"Vasile Alecsandri" University of Bacău
Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 29 (2019), No. 1, 129-136

GENERAL RELATED FIXED POINT THEOREM FOR TWO PAIRS OF MAPPINGS IN TWO METRIC SPACES

VALERIU POPA AND ALINA-MIHAELA PATRICIU

Abstract. In this paper a general fixed point theorem for two pairs of mappings in two metric spaces, which generalize the results from [2] and [7], is proved.

1. Introduction

The following related fixed point theorem was proved by Fisher in [1].

Theorem 1.1 ([1]). Let $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$ be complete metric spaces. If $T: X \rightarrow Y$ and $S: Y \rightarrow X$ are two mappings such that for all $x \in X$ and $y \in Y$

$$
\begin{align*}
& d_{1}(T x, T S y) \leq c \max \left\{d_{1}(x, S y), d_{2}(y, T x), d_{1}(y, T S y)\right\}, \tag{1.1}\\
& d_{2}(S y, S T x) \leq c \max \left\{d_{2}(y, T x), d_{1}(x, S y), d_{2}(y, S T x)\right\}, \tag{1.2}
\end{align*}
$$

where $0 \leq c \leq 1$, then $S T$ has a unique fixed point z in X and $T S$ has a unique fixed point w in Y. Further, $T z=w$ and $S w=z$.

The first present author proved the following theorem in [5].

Keywords and phrases: fixed point, related fixed point, metric space, implicit relation.
(2010) Mathematics Subject Classification: 54H25, 47H10.

Theorem 1.2. Let $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$ be complete metric spaces. If $T: X \rightarrow Y$ and $S: Y \rightarrow X$ satisfy the inequalities

$$
\begin{align*}
& d_{1}^{2}(S y, S T x) \leq c_{1} \max \left\{\begin{array}{c}
d_{2}(y, T x) \cdot d_{1}(x, S y), \\
d_{2}(y, T x) \cdot d_{1}(x, S T x), \\
d_{1}(x, S y) \cdot d_{1}(x, S T x)
\end{array}\right\}, \tag{1.3}\\
& d_{2}^{2}(T x, T S y) \leq c_{2} \max \left\{\begin{array}{c}
d_{1}(x, S y) \cdot d_{2}(y, T x), \\
d_{1}(x, S y) \cdot d_{2}(y, T S y), \\
d_{2}(y, T x) \cdot d_{2}(y, T S y)
\end{array}\right\},
\end{align*}
$$

for all $x, y \in X$ and $0 \leq c_{1} c_{2}<1$, then $S T$ has a unique fixed point z in X and TS has a unique fixed point w in Y. Further, $T z=w$ and $S w=z$.

Quite recently, the following theorem was proved in [7].
Theorem 1.3. Let $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$ be complete metric spaces. Let $A, B: X \rightarrow Y$ and $C, D: Y \rightarrow X$ satisfying the inequalities

$$
\begin{align*}
& d_{1}^{2}(C y, D B x) \leq c_{1} \max \left\{\begin{array}{c}
d_{2}(y, B x) \cdot d_{1}(x, C y), \\
d_{2}(y, B x) \cdot d_{1}(x, D B x), \\
d_{1}(x, C y) \cdot d_{1}(x, D B x)
\end{array}\right\}, \tag{1.5}\\
& d_{2}^{2}(B x, A D y) \leq c_{2} \max \left\{\begin{array}{c}
d_{1}(x, D y) \cdot d_{2}(y, B x), \\
d_{1}(x, D y) \cdot d_{2}(y, A D y), \\
d_{2}(y, B x) \cdot d_{2}(y, A D y)
\end{array}\right\},
\end{align*}
$$

for all $x \in X$ and $y \in Y$, where $0 \leq c_{1} c_{2}<1$. If one of the mappings A, B, C, D is continuous, then $C A$ and $D B$ have a unique fixed point z in X and $B C$ and $A D$ have a unique fixed point w in Y. Further, $A z=B z=w$ and $C w=D w=z$.

Several clasical fixed point theorems and common fixed point theorems have been unified by an implicit relation in [3] and [4].

Several related fixed point theorems for pairs of mappings satisfying implicit relations are published in [2], [5] and [6].

The purpose of this paper is to prove a general related fixed point theorem for two pairs of mappings in two metric spaces, which generalize Theorems 1.2 and 1.3 using implicit relations.

2. Implicit RELATIONS

Let \mathcal{F}_{4} be the family of lower semi - continuous functions $F: \mathbb{R}_{+}^{4} \rightarrow$ \mathbb{R} satisfying the following conditions: for all $u, v \geq 0$, there exists $h \in(0,1)$ such that
$\left(F_{1}\right): F(u, v, 0, u) \leq 0$ implies $u \leq h v$,
$\left(F_{2}\right): F(u, v, u, 0) \leq 0$ implies $u \leq h v$.
Example 2.1. $F\left(t_{1}, \ldots, t_{4}\right)=t_{1}-k \max \left\{t_{2} t_{3}, t_{2} t_{4}, t_{3} t_{4}\right\}$, where $k \in$ $[0,1)$.

Let $u, v \geq 0$ and $F(u, v, 0, u)=u^{2}-k u v \leq 0$. If $u>v$, then $u^{2}(1-k) \leq 0$, a contradiction. Hence $u<v$ which implies $u \leq h v$, where $0 \leq h=k<1$.

Similarly, $F(u, v, u, 0) \leq 0$ implies $u \leq h v$.
For the following examples, the proofs are similar to the proof of Example 2.1.

Example 2.2. $F\left(t_{1}, \ldots, t_{4}\right)=t_{1}-k \max \left\{t_{2}, t_{3}, t_{4}\right\}$, where $k \in[0,1)$.
Example 2.3. $F\left(t_{1}, \ldots, t_{4}\right)=t_{1}-k \max \left\{t_{2}, \frac{t_{3}+t_{4}}{2}\right\}$, where $k \in$ $[0,1)$.

Example 2.4. $F\left(t_{1}, \ldots, t_{4}\right)=t_{1}-\max \left\{t_{3}, t_{4}\right\}-c \max \left\{t_{2}, t_{4}\right\}$, where $c \in(0,1)$.

Example 2.5. $F\left(t_{1}, \ldots, t_{4}\right)=t_{1}^{2}-\left(a t_{1} t_{2}+b t_{1} t_{3}+c t_{4}^{2}\right)$, where $a, b, c \geq$ 0 and $a+b+c<1$.

Example 2.6. $F\left(t_{1}, \ldots, t_{4}\right)=t_{1}^{3}-\left(a t_{1}^{2} t_{2}+b t_{1} t_{3} t_{4}+c t_{2} t_{3} t_{4}\right)$, where $a, b, c \geq 0$ and $a+b+c<1$.

3. Main Results

Theorem 3.1. Let $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$ be complete metric spaces. Let $A, B: X \rightarrow Y$ and $C, D: Y \rightarrow X$ such that for all $x \in X$ and $y \in Y$
(3.1) $G\left(d_{1}(C y, D B x), d_{2}(y, B x), d_{1}(x, C y), d_{1}(x, D B x)\right) \leq 0$,

$$
\begin{equation*}
H\left(d_{2}(B x, A D y), d_{1}(x, D y), d_{2}(y, B x), d_{2}(y, A D y)\right) \leq 0 \tag{3.2}
\end{equation*}
$$

for some $G, H \in \mathcal{F}_{4}$. If one of the mappings A, B, C, D is continuous, then $C A$ and $D B$ have a unique common fixed point $z \in X$ and $B C$ and $A D$ have a unique common fixed point $w \in Y$. Further, $A z=$ $B z=w$ and $C w=D w=z$.

Proof. Let x_{0} be an arbitrary point of X. Let

$$
A x_{0}=y_{1}, C y_{1}=x_{1}, B x_{1}=y_{2}, D y_{2}=x_{2}, A x_{2}=y_{3}, \ldots
$$

and, in general, let
$C y_{n-1}=x_{n-1}, B x_{n-1}=y_{n}, D y_{n}=x_{n}, A x_{n}=y_{n+1}$ for $n=2,3, \ldots$.
Using inequality (3.1) for $x=x_{n}$ and $y=y_{n}$ we obtain

$$
\begin{gathered}
G\left(d_{1}\left(C y_{n}, D B x_{n}\right), d_{2}\left(y_{n}, B x_{n}\right), d_{1}\left(x_{n}, C y_{n}\right), d_{1}\left(x_{n}, D B x_{n}\right)\right) \leq 0, \\
G\left(d_{1}\left(x_{n}, x_{n+1}\right), d_{2}\left(y_{n}, y_{n+1}\right), 0, d_{1}\left(x_{n}, x_{n+1}\right)\right) \leq 0 .
\end{gathered}
$$

By $\left(F_{1}\right)$ we obtain

$$
d_{1}\left(x_{n}, x_{n+1}\right) \leq h d_{2}\left(y_{n}, y_{n+1}\right) .
$$

By (3.2) for $x=x_{n-1}$ and $y=y_{n}$ we obtain

$$
\begin{gathered}
H\left(d_{2}\left(B x_{n-1}, A D y_{n}\right), d_{1}\left(x_{n-1}, D y_{n}\right), d_{2}\left(y_{n}, B x_{n-1}\right), d_{2}\left(y_{n}, A D y_{n}\right)\right) \leq 0, \\
H\left(d_{2}\left(y_{n}, y_{n+1}\right), d_{1}\left(x_{n-1}, x_{n}\right), 0, d_{2}\left(y_{n}, y_{n+1}\right)\right) \leq 0 .
\end{gathered}
$$

By $\left(F_{1}\right)$ we obtain

$$
d_{2}\left(y_{n}, y_{n+1}\right) \leq h d_{1}\left(x_{n-1}, x_{n}\right),
$$

which implies

$$
\begin{aligned}
d_{1}\left(x_{n}, x_{n+1}\right) & \leq h^{2} d_{1}\left(x_{n-1}, x_{n}\right)
\end{aligned} \leq \ldots \leq h^{2 n} d_{1}\left(x_{0}, x_{1}\right), ~ 子 h^{2 n} d_{2}\left(y_{1}, y_{2}\right) .
$$

By a routine calculation we obtain that $\left\{x_{n}\right\}$ is a Cauchy sequence in X and $\left\{y_{n}\right\}$ is a Cauchy sequence in Y.

Since X and Y are complete, then $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are convergent. Then, there exist $z \in X$ and $w \in Y$ such that $\lim _{n \rightarrow \infty} x_{n}=z$ and $\lim _{n \rightarrow \infty} y_{n}=w$.

If A is continuous, then

$$
\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} A z=\lim _{n \rightarrow \infty} y_{n+1}=w .
$$

Hence $A z=w$.
By (3.1) for $x=x_{n}$ and $y=w$ we obtain

$$
\begin{gathered}
G\left(d_{1}\left(C w, D B x_{n}\right), d_{2}\left(w, B x_{n}\right), d_{1}\left(x_{n}, C w\right), d_{1}\left(x_{n}, D B x_{n}\right)\right) \leq 0, \\
G\left(d_{1}\left(C w, x_{n+1}\right), d_{2}\left(w, y_{n+1}\right), d_{1}\left(x_{n}, C w\right), d_{1}\left(x_{n}, x_{n+1}\right)\right) \leq 0 .
\end{gathered}
$$

Letting n tend to infinity we obtain

$$
G\left(d_{1}(C w, z), 0, d_{1}(z, C w), 0\right) \leq 0,
$$

which implies by $\left(F_{2}\right)$ for $v=0$ that $d_{1}(z, C w)=0$. Hence

$$
\begin{equation*}
z=C w . \tag{3.3}
\end{equation*}
$$

By (3.2) for $x=z$ and $y=y_{n}$ we obtain

$$
\begin{gathered}
H\left(d_{2}\left(B z, A D y_{n}\right), d_{1}\left(z, D y_{n}\right), d_{2}\left(y_{n}, B z\right), d_{2}\left(y_{n}, A D y_{n}\right)\right) \leq 0, \\
H\left(d_{2}\left(B z, y_{n}\right), d_{1}\left(z, x_{n}\right), d_{2}\left(y_{n}, B z\right), d_{2}\left(y_{n}, y_{n+1}\right)\right) \leq 0 .
\end{gathered}
$$

Letting n tend to infinity we obtain

$$
H\left(d_{2}(B z, w), 0, d_{2}(w, B z), 0\right) \leq 0
$$

which implies by $\left(F_{2}\right)$ for $v=0$ that $d_{2}(B z, w)=0$. Hence

$$
\begin{equation*}
w=B z . \tag{3.4}
\end{equation*}
$$

By (3.3) and (3.4) we obtain

$$
\begin{aligned}
& C w=C B z=z \text { and } z \text { is a fixed point of } C B, \\
& B z=B C w=w \text { and } w \text { is a fixed point of } B C .
\end{aligned}
$$

By (3.1) for $x=z$ and $y=w$ we obtain

$$
\begin{gathered}
G\left(d_{1}(C w, D B z), d_{2}(w, B z), d_{1}(z, C w), d_{1}(z, D B z)\right) \leq 0, \\
G\left(d_{1}(z, D B z), 0,0, d_{1}(z, D B z)\right) \leq 0,
\end{gathered}
$$

which implies by $\left(F_{1}\right)$ for $v=0$ that $d_{1}(z, D B z)=0$, which implies $z=D B z$ and z is a fixed point of $D B$.

By (3.2) for $x=x_{n-1}$ and $y=w$ we obtain
$H\left(d_{2}\left(B x_{n-1}, A D w\right), d_{1}\left(x_{n-1}, D w\right), d_{2}\left(w, B x_{n-1}\right), d_{2}(w, A D w)\right) \leq 0$.
Letting n tend to infinity we obtain

$$
H\left(d_{2}(w, A D w), d_{1}(z, D w), 0, d_{2}(w, A D w)\right) \leq 0 .
$$

Since $z=D B z$, by (3.4) we obtain $z=D w$, hence $d_{1}(z, D w)=0$.
Therefore

$$
H\left(d_{2}(w, A D w), 0,0, d_{2}(w, A D w)\right) \leq 0
$$

which implies by $\left(F_{2}\right)$ for $v=0$ that $d_{2}(w, A D w)=0$, which implies $w=A D w$ and w is a fixed point of $A D$.

Since $A z=w, C A z=C w=z$. Then z is a fixed point of $C A$.
Hence z is a common fixed point of $C A$ and $D B$ and w is a common fixed point of $B C$ and $A D$.

Suppose that $D B$ has a second fixed point z^{\prime}.
By (3.1) we have

$$
\begin{gathered}
G\left(d_{1}\left(C A z, D B z^{\prime}\right), d_{2}\left(A z, B z^{\prime}\right), d_{1}\left(C A z, z^{\prime}\right), d_{1}\left(z^{\prime}, D B z^{\prime}\right)\right) \leq 0, \\
G\left(d_{1}\left(z, z^{\prime}\right), d_{2}\left(A z, B z^{\prime}\right), d_{1}\left(z, z^{\prime}\right), 0\right) \leq 0 .
\end{gathered}
$$

By $\left(F_{2}\right)$ we obtain

$$
d_{1}\left(z, z^{\prime}\right) \leq h d_{2}\left(A z, B z^{\prime}\right) .
$$

By (3.2) we have

$$
\begin{gathered}
H\left(d_{2}\left(B D B z^{\prime}, A D w\right), d_{1}\left(D B z^{\prime}, D w\right), d_{2}\left(w, B D B z^{\prime}\right), d_{2}(w, A D w)\right) \leq 0, \\
H\left(d_{2}\left(B z^{\prime}, A z\right), d_{1}\left(z, z^{\prime}\right), d_{2}\left(A z, B z^{\prime}\right), 0\right) \leq 0 .
\end{gathered}
$$

By $\left(F_{2}\right)$ we obtain

$$
d_{2}\left(A z, B z^{\prime}\right) \leq h d\left(z, z^{\prime}\right) .
$$

Therefore,

$$
d\left(z, z^{\prime}\right) \leq h^{2} d\left(z, z^{\prime}\right),
$$

which implies $z=z^{\prime}$.
Hence $D B$ has a unique fixed point z. Similarly, $C A$ has a unique fixed point and w is the unique common fixed point of $B C$ and $A D$.
Remark 3.2. i) By Theorem 3.1 and Example 2.1 we obtain a generalization of Theorem 1.3.
ii) By Theorem 3.1 and Examples 2.2-2.6 we obtain new particular results.

References

[1] B. Fisher, Fixed point on two metric spaces, Glasnik Mat. 16 (30) (1961), 333-337.
[2] I. Kikina and K. Kikina, Generalized fixed point theorems in two metric spaces under implicit relations, Int. J. Math. Anal., 4 (2010), no. 30, 1483-1489.
[3] V. Popa, Fixed point theorems for implicit contractive mappings, Stud. Cerc. Ştiinţ., Ser. Mat., Univ. Bacău 7 (1997), 127 - 134.
[4] V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstr. Math. 32, 1 (1999), 157 - 163.
[5] V. Popa, A general fixed point theorem for two pairs of mappings on two metric spaces, Novi Sad J. Math. 35, 2 (2005), 79 - 83.
[6] V. Popa and M. Telci, Fixed point theorems for mappings satisfying implicit relations on two metric spaces, Math. Balkanika 202 (2006), 143-152.
[7] A. Saini, S. Deki and N. Gulat, Existence and unique common fixed point for pair of mappings in complete metric spaces, Intern. J. of Current Trends in Engineering and Research 3, 55 (2017), 7 - 12.
"Vasile Alecsandri" University of Bacău
157 Calea Mărăşeşti, Bacău, 600115 , ROMANIA
E-mail address: vpopa@ub.ro
"Dunărea de Jos" University of Galaţi, Faculty of Sciences and Environment, Department of Mathematics and Computer Sciences, 111 Domnească Street, Galaţi, 800201, ROMANIA
E-mail address: Alina.Patriciu@ugal.ro

