
U, 9+5

√
5

22
U + 1+3

√
5

22
U−, 3+

√
5

6
U + 1+

√
5

6
U+,√

5+1
4
U + 1

2
U− +

√
5−1
4
U+,

√
5+4
11

(U + U+ + U−)

}
.

Lemma 9. Let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be dis-
tinct two points in R3. U denote the maximum of quantities of
{|x1 − x2| , |y1 − y2| , |z1 − z2|}. Then

dTRI(P1, P2) ≥ U,
dTRI(P1, P2) ≥ k1U + k2U

+,
dTRI(P1, P2) ≥ k3U + k4U

+ + k5U
−,

dTRI(P1, P2) ≥ k6U + k7U
−,

dTRI(P1, P2) ≥ k8U + k9U
+ + k10U

−,
dTRI(P1, P2) ≥ k11U + k12U

−,
dTRI(P1, P2) ≥ k13 (U + U+ + U−) ,
dTRI(P1, P2) ≥ k14U + k15U

+ + k16U
−.

Proof. Proof is trivial by the definition of maximum function.

Theorem 10. The distance function dTRI is a metric. Also according
to dTRI , unit sphere is a truncated rhomicosidodecahedron in R3.
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Proof. One can easily show that the truncated rhomicosidodecahedron
distance function satisfies the metric axioms by similar way in Theo-
rem 1.

Consequently, the set of all points X = (x, y, z) ∈ R3 that truncated
truncated icosahedron distance is 1 from O = (0, 0, 0) is

STRI =

(x, y, z) : max


U, k1U + k2U

+, k3U + k4U
+ + k5U

−,
k6U + k7U

−, k8U + k9U
+ + k10U

−,
k11U + k12U

−, k13 (U + U+ + U−) ,
k14U + k15U

+ + k16U
−

 = 1

 ,

where U are the maximum of quantities {|x|, |y|, |z|}. Thus the graph
of STRI is as in the figure 6:

Figure 6 The unit sphere in terms of dTRI : Truncated Rhomicosidodecahedron

Corollary 11. The equation of the truncated rhomicosidodecahedron
with center (x0, y0, z0) and radius r is

max


U0, k1U0 + k2U

+
0 , k3U0 + k4U

+
0 + k5U

−
0 ,

k6U0 + k7U
−
0 , k8U0 + k9U

+
0 + k10U

−
0 ,

k11U0 + k12U
−
0 , k13

(
U0 + U+

0 + U−0
)
,

k14U0 + k15U
+
0 + k16U

−
0

 = r,

which is a polyhedron which has 122 faces and 240 vertices, where
U0 are the maximum of quantities {|x− x0|, |y − y0|, |z − z0|}.
Coordinates of the vertices are translation to (x0, y0, z0) all
circular shift of the three axis components and all possible
+/- sign changes of each axis component of (C2r, C20r, r) ,
(C20r, C0r, r) , (C21r, C4r, C18r) , (C5r, C1r, C18r) , (C20r, C8r, C17r) ,
(C9r, C3r, C16r) , (C20r, C12r, C15r) , (C9r, C7r, C13r) , (C11r, C1r, C14r)

and (C6r, C10r, C11r), where C0 =
740
√
5−1455+(531

√
5−1155)

√
25+10

√
5

2105
,
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C1 =
685
√
5+175+(62

√
5−230)

√
25+10

√
5

4210
, C2 =

48
√
5−83+(73−27

√
5)
√

25+10
√
5

421
,

C3 =
1625−255

√
5+(270−146

√
5)
√

25+10
√
5

2105
, C4 =

1225
√
5−1285+(916

√
5−2040)

√
25+10

√
5

4210
,

C5 =
710
√
5−1140+(115−31

√
5)
√

25+10
√
5

2105
, C6 =

795+225
√
5+(1000−216

√
5)
√

25+10
√
5

4210
, C7 =

387−97
√
5+(177−77

√
5)
√

25+10
√
5

421
,

C8 =
34+97

√
5+(77

√
5−177)

√
25+10

√
5

421
,

C9 =
1165

√
5−655+(500−208

√
5)
√

25+10
√
5

4210
, C10 =

5495−1225
√
5+(2040−916

√
5)
√

3+2
√
5

4210
,

C11 =
485+455

√
5+(385−177

√
5)
√

25+10
√
5

2105
, C12 =

480+255
√
5+(146

√
5−270)

√
25+10

√
5

2105
, C13 =

4045−285
√
5+(1540−708

√
5)
√

25+10
√
5

4210
,

C14 =
4035−685

√
5+(230−62

√
5)
√

25+10
√
5

4210
, C15 =

925
√
5−240+(135−73

√
5)
√

25+10
√
5

2105
, C16 =

2585+255
√
5+(146

√
5−270)

√
25+10

√
5

4210
,

C17 =
1195

√
5−970+(354

√
5−770)

√
25+10

√
5

2105
, C18 =

1135+1195
√
5+(354

√
5−770)

√
25+10

√
5

2105
, C19 = 1, C20 =

470
√
5−725+(104

√
5−250)

√
25+10

√
5

2105
and

C21 =
940
√
5−1450+(208

√
5−500)

√
25+10

√
5

2105
.

Lemma 12. Let l be the line through the points P1=(x1, y1, z1) and
P2=(x2, y2, z2) in the analytical 3-dimensional space and dE denote the
Euclidean metric. If l has direction vector (p, q, r), then

dTRI(P1, P2) = µ(P1P2)dE(P1, P2)

where

µ(P1P2) =


Ud, k1Ud + k2U

+
d , k3Ud + k4U

+
d + k5U

−
d ,

k6Ud + k7U
−
d , k8Ud + k9U

+
d + k10U

−
d ,

k11Ud + k12U
−
d , k13

(
Ud + U+

d + U−d
)
,

k14Ud + k15U
+
d + k16U

−
d

√
p2 + q2 + r2

,

Ud are the maximum of quantities {|p|, |q|, |r|}.
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Proof. Equation of l gives us x1− x2 = λp, y1− y2 = λq, z1− z2 = λr,
λ ∈ R. Thus,

dTRI(P1, P2) = |λ|

max


Ud, k1Ud + k2U

+
d , k3Ud + k4U

+
d + k5U

−
d ,

k6Ud + k7U
−
d , k8Ud + k9U

+
d + k10U

−
d ,

k11Ud + k12U
−
d , k13

(
Ud + U+

d + U−d
)
,

k14Ud + k15U
+
d + k16U

−
d


 ,

where Ud are the maximum of quantities {|p|, |q|, |r|}, and

dE(A,B) = |λ|
√
p2 + q2 + r2 which implies the required result.

The above lemma says that dTRI-distance along any line is some
positive constant multiple of Euclidean distance along same line. Thus,
one can immediately state the following corollaries:

Corollary 13. If P1, P2 and X are
any three collinear points in R3, then
dE(P1, X) = dE(P2, X) if and only if dTRI(P1, X) = dTRI(P2, X) .

Corollary 14. If P1, P2 and X are any three distinct collinear points
in the real 3-dimensional space, then

dTTI(X,P1) / dTTI(X,P2) = dE(X,P1) / dE(X,P2) .

That is, the ratios of the Euclidean and dTRI−distances along a line
are the same.
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