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ON THE COINCIDENCE AMONG
ORLICZ-SOBOLEV SPACES
ON METRIC SPACES

MARCELINA MOCANU

Abstract. We generalize a coincidence result from the case of
Sobolev-type spaces to the case of Orlicz-Sobolev spaces corre-
sponding to a doubling Young function, in the setting of doubling
metric measure spaces. We consider three types of Orlicz-Sobolev
spaces: (i) a space of Newtonian type; (ii) a space associated to
a generalized Poincaré inequality; (iii) a space defined as the clo-
sure of the class of Orlicz functions that are locally Lipschitz,
under some norm involving an abstract differential operator.

1. INTRODUCTION

In the following, we consider that (X, d, ) is a metric measure
space, i.e. a metric space (X, d) equipped with a Borel regular
outer measure p, which positive and finite on balls [9]. Through-
out the paper, we assume that the measure y is doubling.
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Among the most important extensions of first order Sobolev
spaces WP (R™), 1 < p < 00, to a metric measure space (X, d, )
are Hajtasz spaces M'? (X) [6], Newtonian spaces NP (X)[14],
Cheeger spaces Hi, (X) [2], the spaces P'F (X) [14], [5] and, for
some special metric spaces X, the Sobolev spaces arising from
vector fields H'? (X)) [4]. Sufficient conditions for inclusions be-
tween these Sobolev-type spaces are proved in several papers,
such as [4], [14], [5].

For 1 < p < oo, the Hajtasz spaces M'? (X)) continuously em-
beds into the Newtonian space N'* (X)) [14, Theorem 4.8]. In the
case 1 < p < o0, if X supports a weak (1, q) —Poincaré inequal-
ity for some ¢ € (1,p), then M'? (X) = N'* (X) = P17 (X) [14,
Theorem 4.9]. Also, for 1 < p < oo, the spaces N'? (X) and
H,, (X) are isometrically equivalent [14, Theorem 4.10].

Extensions to the metric setting of the Orlicz-Sobolev spaces
Wh® (R"), where ® is a Young function, have been introduced
by [1] through the generalization M® (X) of Hajtasz spaces ,
respectively by [15] through the generalization N*® (X) of New-
tonian spaces.

If U is a doubling N—function, then MY (X) continuously
embeds into N¥ (X) [15, Theorem 6.22]. In [11] sufficient con-
ditions are provided for the existence of a continuous embed-
ding of N%Y¥ (X)) into MY (X), using as a main tool the Hardy-
Littlewood maximal operator. In [11] the Cheeger type Orlicz-
Sobolev space Hy g (X) is introduced as a natural generalization
of the Cheeger space Hy, (X) [2]. It is shown that a continuous
embedding H;y (X) € NY¥(X) holds whenever ¥ is a Young
function, while N¥(X') embeds continuously into H; ¢ (X) pro-
vided that the Banach space LY (X) is reflexive.

In [10] the extensions PY*(X) and H'®(X) of P'?(X) and
H'?(X), respectively, are introduced and the inclusions between
PY®(X) and H®(X) are investigated. Assume that (X,d, p)
is a doubling metric measure space, ® : X — [0,00) is a dou-
bling Young function and D is an abstract differential operator
on LIP,.(X). Under these three assumptions, we proved the
following inclusions:

(1) P¥*(X) c HY*(X) if the complementary function of ®
is also doubling (equivalently, provided that L® (X) is reflexive)
[10, Theorem 4].

(2) HY*(X) c PY*(X) if for each locally Lipschitz function
u on X, the pair (u,|Du|) satisfies the weak (1, ®)—Poincaré
inequality with fixed constants [10, Theorem 5].
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The main aim of this paper is to compare N®(X) and
PL2(X).

We will consider the class O of the operators T which associate
with each locally Lipschitz function v : X — R a nonnegative
function T (u) : X — [0,00) such that T satisfies the following
conditions, for some constant C' = C(T") > 1:

(T1) T(u+v) < C(T(u) +T(v)) and T'(Au) < C|A[T(u) a.e.
in X, whenever u,v € LIP,.(X) and A € R.

(T2) If uw: X — R is L—Lipschitz, then T'(u) < CL a.e. in
X.

(T3) If u € LIP,.(X) is constant on an open set {2 C X, then
T(u) =0 a.e. in Q.

The following result extends [5, Theorem 10.4] from the case
O(t) =17, 1 < p < oo, to the case of a general doubling Young
function .

Theorem 1. Assume that (X, d, 1) is a doubling metric measure
space and that ® : X — [0,00) is a doubling Young function. Let
T be an operator in the class O.

Assume that WH®(X) is a function space endowed with a norm
|||, with the following properties:

(W1) WH*(X) contains every function uw € LIP,.(X) N
L* (X) with T(u) € L* (X) and |ull < C([Jullpsx) + lullLsx)
for some fized constant C' > 0;

(W2) If (ur)ys, s a sequence in WH*(X) N LIP,.(X), con-
vergent in L® (X) to some function w, such that the sequence
(T (ug)),, is weakly convergent in L® (X), then w has a repre-
sentative in WhH*(X).

Then PY®(X) c WH*(X), in the sense that every function
PY*(X) has a representative in WH*(X).

Using the above theorem and [10, Theorem 4, Theorem 5],
we finally compare the three versions of Orlicz-Sobolev spaces
HY?(X), NY®(X) and PY*(X).

Theorem 2. Assume that (X,d,p) is a doubling metric mea-
sure space and that ® : X — [0,00) is a doubling Young func-
tion. If (X,d,u) supports a weak (1,P)—Poincaré inequality,
then HY®(X) = NV®(X) = PY?(X), in the sense that every
function belonging to one of these spaces has a representative in
each of the other spaces.
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2. PRELIMINARIES

We use basic notions from the theory of Orlicz spaces [13].
In the following ® : [0, 00) — [0, o] is always an Young func-
tion. ® is called N—function if it is real-valued, continuous, van-

ishes only at the origin and for a € {o0,0} satisfies lim2% = q.
t—a t

® is said to satisfy a As—condition if there is a constant Cy > 0
such that ®(2t) < Ce®(¢) for every t € [0,00). A Young func-
tion satisfying a As—condition is called doubling. Every dou-
bling Young function is real-valued, strictly increasing and con-
tinuous. The As—condition for an increasing Young function ®
implies the power growth estimate: ®(\t) < CpAle2C2d(t), for
all A > 1,¢ >0 [15, Lemma 2.7].

Let (X, A, 1) be a measure space with a complete and o—finite
measure g and let @ : [0,00) — [0, 00| be a Young function. The
Orlicz space L®(X) associated to @ consists of all measurable
functions u : X — [—oo,00] satisfying [ ®(A|u|)du < oo for

X

some A > 0. The Orlicz space L*(X) is a Banach space with the
Luxemburg norm defined by

u
[ull oy =inf ¢ k>0 /@(%)du <1
X

For every measurable function u : X — [—00,400], denote
Ip(u) = [ @(Jul)dp. If Ip(u) < oo, then u € L?(X) and the
X

converse is true provided that ® is doubling.

Throughout this paper we deal with a metric measure space
(X,d, ), which is a metric space (X, d) equipped with a Borel
regular outer measure p. Assume that p is finite and positive on
balls.

Remark 1. Since p s finite on balls, for every doubling
N—function ® : [0,00) — [0,00) we have L*(X) C L}, (X) [13,
Proposition 3.1.7].

For every open ball B = B (z,r) = {y € X : d(y,z) <r} and
each A > 0 we will denote AB := B(z, Ar).

Definition 1. The measure p on the metric space (X,d, p) is
said to be doubling if there is a constant C,, > 1 such that

(2.1) n(2B) < Cuu(B)
for every ball B C X.
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In the following we will assume that the measure y is doubling.

We will denote by LIP(X) and LIP,,.(X) the collections of
all real-valued Lipschitz functions, respectively locally Lipschitz
functions.

The infinitesimal behavior of a real function on a metric space
u: X — R at a point € X is described by the upper and lower
Lipschitz constants
L(z,u,r)

L
Lip u(x) = limjélpw and lip u(x) = hrfl_jglff’

where L (z,u,r) = sup{|u(y) —u(z)| : d (z,y) < r}.

A substitute for the norm of the gradient in analysis on metric
measure spaces is the concept of upper gradient. Let u be a real-
valued function on a metric measure space X. A Borel function
g: X — [0,400] is said to be an upper gradient of w in X if

(2.2) u(1(a)) — u(r(B))] < / g ds,

for every compact rectifiable path v : [a,b] — X.
It is well-known that, for every u € LIP,,.(X) the upper Lip-
schitz constant Lip u is an upper gradient of w in X [2].

Definition 2. [15] Let u be a real-valued function on a metric
measure space X. A Borel function g : X — [0,+00] is called
a O—weak upper gradient of w if (2.2) holds for all compact rec-
tifiable paths v : |a,b] — X except for a path family with zero
S —modulus.

The collection N-®(X) of all functions u € L® (X) possessing
a ®—weak upper gradient g € L*® (X) is a vector space. For

u € N'H(X) defne [ul, g = [ulls0x) + in 9], . where the
infimum is taken over all ®—weak upper gradients g € L® (X)
of u. Consider the equivalence relation u ~ v < [[u —v||, 4 = 0.
Then N'®(X) = N'®(X)/ ~ is a Banach space with the norm
[ll jro = ully o [15]-

If X =Q C R"is adomain and @ is a doubling Young function,

then N'®(X) = WH?(Q) as Banach spaces and the norms are
equivalent [15].

We recall the notion of weak (1, ®)—Poincaré inequality in an
open set of a metric measure space.
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Denote the mean value of a function u € L'(A) over A by

Uy = ﬁ J udp, where 0 < p(A) < oco.

B
Definition 3. [15, Definition 5.2] Let ® : [0,00) — [0,00) be a
strictly increasing Young function and 0 C X an open set. We
say that a function u € Lj,.(?) and a Borel measurable nonneg-
ative function g on Q satisfy a weak (1, ®)— Poincaré inequality
in Q if there exist some constants Cp > 0 and o > 1 such that

ploB) J

1 L 1
(2.3) FB)B/W_UBMM <Cpr® —/(I)(g)d,u

for each ball B = B(z,r) satisfying cB C Q. It is said that )
supports a weak (1, )— Poincaré inequality if the above inequality
holds for each function v € L}, () and every upper gradient g of
u, with fixed constants.

Remark 2. If ® is doubling, we may replace in the above defi-
nition upper gradients by ®—weak upper gradients.

The weak (1,p)—Poincaré inequality is the weak
(1, ®)—Poincaré inequality for ®(t) = 7.

Definition 4. The space PY®(X) consists of all functions u €
L*(X) for which there exists g € L*(X) such that the pair (u,g)
satisfies the weak (1, ®)— Poincaré inequality (2.3) for some con-
stants Cp > 0 and o > 1.

The definition of a generalization of H'? (X), the Orlicz-
Sobolev space HY® (X), as the closure of the class of Orlicz func-
tions in L® (X) that are locally Lipschitz functions, under some
norm involving an abstract differential operator requires a more
specialized approach.

An abstract differential operator [4, Theorem 10] on LI P, (X)
is a linear operator D which associates with each u € LIP,. (X)
a measurable function Du : X — R, where N is a fixed positive
integer, such that the following conditions are satisfied:

(D1) There exists a constant Cp > 0 such that |Du| < CpL
p—a.e. whenever v is an L—Lipschitz function;

(D2) If u € LIP,.(X) is constant in some measurable set
E cC X, then Du=0 p—a.e. in F.

A remarkable example of abstract differential operator is the
Cheeger’s differential operator [2].
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The set Vo (X) := {u € LIP,. (X)NL* (X) : |Du| € L* (X)}
is a vector space and the functional defined for u € Vg (X) by

lull = llull oy + 11Dulll Lo )

is a norm on this space. Then H'® (X) is defined as the closure
of Vg (X) under the above norm.

Since L? (X) is a Banach space, we see that each element of
H"® (X) is represented by a pair (u,G), where u € L? (X) and
G : X — RY is measurable with |G| € L? (X), for which there
exists a sequence (u,),~, in Vo (X) such that u,, — v in L® (X)
and |Du,, — G| — 0 in L* (X) as n — oo.

In order to approximate Orlicz-Sobolev functions by locally
Lipschitz functions, we will use a discrete convolution opera-
tor for locally integrable functions on a doubling metric measure
space. This operator was defined in [8] (see also [7]) using the
notion of (g, \) — cover of an open set and a Lipschitz partition
of unity subordinated to an (oc0,2) — cover. In the following, X
is a doubling metric measure space with a doubling constant C),
and Q) C X is open.

Given ¢ > 0 and A > 1, an (g, \) — cover of Q ([8], [7]) is a
countable cover F ={B; = B (x;,r;) 11> 1} of Q with the fol-
lowing properties:

(C1) r; < ¢ for all g;

(C2) AB; C Q for all i;

(C3) If AB; meets AB;, then r; < 2r;;

(C4) Each ball AB; meets at most C' = C (C,,, \) balls AB;.

Every open set {2 C X admits an (¢, \) — cover, whenever € > 0
and A > 1, as follows from [3, Theorem III.1.3] and [12, Lemma
2.9], see [8, Lemma 5.1] and [7, Lemma 3.1]. If 0 < e <& < 0
and 1 < X < X < oo, then every (¢,\) — cover of 2 is also an
(e', \) — cover of €2

Let F ={B; = B(x;,r;) : i > 1} be an (00, 2) — cover of Q2. By
[12, Lemma 2.16], as it is shown in [8, Lemma 5.2] and |7, Lemma
3.2], there exists a collection of real functions ¢ = {y; : 4 > 1}
defined on €2 such that

(P1) each ¢; is L;—Lipschitz, where L; := %Ci“);

(P2) 0 < ¢; <1 for all

(P3) i =0 on X \ 2B; for all i;

(P4) > ¢ =1o0n X.

i>1
A collection ¢ = {¢; :i > 1} as above is called a Lipschitz
partition of unity with respect to F.
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Given an (00,2) — cover F of Q and a Lipschitz partition of
unity ¢ with respect to F, the corresponding discrete convolution

of u € L}, (Q) is defined by

loc

ur(x) = ZuBigpi(x), x € Q.
i>1
Note that, for each x € Q, there are at most C' (C),, 2) non-zero
terms in the series defining uz(z).
By [8, Lemma 5.3] (see also [7, Lemma 3.3]), uz is locally
Lipschitz. Moreover, for every set J of positive integers, the

function ) up,p; is locally Lipschitz.
ieJ

Discrete convolutions constructed as above are used to approx-
imate Orlicz functions on a doubling metric measure space, as it
is shown in [7, Lemma 3.3] (see also [8, Lemma 5.3] for the case
of p—integrable functions).

Lemma 1. [7, Lemma 3.3] Assume that (X,d,p) is a dou-
bling metric measure space and ® is a Young function. Let
w € L} (), where Q C X is open. For each (00,2) — cover
F of Q and any partition of unity @ with respect to F, we con-
sider the corresponding discrete convolution ur.

(1) ug is locally Lipschitz and for each B € F

1 1

(2.4) Lip u;SC(CH)T(B)N(5B)5£|u usp| dp in B.

(2) Let ® be doubling and w € L®(X). If F is an
(€k, 2) —cover of Q, for each k > 1 and if e — 0 as k — oo,
then uz, — u in L® (Q2).

We prove an inequality analogous to (2.4) for nonlinear oper-
ators more general than Lip.

Lemma 2. Let T be an operator as in Theorem 1. Let F =
{B; i >1} be an (g,2) —cover of X, where ¢ > 0 and let
@ = {pi:i>1} a Lipschitz partition of unity with respect to
F. Foru € LIP,.(X) denote by ur the corresponding discrete
convolution of u. There exists some constant C’, depending only
on Cy, and on T, such that for every B € F, of radius r(B), we
have

1 1

Tur) < OBy 1 5)

/|u—u53|d,u a.e. in B.
5B
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Proof. Fix B € F. The set I := {i >1:2B;N2B # 0} is fi-
nite, having at most C; = C (C),,2) elements. Denote by J the
complement of I with respect to the set of positive integers.

By (T1) and (T3), T (ur) < CT (ur — ug) a.e. in X.

By (T1), T(ur—up) < CT(Z(UBZ._UB)%) i

cr <Z (UBi - UB) %‘)- -

ieJ
The function ) (up, — up) ¢; is locally Lipschitz and is zero
ieJ
on B, hence T (Z (up, — up) gpi) =0 a.e. in B.
ieJ

il
But, as follows by induction from (T1) and taking account of
(T2),

T (Z (up, — ug) %) < COD T ((up, — up) ¢i)

el il

It follows that T'(ur) < C*T <Z (up, — up) goi) a.e. in B.

< e Z lup, — up| T (i)

el

a.e. in X.
Therefore,

(2.5) T(ur) < CHY " |up, — up| T(g;) ace. in B.
el

If B;, By € F satisfy 2B; 2By, # ), a standard argument [10,
Lemma 3] shows that

1
5 3
lup, —up, | < (Ou + Cﬂ) PN / lu — usp, | dp.

5B,

In particular, for each 7 € I,

1
5 3
(2.6) lup, —up| < (C’M—{—C'M) m5£|u—u53|du.

By the property (P1) of the Lipschitz partition of unity ¢ and
by (T2), for each i > 1 we have

T(p;) < C’w a.e. in X.

T
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For i € I, this latter inequality and (C3) imply

C(C,)
2. T(pi) <2 L
From inequalities (2.5), (2.6) and (2.7) we get
1 1
Tlug) < C'—— _
(ur) = O u(5B)5£‘” usz| dp

where C" = 2C*C1 . C(C,). 1

3. EXAMPLES AND PROOFS OF THE MAIN RESULTS

Example 1. If T(u) = Lip u, then T satisfies (T1) and (T2)
with C =1 and T also satisfies (T3).

Example 2. If D s an abstract differential operator on
LIP,.(X), then T (u) = |Du| defines an operator which asso-
ciates with each locally Lipschitz function u : X — R a nonneg-
ative function T (u) on X and this T satisfies conditions (T1)
and (T3) with C = 1. Moreover, if D is Cheeger’s differential
operator, then T' also satisfies (T2) with some C' depending only
on the dimension of the strong differentiable structure (2], [5].

Example 3. The operator T'(u) = Lip u and the Orlicz-Sobolev
space W (X)) = NV (X)) (with the usual norm) satisfy the con-
ditions (W1) and (W2) from Theorem 1. Since Lip u is an upper
gradient of uw € LIP,. (X) [2], (W1) holds with C = 1. Ifu; — u
in L* (X) and Lip u; — g weakly in L* (X), then by a Mazur-
type theorem [15, Theorem 4.17] (see also [7, Lemma 2.3]), g is
a ®—weak upper gradient of a representative u of u, therefore

u € NY®(X) and so (W2) holds.

Proof of Theorem 1. Let u € PY*(X).

By definition, there exists g € L?(X) such that the weak
(1, ®)—Poincaré inequality (2.3) holds, for some constants Cp >
0 and o > 1, possibly depending on u and g.

Assume for each & > 1 that F, = {By:i>1} is an
(%,50) —cover of Q and ¢ = {pg; 17> 1} is a Lipschitz par-
tition of unity with respect to F.

We consider the corresponding discrete convolution uy := ug,,
for k > 1.

By Lemma 1, ux — u in L* (X) as k — oo.

Fix k> 1.
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Let : > 1. By Lemma 2,
1 1
(Bri) 1t (5Bki)

T(ux) < C' / |u — usp,,| du a.e. in By;.
r

5By
Using the weak (1, ®)—Poincaré inequality (2.3), this implies
(3.1)
T(uk) S C,Cpq)il

1
- () d .e. in By;.
" GoB) / (9)du a.e. in By,

50Bk‘i

The doubling property of the Young function ® implies the
power growth estimate ®(\t) < CpAle2C2d(¢) for A > 1 and
t > 0. We recall that ®(A\t) < A®(t), if 0 < A < 1, by convexity
of ® and ®(0) = 0, and that ® (®~*(¢)) < ¢ for all ¢ > 0. Then
(3.1) implies

O (T(uy)) <C” / P (g) du a.e. in By,.

SUBki
Here C” := max {C”C’p, Cop (C”C’p)log2 Cq’} )
Integrating the previous inequality over By; we get

s2 @(T(uk»dusw% | 2@

Bki 50'31“'

(50 By;)

In particular,

[eawnasc [ ewau

But Fi is a cover of X, hence

Jeawnde < 3 [ oy

X izlg,

< ¢ [o(g)du

where C"" := C"C(C,,50). In the last inequality we used the

bounded overlap of the family of balls {50 By, : i > 1}, guaran-
teed by (C4).
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We proved that

(3.3) Jeawndizc [ogd

X X
for each £ > 1. Note that C" depends only on the doubling
constants C),, Cp, on the constants Cp and o from the weak
(1, ®)—Poincaré inequality (2.3) and on the constant C' = C(T')

from the properties of the operator T'.
Since g € L* (X) and @ is doubling, [ ® (g) du is finite. Denote
X

M = max {1, C"” [®(g) du}. From inequality (3.3) we see that
X
T(uy) € L*® (X). Moreover,

T(u
[ (55 S RGCULED
b
hence [|T'(uk)|| o) < M.

We proved that the sequence (T'(ug)),s, is bounded in L® (X).

If L? (X) is reflexive, i.e. ® and its complementary function
are doubling, passing to a subsequence we may assume that
(T'(ug)),s, is weakly convergent in L®(X). But ux — u in
L*(X) as k — oco. Then using (W2) it follows that u has a
representative in Wh®(X).

If L* (X) is not reflexive, we need a more elaborate approach.
Since @ is assumed to be doubling, we can use [7, Lemma 2.2],
where it is proved that every bounded sequence (f),, in L® (X)
has a weakly convergent subsequence, provided that

(3.4) lim sup/CD (Ifel) dp | =0.
u(A)=0 \ k>1 4

It remains to prove that the sequence f; := T'(uy), k > 1, satisfies
(3.4).
Let A C X be measurable. Going back to (3.2), we see that

A/ 2T i< S % Z RCL

As in the proof of [7, Theorem 1.2, (3.31)], it follows that

) d = 0.
Jim Z 50_Bm (9) du

50’Bki
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The latter two inequalities show that the sequence f := T'(uy)
satisfies (3.4), which completes the proof. §

Remark 3. We can remove the assumption of the reflexivity of
L® (X) from [10, Theorem 4] and the proof follows for a gen-
eral doubling Young function ® using [7, Lemma 2.2], in a way
analogous to the final part of the proof of Theorem 1.

Proof of Theorem 2. We have P»®(X) C H»®(X) by [10, Theo-
rem 4] and Remark 3.

Since (X, d, ) supports a weak (1, ®)—Poincaré inequality and
® is a doubling Young function, by [15, Theorem 5.7] it follows
that (X, d, u) supports a weak (1, p)—Poincaré inequality when-
ever log, Cey < p < 00. By Cheeger’s fundamental result for
1 < p < oo [2], X admits a non-degenerate strong measurable
differentiable structure of some dimension N. So, the Cheeger
differential operator D is well defined on LIP,.(X) and |Du| is
a ¢—weak upper gradient of u € LIP,,. (X) [5]. Then for each
u € LIP,. (X), the pair (u,|Dul) satisfies the (1, ®)—Poincaré
inequality with fixed constants, hence H**(X) C PY*(X), by
[10, Theorem 5.

We get the coincidence PH®(X) = HY?(X).

By the definition of PY?(X), if (X,d,u) supports a weak
(1, ®)—Poincaré inequality, then NV*(X) c PH?(X).

On the other hand, by Theorem 1, taking account of Example
1 and Example 3 it follows that P4®(X) C Nb®(X).

We conclude that N»®(X) = PL%(X). g

REFERENCES

[1] N. Aissaoui, Another extension of Orlicz-Sobolev spaces to met-
ric spaces, Abstr. Appl. Anal. 1 (2004), 1-26

[2] J. Cheeger, Differentiability of Lipschitz functions on metric
measure spaces, Geom. Funct. Anal. 9 (1999), 428-517.

[3] R. R. Coifman and G. Weiss, Analyse harmonique non-
commutative sur certains espaces homogenes, Lecture Notes in
Mathematics, vol. 242. Springer, Berlin (1971)

[4] B. Franchi, P. Hajlasz and P. Koskela, Definitions of Sobolev classes
on metric spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), 1903-1924.

[5] P. Hajlasz, Sobolev spaces on metric-measure spaces, Contempo-
rary Math., 338 (2003), 173-218.

[6] P.Hajlasz, Sobolev spaces on an arbitrary metric space, Potential
Anal.; 5 (1996), 403-415.

[7] T. Heikkinen, Characterizations of Orlicz-Sobolev spaces by
means of generalized Poincaré inequalities, J. Funct. Spaces
Appl., 2012, Article ID 426067.



156 MARCELINA MOCANU

[8] T. Heikkinen, P. Koskela and H. Tuominen, Sobolev-type spaces
from generalized Poincaré inequalities, Studia Math 181 (1), 2007,
1-16.

[9] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer
Verlag, New York, 2001.

[10] M. Mocanu, An extension of Cheeger differential operator from
Lipschitz functions to Orlicz-Sobolev functions on metric mea-
sure spaces, Sci. Stud. Res., Ser. Math. Inform. 25 (1) (2015), 23-44.

[11] M. Mocanu, Three extensions of Orlicz-Sobolev spaces to metric
measure spaces and their mutual embeddings, Sci. Stud. Res.,
Ser. Math. Inform. 21 (1) (2011), 153-166.

[12] R.A.Macias and C. Segovia, A decomposition into atoms of distri-
butions on spaces of homogeneous type, Adv. Math. 33 (1979),
271-3009.

[13] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Monographs
and Textbooks in Pure and Applied Mathematics 146, Marcel Dekker
Inc., New York, 1991.

[14] N. Shanmugalingam, Newtonian spaces: an extension of Sobolev
spaces to metric measure spaces, Rev. Mat. Iberoamericana 16
(2000), no.2, 243-279.

[15] H. Tuominen, Orlicz-Sobolev spaces on metric measure spaces,
Ann. Acad. Sci. Fenn., Diss.135 ( 2004) 86 pp.

”Vasile Alecsandri” University of Bacau,
Department of Mathematics and Informatics,
Calea Marasesti 157, Bacau 600115,
Romania
email:mmocanu@ub.ro



