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Abstract. In this paper, we propose an iterative algorithm, which
is based on the Krasnoselskii-Mann iterative algorithm for fixed point
problems of a finite family of demicontractive mappings in the setting
of real Banach spaces. We prove that the sequence generated by the
proposed method converges strongly to a common fixed point of a
finite family of demicontractive mappings which is also the solution of
a variational inequality. The iterative algorithm and results presented
in this paper generalize, unify and improve some previously known
results of this area.
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1. INTRODUCTION

Let H be a real Hilbert space, K be a nonempty subset of H. A
map 7T : K — K is said to be Lipschitz if there exists an L > 0 such
that

(1.1) 1Tz =Tyl < Lllz = yll, Yo,y € K,

if L < 1, T is called contraction and if L = 1, T' is called nonexpansive.
We denote by Fiz(T) the set of fixed points of the mapping T, that
is Fiz(T) := {z € D(T) : * = Tz}. We assume that Fiz(T) is
nonempty. If 7' is nonexpansive mapping, it is well known Fiz(T) is
closed and convex (see, e.g., [3]). A map T is called quasi-nonexpansive
if |Tz—pl| < |Jz—pl| holds for all x in K and p € Fiz(T'). The mapping
T : K — K is said to be firmly nonexpansive, if

|72 — Tyl < |l — ylI? — I —y) — (T — Ty, Yo,y € K.

A mapping T : K — H is called k-strictly pseudo-contractive if there
exists k£ € [0, 1) such that

1Tz = Ty|* < |lo = ylI* + kllz —y = (Tw = Ty)|*, Yo,y € K.
If this inequality holds for £k = 1 then T is called simply pseudocon-

tractive.

A map T is called k-demi-contractive if Fiz(T) # () and for k €
[0,1), we have

(1.2) ||[Tz —p|?> < ||z —p||* + k||Jz — Tx||*, Vz € K, pe€ Fix(T).
We note that the following inclusions hold for the classes of the

mappings:

firmly nonexpansive C nonexpansive C quasi-nonexpansive C
k-quasi-strictly pseudo-contractive C k-demicontractive.

The following example shows that there exists a k-demi-contractive
mapping which is not k-strictly pseudo-contractive mapping.

Example 1.1. Let H =R and K = [—1,1]. Define T': K — K by

2
3% sin(1), z#0

(1.3) Tx =
0 z=0.
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Clearly Fiiz(T) = {0}. For x € K, we have

2 1
Tz — 0> = |Zasin(—)[?
T

IN
I
8

<
< |z —O0P 4+ klz —Tz|* Yk €[0,1).

Thus T is k demi-contratcive for k € [0,1). To see that T is not k

2 2
strictly pseudo-contractive, choose © = — and y = 30 then
™ T

Tz = Ty* > o —y* + klz —y — (Tz — Ty)|".
Hence, T is not k strictly pseudo-contractive mapping for k € [0, 1).

Example 1.2. (Example of a Demicontractive Function which is not
Quasi-nonexpansive and is not Pseudocontractive). Let f be a real
function defined by f(z) = —x? — z; it can be seen that f:[-2,1] —
[—2,1]. This function is demicontractive on [—2, 1] and continuous.
It is not quasi-nonexpansive and is not pseudocontractive on [—2,1]
(check for instance the condition of pseudocontractivity for x = —1.5
and y = —0.6).

For nonexpansive mappings with fixed points, Mann iterative
method [11] is a valuable tool to study them. However, only weak
convergence is guaranteed in infinite dimensional spaces. Thus a
natural question rises: could we obtain a strong convergence result by
using the well-known Krasnoselskii-Mann method for non-expansive
mappings? In this connection, in 1975, Genel and Lindenstrauss [7]
gave a counterexample. Hence the modification is necessary in order
to guarantee the strong convergence of Krasnoselskii-Mann’s method.
Lot of works have been done for the modification of the normal
Mann’s iteration so that strong convergence is guaranteed. See, e.g.,
(12, 13, 17, 9, 8] and the reference therein.

In 2010, Yonghong Yao and Yeol Je Cho [16], motivated by the
fact that Krasnoselskii-Mann algorithm method is remarkably useful
for finding fixed points of single-valued nonexpansive mapping, proved
the following theorem.

Theorem 1.3 (Yonghong Yao and Yeol Je Cho [16]). Let H be a real
Hilbert space T : H — H be a nonexpansive mapping with Fiz(T) # (.
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Let {\,} and {a,} be two sequences in (0,1). Let {z,} be a sequence
defined iteratively from arbitrary xo € H by:

(1.4) Tpi1 = (M) + (1 — ap)Txy,.

Suppose the following conditions hold:

(1) T}Lnolo a, =0; (i7) Z |, — apy1] < 00

n=0

(mz)nlLI& An =1, Z(l — A\p)ay, = 00, and Z |An — Ant1| < 00
n=0 n=0

Then, the sequence {x,} generated by (1.4) converges strongly to x* €
Fix(T).

Let £ be a Banach space with norm || - || and dual E*. For any z € E
and p € E*, (p,z) is used to refer to p(z). Let ¢ : [0,4+00) — [0, 00)
be a strictly increasing continuous function such that ¢(0) = 0 and

o(t) = +o0 as t — 00. Such a function ¢ is called gauge. Associed to
a gauge a duality map J, : E — 2¥" defined by:

(1.5)  Ju(z) = {p € E": (z,p) = ||zlle(|lz]), [|pll = @ (l|z[])}.
If the gauge is defined by ¢(t) = ¢, then the corresponding duality

map is called the normalized duality map and is denoted by J. Hence
the normalized duality map is given by

J(@) = {pe B : {z,p) = |||l = p|[*}, Vo € E.
Notice that

Sy = 20

1Ed]

Let E be a real normed space and let S := {z € E : ||z| = 1}. E is
said to be smooth if

ety

im

t—0+ t
exists for each z,y € S. FE is said to be uniformly smooth if it is
smooth and the limit is attained uniformly for each x,y € S.
Let E be a normed space with dimE > 2. The modulus of smoothness
of E is the function pg : [0,00) — [0, 00) defined by

T+ Y|+ || —
petr) o= sup {2 ol

It is known that a normed linear space F is uniformly smooth if

i P27 _ g,
7—0 T

1:||x||=1,||y||=7}; r>0
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If there exists a constant ¢ > 0 and a real number ¢ > 1 such that
pe(T) < 1l then E is said to be g-uniformly smooth. Typical ex-
amples of such spaces are the L, £, and W" spaces for 1 < p < oo
where,

Ly (or I,) or W is

2(1— él,}niformly smooth and p — uniformly convex if 2 <p < o0;
2*=niformly convex and p — uniformly smooth if 1 <p < 2.

Let J, denote the generalized duality mapping from E to 25" defined
by

Jo(@) = {f € E" : (x, f) = ||2]|” and || f|| = [l=|*""} .

Jy is called the mormalized duality mapping and is denoted by J.
It is known that E is smooth if and only if each duality map J,
is single-valued, that E is Frechet differentiable if and only if each
duality map J, is norm-to-norm continuous in £, and that FE is
uniformly smooth if and only if each duality map J,, is norm-to-norm
uniformly continuous on bounded subsets of E. Following Browder
[2], we say that a Banach space has a weakly continuous duality
map if there exists a gauge ¢ such that J, is single-valued and is
weak-to-weak”™ sequentially continuous, i.e., if (z,) C E, z, — =,
then J,(z,) M, Jo(z). It is known that [? (1 < p < oco0) has a weakly
continuous duality map with gauge o(t) = tP~! (see e.g., [4] for more
details on duality maps).

Remark 1.4. Note also that a duality mapping exists in each Banach
space. We recall from [1] some of the examples of this mapping in
ly, L,, W™P-spaces, 1 < p < 00.

(Z) lp D Jr = ||le2p_py € lqa T = (gjlnyv Ty ')a

Yy = (I1|x1|p_2; x2|$2|p_27 e 7xn|xn|p_27 Tt )7
(i) Ly Ju=lullEP o2 € 1,

(i) W 2 Ju =l D (~)F1D (|Doup Do)
W-ma,
where 1 < ¢ < 0o is such that 1/p+1/q = 1.
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In [6], Chidume extended the condition (1.2) to arbitrary real Ba-
nach spaces X. If X is g-uniformly smooth, then the condition (1.2)
becomes

(1— k)

-1
(1.7) (z—Tz, j,(x—p)) > S le—=Tz||?, =€ X, pe Fiz(T).

Recently, Sow et al. [14] extended Theorem 1.3 from Hilbert spaces
to Banach spaces, by proving the following theorem.

Theorem 1.5 (Sow et al. [14]). Let E be a uniformly smooth real Ba-
nach space having a weakly continuous duality map and K a nonempty,
closed and convexr cone of E. Let T : K — K be a nonexpansive map-
ping with Fix(T) # 0. Let {\,} and {a,} be two sequences in (0,1).
Let {x,} be a sequence defined iteratively from arbitrary xo € K by:

(1.8) Tni1 = (M) + (1 — )Tz,
Suppose the following conditions hold:

(i) lim o, =05 (id) > o — anga| < 00,

n=0

(i) lim A, =1, D> (1= A)an =00, and Y |Ay — Ay | < o0
n=0

n=0 =
Then, the sequence {x,} generated by (1.8) converges strongly to x* €
Fix(T).

In this paper, motivated by above results, the fact that the
class of demicontractive mappings properly includes that of quasi-
nonexpansive, strictly pseudocontractive mappings and Krasnoselskii-
Mann algorithm is remarkably useful for solving fixed point problems,
we construct and study an explicit iterative method and prove strong
convergence theorems by using the Krasnoselskii-Mann iteration for
approximating a common fixed points of a finite family of demicon-
tractive mappings in the setting of a real Banach space without any
compactness assumption. Our technique of proof is of independent
interest.

2. PRELIMINARIES

Let C' be a nonempty subsets of a smooth real Banach space E. A
mapping Q¢ : F — C' is said to be sunny if

Qc(Qox +t(r — Qcx)) = Qow

for each x € F and t > 0. A mapping Q¢ : E — C is said to be a
retraction if Qcx = x for each z € C.
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Lemma 2.1. [8] Let C and D be nonempty subsets of a smooth real
Banach space E with D C C' and Qp : C — D a retraction from C
into D. Then Qp 1s sunny and nonexpansive if and only if

(z = Qpz,J(y — Qpz)) <0
forall z€ C and y € D.

It is noted that Lemma 2.1 still holds if the normalized duality map
is replaced by the general duality map J,, where ¢ is gauge function.

Remark 2.2. If K is a nonempty, closed convex subset of a Hilbert
space H, then the nearest point projection Px from H to K is the
sunny nonexpansive retraction.

Lemma 2.3 ( [12], Proposition 2.1 ). Assume K is a closed convex
subset of a Hilbert space H. Let T : K — K be a self-mapping of K.
If T is a k-demicontractive mapping, then the fized point set Fix(T)
15 closed and convex.

Theorem 2.4. [5] Let ¢ > 1 be a fized real number and E be a smooth
Banach space. Then the following statements are equivalent:

(1) E is g-uniformly smooth.

(it) There is a constant d, > 0 such that for all v,y € E

[l +yll* < [lzl|* + gy, Jo(2)) + dglly[l*.
(1i1) There is a constant ¢; > 0 such that
<ZE - Y, Jq(ZE) - Jq(y>> < CIHI - qu v T,y € E.

Lemma 2.5. [12] Let K be a nonempty closed convex subset of a real
Hilbert space H and T : K — K be a mapping.

(1) If T is a k-strictly pseudo-contractive mapping, then T' satisfies the
Lipschitzian condition

1+

k
Tx —Ty| < —vy||-
7w =Tyl < 1z~ ol

(12) If T is a k-quasi-strictly pseudo-contractive mapping, then the
mapping I — T 1s demiclosed at 0.

Lemma 2.6 ([10]). Assume that a Banach space E has a weakly con-
tinous duality mapping J, with gauge .

(2.1) D[z +yll) < D)) + (y, Jo(z + ).
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t
For all x,y € E, where ®(t) = / p(o)do, t > 0. In particular,for the

0
normilized duality mapping, we have the important special version of
(2.1)
lz -+ yll* < ll=l* + 2(y, J (x + y)),
forall x,y € E.
Lemma 2.7 (Xu, [15]). Assume that {a,} is a sequence of nonnegative

real numbers such that a, 1 < (1 — ay)a, + a0, for alln > 0, where
{ozn} is a sequence in (0,1) and {o,} is a sequence in R such that

(a) Zozn = 00, (b) limsupao, < 0 or Z|anan| < 00. Then

n=0 n—roo n=0

3. MAIN RESULTS
We now prove our main results.

Theorem 3.1. Let q > 1 be a fized real number and E be a g-uniformly
smooth real Banach space having a weakly continuous duality map J,
and K be a nonempty, closed convex cone of E. Let m > 1 be a
fixed number, for 1,1 < i <m,T;,: K — K be a k;-demicontractive

mapping such that " := ﬂsz ) £ 0. Let {x,} be a sequence defined

=1
iteratively from arbitrary xo € K by:

Yn = /\Oxn + )\lTlxn + -+ )\mel’n,
(3.1)
Tp+1 = an(enmn) + (1 - an>yn>

where \; € (0,7),
-1 1
. qp! g1 . 11— ki

vi= min {1 (g, ) it A= 5
Suppose the following conditions hold:
{0,.} and {a,} be sequences in (0,1) satisfying:
(1) nlggo a, =0; (i) Z%(l — 0,) o, = 00, Z;)\i =1,
(737) lim 6, = 1.

n—oo

Assume that I — T; is demiclosed at the origin.
Then, the sequence {x,} generated by (3.1) converges strongly to x* €
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I, where z* = Qr(0) with Qr the sunny nonexpansive retraction of K
onto I'.

Proof. We prove that the sequences {x,} and {y,} are bounded. Let
p € I'. Using (3.1), inequality (i7) of Theorem 2.4 and inequality (1.7),
we have

m

lyn = 2ll" = | Xo(@n = p) + D _Ai(Tiw —p)

=1

q

m m

= |[Mo(@n =)+ D Ni(Tiwn — 2) + Y i —p)

i=1 =1

q

q

i=1

Hence,
(3.2)

m
lyn =% < llzn=pll"=aY N8I lwn—Tia ]| " +d,
i=1

=1

Therefore,

q
Exn — Tn

(3.3) HZ)\i(Tixn )| < 200003
i=1 =1

Combining inequalities (3.2) and (3.3), it then follows that :

) || < ‘ Tn —qu - qi&ﬂ?l 2 — Tin||| +
=1
+ dqQ(m_l)qu:A? Tyt — |-
=1
(3.4) = ‘ 2, —p|" = iAi [qgg—l _ 2(7”—1)qu)\§_1] ‘ 2 — Tiry
=1
Since g7 — 20m=Dg Nt > 0 Vi=1,--- ,m, we obtain,

(3.5) Iy = || < llan = ||

q
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By inequality (3.5) and (3.1), we have

[atn (Onn) + (1 — an)yn — 1|

|2 — pll + (1 = o) l[yn — pll + (1 = On) o]l
by —pll + (1 — a2, — pl| + (1 = 0,)anl[pl]
[1 = (1= On)an]l|zn = pll + (1 = 0n)c]lpl|
max { |z, — pl|, [/}

By induction, it is easy to see that

21 —

VAN VAN VANRVA

[ = pll < max{|jzo —pl, llp[}, n=>1.

Hence {x,} is bounded and {y,} is also bounded.
Consequently, using inequality (3.4), we obtain

12011 = pl|? = [|an(Onzn) + (1 = @n)yn = 2|? = yn — P + an((Onn) — yn)||?
q
S ||yn - p”q + qan«enxn) — Yn, Jq(yn - p)> + dq

0 ((0nn) — Yn)

< Iy = pll” + ganl|(Onzn) = ynllllyn — P17 + dya||(0nzn) — yn

q n q
< on =] = SN[ = 210,07 | - T
i=1
q
+qan[|(Onn) — Yullllyn — p”q_l + dgo || (0n70) — Yn|| -
Thus, for every 7,1 < i < m, we get
S q—1 (m—1)q q—1 q q q
Z)\i[QBi —2 dgA; H%—Tixn < ‘:vn—p —‘$n+1—p

i=1
+qan | (Onzn) = yulllyn — plI*™
+dqa || (Onn) — ynl|”.

Since {y,} and {(0,z,)} are bounded, then there exists a constant

C > 0 such that for every i,1 < i < m,
(3.6)

S o =2 994,0 o~ Tl < 2=l = 21—l C.
i=1

Now we prove that {x,} converges strongly to z*.

We divide the proof into two cases.

Case 1. Assume that the sequence {||z, — p||} is monotonically de-
creasing. Then {||z, — p||} is convergent. Clearly, we have

[z = pll* = 04 = p[* = 0.
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It then implies from (3.6) that

- q
(37 lm Yo [qﬁf—l - 2<m*1>qcqug‘1] ‘ 2, — T || = 0.
i=1
Since g7 " — 2m=Deg A\t > 0 Vi=1,--- ,m, we have
(3.8) lim ||z, — T;x,|| = 0.
n—oo

Next, we prove that limsup(z*, J,(z* — z,,)) < 0. Since E is reflexive
n—-+00

and {z,} is bounded, there exists a subsequence {xz,, } of {z,} such
that z,, converges weakly to a in K and

1' * * _ — 1' * * _ .

msup(z”, J (27— o)) = Hm (27, Jo(@" = 2n,))
From (3.8), taking into account that I — T; is demiclosed, we obtain
a € I". On other hand, by the assumption that the duality mapping
J,, is weakly continuous, the fact that 2* = Qr(0) and Lemma 2.1, we
then have

limsup(z*, J,(2* —x,)) = lim (2", J,(2" — zy,))

n—+oo k=400

= (2%, J,(z" —a)) <0.

Finally, we show that x,, — x*. In fact, since ®(t) = f(f p(o)do, YVt >
0, and ¢ is a gauge function, then for 1 > k > 0, ®(kt) < k®(¢). From
(3.1) and Lemma 2.6, we get that

O(f|zny —27) = S([lom(Onzn) + (1 = an)yn — "))

< O([Janb n(xn —2") + (1 = an)(yn — 7))
+(1 = bn)on(z, Jo(z" — zps))
< P(anby ||$n — 2|+ [[(1 = ow ) (yn — 7))
+(1 = 0,) o (z", J, (2" — 2p41))
< P(anby ||l’n — 2"+ (1 = on)[|zn — 7))
+(1 - )Oén<9€ Jo (" — Zni1))
< O((1— (L= bn)an)|[en — 27[]) + (1 — ) an(a”, Jo(z*
< Q=0 =0)an]®([lzn —2"|]) + (1 = bn)on (27, Jo(z* -

From Lemma 2.7, it follows that =, — x*.

Case 2. Assume that the sequence {||x, — x*||} is not monotonically
decreasing sequence. Set B,, = ||z, —z*|| and 7 : N — N be a mapping
for all n > ng (for some ng large enough) by 7(n) = max{k € N: k <
n, B < Bjia}.

- $n+1)>

xn+1)>'
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We have 7 is a non-decreasing sequence such that 7(n) — co as n —
oo and By, < Br(ny41 for n > ng. Let @ € N*, from (3.6), we have

S a2t
=1

Furthermore, we have

q

Trn) — LiTr(n)

q

i . =1 _ 9(m-1)g g yq-1 _ _
nh_}rgo ;/\l [qﬂz 2 dg\; ”:ET(n) Us () 0.
Since qﬁf’_l — Z(mfl)qdq)\?_l >0 Vi=1,---,m, we have
q
(3.9) lim Tr(n) — T,-IT(n) =0.
n—oo

By same argument as in case 1, we can show that ., is bounded in
K and limsup (z*, J (2" — 2+(n))) < 0. We have for all n > ny,

7(n)—+oo

0 < ®(lzriuyer = 2°1) = Olzry = ") < (1= briuy ) o[~ @12y — I

+<$*, Jg,(:c* — xT(n)H))],
which implies that

qD(HIT(n) —z"||) < (=, Jgo(x* - $T(n)+1)>-
Then, we have
lim @ ([l — ) = 0.

Therefore,
lim BT(n) = lim BT(n)+1 =0.
n—oo

n—oo
Furthermore, for all n > ng, we have B,y < By if n # 7(n)
(that is, n > 7(n)); because B; > Bji; for 7(n) +1 < j < n. As
consequence, we have for all n > ny,

0<B,< maX{BT(n)> BT(n)+1} = BT(n)+1-
Hence, lim B, = 0, that is {x,} converges strongly to z*. This com-
n—00
pletes the proof. 0

Remark 3.2. In our theorem, we assume that K is a cone. But, in
some cases, for example, if K is the closed unit ball, we can weaken
this assumption to the following: Az € K for all A € (0,1) and = € K.
Therefore, in the case where E is a real Hilbert space or £/ =1[;, 1 <
p < oo, our results can be used to approximated a common fixed



A MODIFIED KRASNOSELSKII-MANN ALGORITHM 7

points of a finite family of demicontractive mappings from the closed
unit ball to itself.

Corollary 3.3. Assume that E =1,, 1 < ¢ < oo or I is a real Hilbert
space. Let B be the closed unit ball of E. Let m > 1 be a fixed number,
fori,1 <ie<m, T;: B — B be a k;- demicontractive mapping such

that T' := szx(Tz) # 0. Let {x,} be a sequence defined iteratively
i=1
from arbitrary xq € B by:

Yn = )\Oxn + )\1T1xn +---+ )\meZEna
(3.10)
Tp+1 = Oén(enxn> + (1 - an)yna

where \; € (0,7),

v := min {1, (Lq_l)qll}, with B; = 1_ki.

1<i<m 2(m*1)qdq 2

Suppose the following conditions hold:
{0,} and {a,} be sequences in (0,1) satisfying:

(i) nh_)r& a, =0;  (i7) Zo(l —0,) o, = o0, ;)\i =1,
(i) lim 6, = 1.

n—oo
Assume that I —T; is demiclosed at the origin.
Then, the sequence {x,} generated by (3.10) converges strongly to x* €
[, where x* = Qr(0) with Qr the sunny nonexpansive retraction of B
onto T'.

Now, we give some remarks on our results as follows:

(1) The proof methods of our result are very different from the ones
of Sow et al. [14] for finding fixed points of nonexpansive mapping.

Further, we remove the following conditions: Z lon, — Q] < o0,

n=0

Zan =00, and Z A — Ani1| < oo in Theorem 1.3 of [14].
n=0 n=0

(2) Our results improve many recent results using Mann’s method
to approximate fixed points of nonexpansive mappings, quasi-
nonexpansive, strictly pseudo-contractive in Banach spaces.
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