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ON THE COINCIDENCE AMONG
ORLICZ-SOBOLEV SPACES

ON METRIC SPACES

MARCELINA MOCANU

Abstract. We generalize a coincidence result from the case of
Sobolev-type spaces to the case of Orlicz-Sobolev spaces corre-
sponding to a doubling Young function, in the setting of doubling
metric measure spaces. We consider three types of Orlicz-Sobolev
spaces: (i) a space of Newtonian type; (ii) a space associated to
a generalized Poincaré inequality; (iii) a space defined as the clo-
sure of the class of Orlicz functions that are locally Lipschitz,
under some norm involving an abstract differential operator.

1. Introduction

In the following, we consider that (X, d, µ) is a metric measure
space, i.e. a metric space (X, d) equipped with a Borel regular
outer measure µ, which positive and finite on balls [9]. Through-
out the paper, we assume that the measure µ is doubling.
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Among the most important extensions of first order Sobolev
spaces W 1,p (Rn), 1 ≤ p <∞, to a metric measure space (X, d, µ)
are Haj lasz spaces M1,p (X) [6], Newtonian spaces N1,p (X)[14],
Cheeger spaces H1,p (X) [2], the spaces P 1,p (X) [14], [5] and, for
some special metric spaces X, the Sobolev spaces arising from
vector fields H1,p (X) [4]. Sufficient conditions for inclusions be-
tween these Sobolev-type spaces are proved in several papers,
such as [4], [14], [5].

For 1 ≤ p <∞, the Haj lasz spaces M1,p (X) continuously em-
beds into the Newtonian space N1,p (X) [14, Theorem 4.8]. In the
case 1 < p < ∞, if X supports a weak (1, q)−Poincaré inequal-
ity for some q ∈ (1, p), then M1,p (X) = N1,p (X) = P 1,p (X) [14,
Theorem 4.9]. Also, for 1 < p < ∞, the spaces N1,p (X) and
H1,p (X) are isometrically equivalent [14, Theorem 4.10].

Extensions to the metric setting of the Orlicz-Sobolev spaces
W 1,Φ (Rn), where Φ is a Young function, have been introduced
by [1] through the generalization M1,Φ (X) of Haj lasz spaces ,
respectively by [15] through the generalization N1,Φ (X) of New-
tonian spaces.

If Ψ is a doubling N−function, then M1,Ψ (X) continuously
embeds into N1,Ψ (X) [15, Theorem 6.22]. In [11] sufficient con-
ditions are provided for the existence of a continuous embed-
ding of N1,Ψ (X) into M1,Ψ (X), using as a main tool the Hardy-
Littlewood maximal operator. In [11] the Cheeger type Orlicz-
Sobolev space H1,Ψ (X) is introduced as a natural generalization
of the Cheeger space H1,p (X) [2]. It is shown that a continuous
embedding H1,Ψ (X) ⊂ N1,Ψ(X) holds whenever Ψ is a Young
function, while N1,Ψ(X) embeds continuously into H1,Ψ (X) pro-
vided that the Banach space LΨ (X) is reflexive.

In [10] the extensions P 1,Φ(X) and H1,Φ(X) of P 1,p(X) and
H1,p(X), respectively, are introduced and the inclusions between
P 1,Φ(X) and H1,Φ(X) are investigated. Assume that (X, d, µ)
is a doubling metric measure space, Φ : X → [0,∞) is a dou-
bling Young function and D is an abstract differential operator
on LIPloc (X). Under these three assumptions, we proved the
following inclusions:

(1) P 1,Φ(X) ⊂ H1,Φ(X) if the complementary function of Φ
is also doubling (equivalently, provided that LΦ (X) is reflexive)
[10, Theorem 4].

(2) H1,Φ(X) ⊂ P 1,Φ(X) if for each locally Lipschitz function
u on X, the pair (u, |Du|) satisfies the weak (1,Φ)−Poincaré
inequality with fixed constants [10, Theorem 5].
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The main aim of this paper is to compare N1,Φ(X) and
P 1,Φ(X).

We will consider the class O of the operators T which associate
with each locally Lipschitz function u : X → R a nonnegative
function T (u) : X → [0,∞) such that T satisfies the following
conditions, for some constant C = C(T ) ≥ 1:

(T1) T (u+ v) ≤ C (T (u) + T (v)) and T (λu) ≤ C |λ|T (u) a.e.
in X, whenever u, v ∈ LIPloc (X) and λ ∈ R.

(T2) If u : X → R is L−Lipschitz, then T (u) ≤ CL a.e. in
X.

(T3) If u ∈ LIPloc (X) is constant on an open set Ω ⊂ X, then
T (u) = 0 a.e. in Ω.

The following result extends [5, Theorem 10.4] from the case
Φ(t) = tp, 1 ≤ p < ∞, to the case of a general doubling Young
function Φ.

Theorem 1. Assume that (X, d, µ) is a doubling metric measure
space and that Φ : X → [0,∞) is a doubling Young function. Let
T be an operator in the class O.

Assume that W 1,Φ(X) is a function space endowed with a norm
‖·‖, with the following properties:

(W1) W 1,Φ(X) contains every function u ∈ LIPloc (X) ∩
LΦ (X) with T (u) ∈ LΦ (X) and ‖u‖ ≤ C(‖u‖LΦ(X) + ‖u‖LΦ(X))
for some fixed constant C > 0;

(W2) If (uk)k≥1 is a sequence in W 1,Φ(X) ∩ LIPloc (X), con-

vergent in LΦ (X) to some function w, such that the sequence
(T (uk))k≥1 is weakly convergent in LΦ (X), then w has a repre-

sentative in W 1,Φ(X).
Then P 1,Φ(X) ⊂ W 1,Φ(X), in the sense that every function

P 1,Φ(X) has a representative in W 1,Φ(X).

Using the above theorem and [10, Theorem 4, Theorem 5],
we finally compare the three versions of Orlicz-Sobolev spaces
H1,Φ(X), N1,Φ(X) and P 1,Φ(X).

Theorem 2. Assume that (X, d, µ) is a doubling metric mea-
sure space and that Φ : X → [0,∞) is a doubling Young func-
tion. If (X, d, µ) supports a weak (1,Φ)−Poincaré inequality,
then H1,Φ(X) = N1,Φ(X) = P 1,Φ(X), in the sense that every
function belonging to one of these spaces has a representative in
each of the other spaces.
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2. Preliminaries

We use basic notions from the theory of Orlicz spaces [13].
In the following Φ : [0,∞) → [0,∞] is always an Young func-

tion. Φ is called N−function if it is real-valued, continuous, van-

ishes only at the origin and for a ∈ {∞, 0} satisfies lim
t→a

Φ(t)
t

= a.

Φ is said to satisfy a ∆2−condition if there is a constant CΦ > 0
such that Φ(2t) ≤ CΦΦ(t) for every t ∈ [0,∞). A Young func-
tion satisfying a ∆2−condition is called doubling. Every dou-
bling Young function is real-valued, strictly increasing and con-
tinuous. The ∆2−condition for an increasing Young function Φ
implies the power growth estimate: Φ(λt) ≤ CΦλ

log2 CΦΦ(t), for
all λ ≥ 1, t ≥ 0 [15, Lemma 2.7].

Let (X,A, µ) be a measure space with a complete and σ−finite
measure µ and let Φ : [0,∞)→ [0,∞] be a Young function. The
Orlicz space LΦ(X) associated to Φ consists of all measurable
functions u : X → [−∞,∞] satisfying

∫
X

Φ(λ |u|)dµ < ∞ for

some λ > 0. The Orlicz space LΦ(X) is a Banach space with the
Luxemburg norm defined by

‖u‖LΦ(X) = inf

k > 0 :

∫
X

Φ(
|u|
k

)dµ ≤ 1

 .

For every measurable function u : X → [−∞,+∞], denote
IΦ(u) =

∫
X

Φ(|u|)dµ. If IΦ(u) < ∞, then u ∈ LΦ(X) and the

converse is true provided that Φ is doubling.

Throughout this paper we deal with a metric measure space
(X, d, µ), which is a metric space (X, d) equipped with a Borel
regular outer measure µ. Assume that µ is finite and positive on
balls.

Remark 1. Since µ is finite on balls, for every doubling
N−function Φ : [0,∞) → [0,∞) we have LΦ(X) ⊂ L1

loc(X) [13,
Proposition 3.1.7].

For every open ball B = B (x, r) = {y ∈ X : d(y, x) < r} and
each λ > 0 we will denote λB := B(x, λr).

Definition 1. The measure µ on the metric space (X, d, µ) is
said to be doubling if there is a constant Cµ ≥ 1 such that

(2.1) µ(2B) ≤ Cµµ(B)

for every ball B ⊂ X.
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In the following we will assume that the measure µ is doubling.

We will denote by LIP (X) and LIPloc(X) the collections of
all real-valued Lipschitz functions, respectively locally Lipschitz
functions.

The infinitesimal behavior of a real function on a metric space
u : X → R at a point x ∈ X is described by the upper and lower
Lipschitz constants

Lip u(x) = lim sup
r→0

L(x, u, r)

r
and lip u(x) = lim inf

r→0

L(x, u, r)

r
,

where L (x, u, r) = sup {|u(y)− u(x)| : d (x, y) ≤ r}.

A substitute for the norm of the gradient in analysis on metric
measure spaces is the concept of upper gradient. Let u be a real-
valued function on a metric measure space X. A Borel function
g : X → [0,+∞] is said to be an upper gradient of u in X if

(2.2) |u(γ(a))− u(γ(b))| ≤
∫
γ

g ds,

for every compact rectifiable path γ : [a, b]→ X.
It is well-known that, for every u ∈ LIPloc(X) the upper Lip-

schitz constant Lip u is an upper gradient of u in X [2].

Definition 2. [15] Let u be a real-valued function on a metric
measure space X. A Borel function g : X → [0,+∞] is called
a Φ−weak upper gradient of u if (2.2) holds for all compact rec-
tifiable paths γ : [a, b] → X except for a path family with zero
Φ−modulus.

The collection Ñ1,Φ(X) of all functions u ∈ LΦ (X) possessing
a Φ−weak upper gradient g ∈ LΦ (X) is a vector space. For

u ∈ Ñ1,Φ(X) define ‖u‖1,Φ = ‖u‖LΦ(X) + inf ‖g‖
LΦ(X)

, where the

infimum is taken over all Φ−weak upper gradients g ∈ LΦ (X)
of u. Consider the equivalence relation u ∼ v ⇔ ‖u− v‖1,Φ = 0.

Then N1,Φ(X) = Ñ1,Φ(X)/ ∼ is a Banach space with the norm
‖u‖N1,Φ := ‖u‖1,Φ [15].

IfX = Ω ⊂ Rn is a domain and Φ is a doubling Young function,
then N1,Φ(X) = W 1,Φ(Ω) as Banach spaces and the norms are
equivalent [15].

We recall the notion of weak (1,Φ)−Poincaré inequality in an
open set of a metric measure space.
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Denote the mean value of a function u ∈ L1(A) over A by
uA := 1

µ(A)

∫
B

udµ, where 0 < µ(A) <∞.

Definition 3. [15, Definition 5.2] Let Φ : [0,∞) → [0,∞) be a
strictly increasing Young function and Ω ⊂ X an open set. We
say that a function u ∈ L1

loc(Ω) and a Borel measurable nonneg-
ative function g on Ω satisfy a weak (1,Φ)−Poincaré inequality
in Ω if there exist some constants CP > 0 and σ ≥ 1 such that

(2.3)
1

µ(B)

∫
B

|u− uB| dµ ≤ CP r Φ−1

 1

µ(σB)

∫
σB

Φ(g)dµ

 .

for each ball B = B(x, r) satisfying σB ⊂ Ω. It is said that Ω
supports a weak (1,Φ)−Poincaré inequality if the above inequality
holds for each function u ∈ L1

loc(Ω) and every upper gradient g of
u, with fixed constants.

Remark 2. If Φ is doubling, we may replace in the above defi-
nition upper gradients by Φ−weak upper gradients.

The weak (1, p)−Poincaré inequality is the weak
(1,Φ)−Poincaré inequality for Φ(t) = tp.

Definition 4. The space P 1,Φ(X) consists of all functions u ∈
LΦ(X) for which there exists g ∈ LΦ(X) such that the pair (u, g)
satisfies the weak (1,Φ)−Poincaré inequality (2.3) for some con-
stants CP > 0 and σ ≥ 1.

The definition of a generalization of H1,p (X), the Orlicz-
Sobolev space H1,Φ (X), as the closure of the class of Orlicz func-
tions in LΦ (X) that are locally Lipschitz functions, under some
norm involving an abstract differential operator requires a more
specialized approach.

An abstract differential operator [4, Theorem 10] on LIPloc (X)
is a linear operator D which associates with each u ∈ LIPloc (X)
a measurable function Du : X → RN , where N is a fixed positive
integer, such that the following conditions are satisfied:

(D1) There exists a constant CD > 0 such that |Du| ≤ CDL
µ−a.e. whenever u is an L−Lipschitz function;

(D2) If u ∈ LIPloc (X) is constant in some measurable set
E ⊂ X, then Du = 0 µ−a.e. in E.

A remarkable example of abstract differential operator is the
Cheeger’s differential operator [2].
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The set VΦ (X) :=
{
u ∈ LIPloc (X) ∩ LΦ (X) : |Du| ∈ LΦ (X)

}
is a vector space and the functional defined for u ∈ VΦ (X) by

‖u‖ = ‖u‖LΦ(X) + ‖|Du|‖LΦ(X)

is a norm on this space. Then H1,Φ (X) is defined as the closure
of VΦ (X) under the above norm.

Since LΦ (X) is a Banach space, we see that each element of
H1,Φ (X) is represented by a pair (u,G), where u ∈ LΦ (X) and
G : X → RN is measurable with |G| ∈ LΦ (X), for which there
exists a sequence (un)n≥1 in VΦ (X) such that un → u in LΦ (X)

and |Dun −G| → 0 in LΦ (X) as n→∞.

In order to approximate Orlicz-Sobolev functions by locally
Lipschitz functions, we will use a discrete convolution opera-
tor for locally integrable functions on a doubling metric measure
space. This operator was defined in [8] (see also [7]) using the
notion of (ε, λ)− cover of an open set and a Lipschitz partition
of unity subordinated to an (∞, 2)− cover. In the following, X
is a doubling metric measure space with a doubling constant Cµ
and Ω ⊂ X is open.

Given ε > 0 and λ ≥ 1, an (ε, λ)− cover of Ω ([8], [7]) is a
countable cover F = {Bi = B (xi, ri) : i ≥ 1} of Ω with the fol-
lowing properties:

(C1) ri ≤ ε for all i;
(C2) λBi ⊂ Ω for all i;
(C3) If λBi meets λBj, then ri ≤ 2rj;
(C4) Each ball λBi meets at most C = C (Cµ, λ) balls λBj.
Every open set Ω ⊂ X admits an (ε, λ)− cover, whenever ε > 0

and λ ≥ 1, as follows from [3, Theorem III.1.3] and [12, Lemma
2.9], see [8, Lemma 5.1] and [7, Lemma 3.1]. If 0 < ε ≤ ε′ ≤ ∞
and 1 ≤ λ′ ≤ λ < ∞, then every (ε, λ)− cover of Ω is also an
(ε′, λ′)− cover of Ω

Let F = {Bi = B (xi, ri) : i ≥ 1} be an (∞, 2)− cover of Ω. By
[12, Lemma 2.16], as it is shown in [8, Lemma 5.2] and [7, Lemma
3.2], there exists a collection of real functions ϕ = {ϕi : i ≥ 1}
defined on Ω such that

(P1) each ϕi is Li−Lipschitz, where Li := C(Cµ)

ri
;

(P2) 0 ≤ ϕi ≤ 1 for all i;
(P3) ϕi = 0 on X \ 2Bi for all i;
(P4)

∑
i≥1

ϕi = 1 on X.

A collection ϕ = {ϕi : i ≥ 1} as above is called a Lipschitz
partition of unity with respect to F .
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Given an (∞, 2)− cover F of Ω and a Lipschitz partition of
unity ϕ with respect to F , the corresponding discrete convolution
of u ∈ L1

loc (Ω) is defined by

uF(x) =
∑
i≥1

uBiϕi(x), x ∈ Ω.

Note that, for each x ∈ Ω, there are at most C (Cµ, 2) non-zero
terms in the series defining uF(x).

By [8, Lemma 5.3] (see also [7, Lemma 3.3]), uF is locally
Lipschitz. Moreover, for every set J of positive integers, the
function

∑
i∈J

uBiϕi is locally Lipschitz.

Discrete convolutions constructed as above are used to approx-
imate Orlicz functions on a doubling metric measure space, as it
is shown in [7, Lemma 3.3] (see also [8, Lemma 5.3] for the case
of p−integrable functions).

Lemma 1. [7, Lemma 3.3] Assume that (X, d, µ) is a dou-
bling metric measure space and Φ is a Young function. Let
u ∈ L1

loc (Ω), where Ω ⊂ X is open. For each (∞, 2)− cover
F of Ω and any partition of unity ϕ with respect to F , we con-
sider the corresponding discrete convolution uF .

(1) uF is locally Lipschitz and for each B ∈ F

(2.4) Lip uF ≤ C(Cµ)
1

r(B)

1

µ (5B)

∫
5B

|u− u5B| dµ in B.

(2) Let Φ be doubling and u ∈ LΦ (X). If Fk is an
(εk, 2)−cover of Ω, for each k ≥ 1 and if εk → 0 as k → ∞,
then uFk → u in LΦ (Ω).

We prove an inequality analogous to (2.4) for nonlinear oper-
ators more general than Lip.

Lemma 2. Let T be an operator as in Theorem 1. Let F =
{Bi : i ≥ 1} be an (ε, 2)−cover of X, where ε > 0 and let
ϕ = {ϕi : i ≥ 1} a Lipschitz partition of unity with respect to
F . For u ∈ LIPloc (X) denote by uF the corresponding discrete
convolution of u. There exists some constant C ′, depending only
on Cµ and on T , such that for every B ∈ F , of radius r(B), we
have

T (uF) ≤ C ′
1

r(B)

1

µ (5B)

∫
5B

|u− u5B| dµ a.e. in B.
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Proof. Fix B ∈ F . The set I := {i ≥ 1 : 2Bi ∩ 2B 6= ∅} is fi-
nite, having at most C1 = C (Cµ, 2) elements. Denote by J the
complement of I with respect to the set of positive integers.

By (T1) and (T3), T (uF) ≤ CT (uF − uB) a.e. in X.

By (T1), T (uF − uB) ≤ CT

(∑
i∈I

(uBi − uB)ϕi

)
+

CT

(∑
i∈J

(uBi − uB)ϕi

)
.

The function
∑
i∈J

(uBi − uB)ϕi is locally Lipschitz and is zero

on B, hence T

(∑
i∈J

(uBi − uB)ϕi

)
= 0 a.e. in B.

It follows that T (uF) ≤ C2T

(∑
i∈I

(uBi − uB)ϕi

)
a.e. in B.

But, as follows by induction from (T1) and taking account of
(T2),

T

(∑
i∈I

(uBi − uB)ϕi

)
≤ CC1

∑
i∈I

T ((uBi − uB)ϕi)

≤ C1+C1

∑
i∈I

|uBi − uB|T (ϕi)

a.e. in X.
Therefore,

(2.5) T (uF) ≤ C3+C1

∑
i∈I

|uBi − uB|T (ϕi) a.e. in B.

If Bj, Bk ∈ F satisfy 2Bj ∩ 2Bk 6= ∅, a standard argument [10,
Lemma 3] shows that

|uBi − uBk | ≤
(
C5
µ + C3

µ

) 1

µ(5Bk)

∫
5Bk

|u− u5Bk | dµ.

In particular, for each i ∈ I,

(2.6) |uBi − uB| ≤
(
C5
µ + C3

µ

) 1

µ(5B)

∫
5B

|u− u5B| dµ.

By the property (P1) of the Lipschitz partition of unity ϕ and
by (T2), for each i ≥ 1 we have

T (ϕi) ≤ C
C(Cµ)

ri
a.e. in X.
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For i ∈ I, this latter inequality and (C3) imply

(2.7) T (ϕi) ≤ 2C
C(Cµ)

r (B)
.

From inequalities (2.5), (2.6) and (2.7) we get

T (uF) ≤ C ′
1

r(B)

1

µ(5B)

∫
5B

|u− u5B| dµ,

where C ′ = 2C4+C1 · C(Cµ).

3. Examples and proofs of the main results

Example 1. If T (u) = Lip u, then T satisfies (T1) and (T2)
with C = 1 and T also satisfies (T3).

Example 2. If D is an abstract differential operator on
LIPloc (X), then T (u) = |Du| defines an operator which asso-
ciates with each locally Lipschitz function u : X → R a nonneg-
ative function T (u) on X and this T satisfies conditions (T1)
and (T3) with C = 1. Moreover, if D is Cheeger’s differential
operator, then T also satisfies (T2) with some C depending only
on the dimension of the strong differentiable structure [2], [5].

Example 3. The operator T (u) = Lip u and the Orlicz-Sobolev
space W 1,Φ(X) = N1,Φ(X) (with the usual norm) satisfy the con-
ditions (W1) and (W2) from Theorem 1. Since Lip u is an upper
gradient of u ∈ LIPloc (X) [2], (W1) holds with C = 1. If uj → u
in LΦ (X) and Lip uj → g weakly in LΦ (X), then by a Mazur-
type theorem [15, Theorem 4.17] (see also [7, Lemma 2.3]), g is
a Φ−weak upper gradient of a representative ũ of u, therefore
ũ ∈ N1,Φ(X) and so (W2) holds.

Proof of Theorem 1. Let u ∈ P 1,Φ(X).
By definition, there exists g ∈ LΦ (X) such that the weak

(1,Φ)−Poincaré inequality (2.3) holds, for some constants CP >
0 and σ ≥ 1, possibly depending on u and g.

Assume for each k ≥ 1 that Fk = {Bki : i ≥ 1} is an(
1
k
, 5σ
)
−cover of Ω and ϕk = {ϕki : i ≥ 1} is a Lipschitz par-

tition of unity with respect to Fk.
We consider the corresponding discrete convolution uk := uFk ,

for k ≥ 1.
By Lemma 1, uk → u in LΦ (X) as k →∞.
Fix k ≥ 1.
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Let i ≥ 1. By Lemma 2,

T (uk) ≤ C ′
1

r(Bki)

1

µ (5Bki)

∫
5Bki

|u− u5Bki| dµ a.e. in Bki.

Using the weak (1,Φ)−Poincaré inequality (2.3), this implies
(3.1)

T (uk) ≤ C ′CPΦ−1

 1

µ (5σBki)

∫
5σBki

Φ (g) dµ

 a.e. in Bki.

The doubling property of the Young function Φ implies the
power growth estimate Φ(λt) ≤ CΦλ

log2 CΦΦ(t) for λ ≥ 1 and
t ≥ 0. We recall that Φ(λt) ≤ λΦ(t), if 0 ≤ λ ≤ 1, by convexity
of Φ and Φ(0) = 0, and that Φ (Φ−1(t)) ≤ t for all t ≥ 0. Then
(3.1) implies

Φ (T (uk)) ≤ C ′′
1

µ (5σBki)

∫
5σBki

Φ (g) dµ a.e. in Bki.

Here C ′′ := max
{
C ′CP , CΦ (C ′CP )log2 CΦ

}
.

Integrating the previous inequality over Bki we get

(3.2)

∫
Bki

Φ (T (uk)) dµ ≤ C ′′
µ (Bki)

µ (5σBki)

∫
5σBki

Φ (g) dµ.

In particular, ∫
Bki

Φ (T (uk)) dµ ≤ C ′′
∫

5σBki

Φ (g) dµ.

But Fk is a cover of X, hence∫
X

Φ (T (uk)) dµ ≤
∑
i≥1

∫
Bki

Φ (T (uk)) dµ

≤ C ′′
∑
i≥1

χ5σBki

∫
X

Φ (g) dµ

≤ C ′′′
∫
X

Φ (g) dµ

where C ′′′ := C ′′C(Cµ, 5σ). In the last inequality we used the
bounded overlap of the family of balls {5σBki : i ≥ 1}, guaran-
teed by (C4).
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We proved that

(3.3)

∫
X

Φ (T (uk)) dµ ≤ C ′′′
∫
X

Φ (g) dµ

for each k ≥ 1. Note that C ′′′ depends only on the doubling
constants Cµ, CΦ, on the constants CP and σ from the weak
(1,Φ)−Poincaré inequality (2.3) and on the constant C = C(T )
from the properties of the operator T .

Since g ∈ LΦ (X) and Φ is doubling,
∫
X

Φ (g) dµ is finite. Denote

M = max

{
1, C ′′′

∫
X

Φ (g) dµ

}
. From inequality (3.3) we see that

T (uk) ∈ LΦ (X). Moreover,∫
X

Φ

(
T (uk)

M

)
dµ ≤ 1

M

∫
X

Φ (T (uk)) dµ ≤ 1,

hence ‖T (uk)‖LΦ(X) ≤M .

We proved that the sequence (T (uk))k≥1 is bounded in LΦ (X).

If LΦ (X) is reflexive, i.e. Φ and its complementary function
are doubling, passing to a subsequence we may assume that
(T (uk))k≥1 is weakly convergent in LΦ (X). But uk → u in

LΦ (X) as k → ∞. Then using (W2) it follows that u has a
representative in W 1,Φ(X).

If LΦ (X) is not reflexive, we need a more elaborate approach.
Since Φ is assumed to be doubling, we can use [7, Lemma 2.2],
where it is proved that every bounded sequence (fk)k≥1 in LΦ (X)
has a weakly convergent subsequence, provided that

(3.4) lim
µ(A)→0

sup
k≥1

∫
A

Φ (|fk|) dµ

 = 0.

It remains to prove that the sequence fk := T (uk), k ≥ 1, satisfies
(3.4).

Let A ⊂ X be measurable. Going back to (3.2), we see that∫
A

Φ (|T (uk)|) dµ ≤ C ′′
∑
i≥1

µ (A ∩Bki)

µ (5σBki)

∫
5σBki

Φ (g) dµ.

As in the proof of [7, Theorem 1.2, (3.31)], it follows that

lim
µ(A)→0

∑
i≥1

µ (A ∩Bki)

µ (5σBki)

∫
5σBki

Φ (g) dµ

 = 0.
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The latter two inequalities show that the sequence fk := T (uk)
satisfies (3.4), which completes the proof.

Remark 3. We can remove the assumption of the reflexivity of
LΦ (X) from [10, Theorem 4] and the proof follows for a gen-
eral doubling Young function Φ using [7, Lemma 2.2], in a way
analogous to the final part of the proof of Theorem 1.

Proof of Theorem 2. We have P 1,Φ(X) ⊂ H1,Φ(X) by [10, Theo-
rem 4] and Remark 3.

Since (X, d, µ) supports a weak (1,Φ)−Poincaré inequality and
Φ is a doubling Young function, by [15, Theorem 5.7] it follows
that (X, d, µ) supports a weak (1, p)−Poincaré inequality when-
ever log2CΦ ≤ p < ∞. By Cheeger’s fundamental result for
1 < p < ∞ [2], X admits a non-degenerate strong measurable
differentiable structure of some dimension N . So, the Cheeger
differential operator D is well defined on LIPloc (X) and |Du| is
a Φ−weak upper gradient of u ∈ LIPloc (X) [5]. Then for each
u ∈ LIPloc (X), the pair (u, |Du|) satisfies the (1,Φ)−Poincaré
inequality with fixed constants, hence H1,Φ(X) ⊂ P 1,Φ(X), by
[10, Theorem 5].

We get the coincidence P 1,Φ(X) = H1,Φ(X).
By the definition of P 1,Φ(X), if (X, d, µ) supports a weak

(1,Φ)−Poincaré inequality, then N1,Φ(X) ⊂ P 1,Φ(X).
On the other hand, by Theorem 1, taking account of Example

1 and Example 3 it follows that P 1,Φ(X) ⊂ N1,Φ(X).
We conclude that N1,Φ(X) = P 1,Φ(X).
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