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ON fgγ∗-CLOSED SETS IN FUZZY TOPOLOGICAL
SPACES

ANJANA BHATTACHARYYA

Abstract. Starting with Chang [8], many mathematicians have
engaged themselves to introduce different types of fuzzy closed-like sets
in a fuzzy topological space (fts, for short). Afterwards, in [2, 3, 5, 6, 7]
the notion of generalized versions of fuzzy closed set have been studied.
In this paper a new type of generalized version of fuzzy γ-closed set is
introduced and studied using γ-closed set as a basic tool.

1. Introduction

This paper deals with a new type of generalized version of closed set
in fuzzy topological space, viz., fgγ∗-closed set using fuzzy γ-open set
[4] as a basic tool. It is shown that the collection of all fgγ∗-closed sets
is stronger than that of fuzzy γ-closed set [4], but weaker than that of
fgγ-closed set [7]. Also the mutual relationship of this set with fgs∗-
closed set [5], fsg-closed set [3], fgβ-closed set [3] are established.
Again we introduce a new type of closure operator, viz., fgγ∗-closure
operator which is an idempotent operator. Afterwards, fgγ∗-open,
fgγ∗-closed, fgγ∗-compactness and fgγ∗-irresolute functions are in-
troduced and studied. Then establish the mutual relationship of these
functions with fuzzy open function [18], fuzzy closed function [18] and
fuzzy continuous function [8].

————————————————
Keywords and phrases: Fuzzy γ-closed set, fgγ∗-closed set, fgγ∗-
closed function, fgγ∗-open function, fgγ∗-continuous function, fgγ∗-
irresolute function, fuzzy semiopen set.
(2010) Mathematics Subject Classification: 54A40, 54C99,
54D20.

17



18 ANJANA BHATTACHARYYA

It is shown that fgγ∗-continuous image of fgγ∗-regular, fgγ∗-
normal and fgγ∗-compact spaces are fuzzy regular [14], fuzzy normal
[13] and fuzzy compact [8] spaces respectively. Lastly, a new type of
separation axiom, viz., fgγ∗-T2 space is introduced and shown that
the inverse image of fuzzy T2-space [14] (resp., fgγ∗-T2 space) under
fgγ∗-continuous function (resp., fgγ∗-irresolute function) is fgγ∗-T2

space.

2. Preliminaries

Throughout this paper (X, τ) or simply by X we shall mean a fuzzy
topological space (fts, for short) in the sense of Chang [8]. In [19], L.A.
Zadeh introduced fuzzy set as follows: A fuzzy set A is a function from
a non-empty set X into the closed interval I = [0, 1], i.e., A ∈ IX .
The support [19] of a fuzzy set A, denoted by suppA and is defined
by suppA = {x ∈ X : A(x) 6= 0}. The fuzzy set with the singleton
support {x} ⊆ X and the value t (0 < t ≤ 1) will be denoted by xt. 0X
and 1X are the constant fuzzy sets taking values 0 and 1 respectively in
X. The complement [19] of a fuzzy set A in X is denoted by 1X\A and
is defined by (1X\A)(x) = 1−A(x), for each x ∈ X. For any two fuzzy
sets A,B in X, A ≤ B means A(x) ≤ B(x), for all x ∈ X [19] while
AqB means A is quasi-coincident (q-coincident, for short) [17] with B,
i.e., there exists x ∈ X such that A(x) + B(x) > 1. The negation of
these two statements will be denoted byA 6≤ B andA 6 qB respectively.
For a fuzzy point xt and a fuzzy set A, xt ∈ A means A(x) ≥ t, i.e.,
xt ≤ A. For a fuzzy set A, clA and intA will stand for fuzzy closure [8]
and fuzzy interior [8] respectively. A fuzzy set A in X is called fuzzy
regular open [1] (resp., fuzzy semiopen [1], fuzzy β-open [11], fuzzy
γ-open [4]) if A = int(clA) (resp., A ≤ cl(intA), A ≤ cl(int(clA)),
A ≤ cl(intA)

∨
int(clA)). The complement of a fuzzy semiopen (resp.,

fuzzy β-open, fuzzy γ-open) set is called fuzzy semiclosed [1] (resp.,
fuzzy β-closed [11], fuzzy γ-closed [4]). The intersection of all fuzzy
semiclosed (resp., fuzzy β-closed, fuzzy γ-closed) sets containing a
fuzzy set A is called fuzzy semiclosure [1] (resp., fuzzy β-closure [11],
fuzzy γ-closure [4]) of A, to be denoted by sclA (resp., βclA, γclA).
The union of all fuzzy γ-open sets contained in a fuzzy set A in an
fts X is called fuzzy γ-interior of A, denoted by γintA [4]. A(∈ IX)
is fuzzy γ-closed (resp., fuzzy γ-open) iff A = γclA [4] (resp., γintA
[4]). A fuzzy set A is called a fuzzy neighbourhood (fuzzy nbd, for
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short) [17] of a fuzzy point xα if there exists a fuzzy open set U in X
such that xα ∈ U ≤ A. If, in addition, A is fuzzy open (resp., fuzzy
γ-open), then A is called fuzzy open nbd [17] (resp., fuzzy γ-open
nbd [4]) of xα. A fuzzy set A is called a fuzzy quasi neighbourhood
(fuzzy q-nbd, for short) [17] of a fuzzy point xα in an fts X if there
is a fuzzy open set U in X such that xαqU ≤ A. If, in addition, A
is fuzzy open (resp., fuzzy γ-open), then A is called fuzzy open q-nbd
[17] (resp., fuzzy γ-open q-nbd [4]) of xα. The collection of all fuzzy
open (resp., fuzzy regular open, fuzzy semiopen, fuzzy β-open, fuzzy
γ-open) sets in an fts X is denoted by τ (resp., FRO(X), FSO(X),
FβO(X), FγO(X)). The collection of all fuzzy closed (resp., fuzzy
semiclosed, fuzzy β-closed, fuzzy γ-closed) sets in an fts X is denoted
by τ c (resp., FSC(X), FβC(X), FγC(X)).

3. fgγ∗-Closed Set: Some Properties

In this section a new type of generalized version of fuzzy closed set,
viz., fgγ∗-closed set is introduced and studied. Some properties of
this newly defined set are shown. Again mutual relationship of this
set and the sets defined in [2, 3, 5, 6, 7] are established.

We first recall the following definitions from [2, 3, 5, 6, 7] for ready
references.
Definition 3.1. Let (X, τ) be an fts and A ∈ IX . Then A is called
(i) fuzzy generalized closed (fg-closed, for short) [2, 3] if clA ≤ U
whenever A ≤ U ∈ τ ,
(ii) fuzzy semi generalized closed (fsg-closed, for short) [3] if sclA ≤ U
whenever A ≤ U ∈ FSO(X),
(iii) fuzzy generalized β-closed (fgβ-closed, for short) [3] if βclA ≤ U
whenever A ≤ U ∈ τ ,
(iv) fgs∗-closed set [6] if clA ≤ U whenever A ≤ U ∈ FSO(X, τ1),
(v) fuzzy generalized γ-closed (fgγ-closed, for short) [7] if γclA ≤ U
whenever A ≤ U ∈ τ .

The complements of the above mentioned fuzzy sets are called their
respective open sets.

Now we introduce the following concept.
Definition 3.2. Let (X, τ) be an fts and A ∈ IX . Then A is
called fuzzy generalized γ∗-closed (fgγ∗-closed, for short) set in X
if γclA ≤ U whenever A ≤ U ∈ FSO(X).

The complement of an fgγ∗-closed set is called fuzzy generalized
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γ∗-open (fgγ∗-open, for short) set.
Remark 3.3. It is clear from definitions that
(i) fgγ∗-closed set is fgβ-closed set as well as fgγ-closed set,
(ii) fsg-closed set is fgγ∗-closed set and fgs∗-closed set is fgγ∗-closed
set,
(iii) fuzzy γ-closed set is fgγ∗-closed set.
But the converses are not true, in general, follow from the following
examples.
(iv) fgγ∗-closed set and fg-closed set are independent concepts as fol-
lows from the next examples.
Example 3.4. None of the properties of fg-closedness, fgβ-
closedness, fgγ-closedness implies that of fgγ∗-closedness
Let X = {a}, τ = {0X , 1XA,B} where A(a) = 0.45, B(a) = 0.6. Then
(X, τ) is an fts. Here FSO(X) = {oX , 1X , U, V } whereA ≤ U ≤ 1X\A
and V ≥ B, FγO(X) = {0X , 1X ,W} where W > 1X \ B and
FγC(X) = {0X , 1X , 1X \W} where 1X \W < B. Consider the fuzzy
set C defined by C(a) = 0.7. Then 1X is the only fuzzy open set in
(X, τ) containing C and so clC ≤ 1X , βclC ≤ 1X , γclC ≤ 1X imply
that C is fg-closed set, fgβ-closed set and fgγ-closed set. But as
C ∈ FSO(X), C ≤ C and γclC = 1X 6≤ C implies that C is not
fgγ∗-closed set in (X, τ).
Example 3.5. None of fg-closedness , fsg-closedness, fgs∗-
closedness is implied by fgγ∗-closedness Consider Example 3.4 and
the fuzzy set D defined by D(a) = 0.56. Then D < B ∈ FSO(X).
Now γclD = D < B implies that D is fgγ∗-closed set in (X, τ).
But sclD = 1X 6≤ B ⇒ D is not fsg-closed set in (X, τ). Also
clD = 1X 6≤ B ⇒ D is not fgs∗-closed set in (X, τ). Again
D < B ∈ τ . But clD = 1X 6≤ B ⇒ D is not fg-closed set in
(X, τ).
Example 3.6. There exists an fgγ∗-closed set which is not fuzzy
closed
Let X = {a, b}, τ = {0X , 1X , A} where A(a) = 0.5, A(b) = 0.4. Then
(X, τ) is an fts. Here FSO(X, τ) = {0X , 1X , U} where A ≤ U ≤
1X \ A. Consider the fuzzy set B defined by B(a) = 0.7, B(b) = 0.5.
Then B 6∈ FγC(X, τ), because (clintB)

∨
(intclB) = 1X \A 6≤ B. As

1X ∈ FSO(X, τ) only containing B, B is fgγ∗-closed set in (X, τ).
Remark 3.7. It is obvious that union of two fgγ∗-closed sets is also
so. But intersection of two fgγ∗-closed sets need not be so, as it seen
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from the following example.
Example 3.8. Let X = {a, b}, τ = {0X , 1X , A,B} where A(a) =
0.5, A(b) = 0.4, B(a) = 0.4, B(b) = 0.3. Then (X, τ) is an fts. Here
FSO(X) = {0X , 1X , U} where B ≤ U ≤ 1X \ A. Consider two
fuzzy sets C and D defined by C(a) = 0.6, C(b) = 0.55, D(a) =
0.45, D(b) = 0.7. Then clearly C and D are fgγ∗-closed sets in (X, τ).
Let E = C

∧
D. Then E(a) = 0.45, E(b) = 0.55. Then E ∈ FSO(X).

So E ≤ E. Now (clintE)
∧

(intclE) = (1X \ A)
∧
A = A 6≤ E. So

γclE 6≤ E, i.e., E 6∈ FγC(X) and so γclE 6= E ⇒ E is not fgγ∗-
closed set in X.

From the above discussion we can conclude that the collection of all
fgγ∗-open sets does not form a fuzzy topology.
Theorem 3.9. If A(∈ IX) is fgγ∗-closed set in X and B ∈ IX is such
that A ≤ B ≤ γclA, then B is also fgγ∗-closed set in X.
Proof. Let U ∈ FSO(X) be such that B ≤ U . Then by hypothesis,
A ≤ B ≤ U . As A is fgγ∗-closed set in X, γclA ≤ U and so A ≤ B ≤
γclA ≤ U ⇒ γclA ≤ γclB ≤ γcl(γclA) = γclA ≤ U ⇒ γclB ≤ U .
Consequently, B is fgγ∗-closed set in X.
Theorem 3.10. Let (X, τ) be an fts and A,B ∈ IX . If γintA ≤ B ≤
A and A is fgγ∗-open set in X, then B is also fgγ∗-open set in X.
Proof. γintA ≤ B ≤ A⇒ 1X\A ≤ 1X\B ≤ 1X\γintA = γcl(1X\A)
where 1X \A is fgγ∗-closed set in X. By Theorem 3.9, 1X \B is fgγ∗-
closed set in X ⇒ B is fgγ∗-open set in X.
Theorem 3.11. Let (X, τ) be an fts and A ∈ IX . Then A is fgγ∗-
open set in X iff K ≤ γintA whenever K ≤ A and K ∈ FSC(X).
Proof. Let A(∈ IX) be fgγ∗-open set in X and K ≤ A where
K ∈ FSC(X). Then 1X \A ≤ 1X \K where 1X \A is fgγ∗-closed set
in X and 1X \K ∈ FSO(X). So γcl(1X \A) ≤ 1X \K ⇒ 1X \γintA ≤
1X \K ⇒ K ≤ γintA.

Conversely, let K ≤ γintA whenever K ≤ A, K ∈ FSC(X). Then
1X\A ≤ 1X\K ∈ FSO(X). Now 1X\γintA ≤ 1X\K ⇒ γcl(1X\A) ≤
1X \K ⇒ 1X \A is fgγ∗-closed set in X ⇒ A is fgγ∗-open set in X.
Theorem 3.12. Let (X, τ) be an fts and A(∈ IX). If A is fuzzy
semiopen set as well as fgγ∗-closed set in X, then A ∈ FγC(X).
Proof. Now A ≤ A ∈ FSO(X). By hypothesis, γclA ≤ A (as A is
fgγ∗-closed set in X) ⇒ A = γclA⇒ A ∈ FγC(X).

Similarly we can state the following theorem easily.
Theorem 3.13. Let (X, τ) be an fts and A(∈ IX) ∈ FRO(X) as well
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as A is fgγ∗-closed set in X, then A ∈ FγC(X).
Theorem 3.14. Let (X, τ) be an fts and A(∈ IX) be fgγ∗-closed set
in X and F ∈ FSC(X) with A 6 qF . Then γclA 6 qF .
Proof. Now A 6 qF ⇒ A ≤ 1X \ F ∈ FSO(X). By assumption,
γclA ≤ 1X \ F ⇒ γclA 6 qF .
Remark 3.15. The converse of Theorem 3.14 may not be true, in
general, as it seen from the following example.
Example 3.16. Let X = {a, b}, τ = {0X , 1X , A,B,C} where
A(a) = A(b) = 0.4, B(a) = 0.4, B(b) = 0.6, C(a) = 0.5, C(b) =
0.6. Then (X, τ) is an fts. Consider the fuzzy set D defined by
D(a) = 0.4, D(b) = 0.5. Now 1X \ C ∈ FSC(X) and D 6 q(1X \ C),
γclD = C 6 q(1X \ C). But D is not fgγ∗-closed set in X. Indeed,
D < B ∈ FSO(X) and γclD = C 6≤ B.
Definition 3.17. Let (X, τ) be an fts and xα, a fuzzy point in X. A
fuzzy set A is called a fuzzy generalized γ∗-neighbourhood (fgγ∗-nbd,
for short) of xα, if there exists an fgγ∗-open set U in X such that
xα ≤ U ≤ A. If, in addition, A is fgγ∗-open set in X, then A is called
an fgγ∗-open nbd of xα.
Definition 3.18. Let (X, τ) be an fts and xα, a fuzzy point in X. A
fuzzy set A is called a fuzzy generalized γ∗-quasi neighbourhood(fgγ∗-
q-nbd, for short) of xα if there is an fgγ∗-open set U in X such that
xαqU ≤ A. If, in addition, A is fgγ∗-open set in X, then A is called
an fgγ∗-open q-nbd of xα.
Note 3.19. It is clear from definitions that every fgγ∗-open set is
an fgγ∗-open nbd of each of its points. But every fgγ∗-nbd of xα
may not be an fgγ∗-open set containing xα as follows from the next
example.
Example 3.20. Consider Example 3.16 and the fuzzy set E defined
by E(a) = 0.6, E(b) = 0.5 and the fuzzy point a0.4. We claim that E
is an fgγ∗-nbd of a0.4 though E is not an fgγ∗-open set in X. Indeed,
(1X \E)(a) = 0.4, (1X \E)(b) = 0.5. Then as B ∈ τ , B ∈ FSO(X) ad
so 1X\E < B. Now γcl(1X\E) 6≤ B as no fuzzy set U , 1X\E ≤ U ≤ B
is fuzzy γ-closed set in X ⇒ 1X \ E is not fgγ∗-closed set in X ⇒ E
is not fgγ∗-open set in X. But as A(a) = 0.4, a0.4 ∈ A ∈ τ and since
every fuzzy open set being fuzzy γ-open set is fgγ∗-open set in X.
Also, a0.4 ∈ A ≤ E ⇒ E is an fgγ∗-nbd of a0.4.
Note 3.21. Every fuzzy open nbd (resp., open q-nbd) of a fuzzy point
xα is an fgγ∗-open nbd (resp., fgγ∗-open q-nbd) of xα, but converses
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are not true, in general, follow from the next example.
Example 3.22. Let X = {a, b}, τ = {0X , 1X , A} where A(a) =
0.5, A(b) = 0.4. Then (X, τ) is an fts. Consider the fuzzy point b0.45

and the fuzzy set B defined by B(a) = B(b) = 0.5. Clearly B is not a
fuzzy open nbd of b0.45. But as B ∈ FγO(X), B is fgγ∗-open nbd of
b0.45. Again consider the fuzzy point b0.6. Then B is not a fuzzy open
q-nbd of b0.6 as b0.6 6 qA ≤ B. But as b0.6qB where B is an fgγ∗-open
set in X ⇒ B is an fgγ∗-open q-nbd of b0.6.
Theorem 3.23. Let F (∈ IX) be an fgγ∗-closed set in an fts X with
xt ∈ 1X \ F . Then there exists an fgγ∗-nbd G of xt such that G 6 qF .
Proof. Let xt ∈ 1X \F where 1X \F be an fgγ∗-open set in X. Then
1X \ F is an fgγ∗-open nbd of xt. So by definition, there exists an
fgγ∗-open set G in X such that xt ∈ G ≤ 1X \F ⇒ G is an fgγ∗-nbd
of xt with G 6 qF .
Definition 3.24. The set of all fgγ∗-nbds of a fuzzy point xt
(0 < t ≤ 1) in an fts (X, τ) is called the fgγ∗-nbd system at xt,
denoted by fgγ∗-N(xt).
Theorem 3.25. For a fuzzy point xt in an fts (X, τ), the following
statements hold :
(i) fgγ∗-N(xt) 6= ∅,
(ii) G ∈ fgγ∗-N(xt)⇒ xt ∈ G,
(iii) G ∈ fgγ∗-N(xt) and F ≥ G⇒ F ∈ fgγ∗-N(xt),
(iv) F,G ∈ fgγ∗-N(xt)⇒ F

∧
G ∈ fgγ∗-N(xt),

(v) G ∈ fgγ∗-N(xt)⇒ there exists F ∈ fgγ∗-N(xt) such that F ≤ G
and F ∈ fgγ∗-N(yt′) for every yt′ ∈ F .
Proof. (i) Since 1X being an fgγ∗-open set is an fgγ∗-nbd of xt
(0 < t ≤ 1), fgγ∗-N(xt) 6= ∅.
(ii) and (iii) are obvious.
(iv) Since intersection of two fgγ∗-open sets is fgγ∗-open, (iv) is ob-
vious.
(v) Follows from Note 3.19 and Definition 3.24.
Theorem 3.26. Let xt be a fuzzy point in an fts (X, τ). Let fgγ∗-
N(xt) be a non-empty collection of fuzzy sets in X satisfying the
following conditions :
(1) G ∈ fgγ∗-N(xt)⇒ xt ∈ G,
(2) F,G ∈ fgγ∗-N(xt)⇒ F

∧
G ∈ fgγ∗-N(xt).

Let τ consist of 0X and all those non-empty fuzzy sets G of X having
the property that xt ∈ G⇒ there exists an F ∈ fgγ∗-N(xt) such that



24 ANJANA BHATTACHARYYA

xt ∈ F ≤ G. Then τ is a fuzzy topology on X.
Proof. (i) By hypothesis, 0X ∈ τ .
(ii) It is clear from the given property of τ that 1X ∈ τ as 1X ∈ fgγ∗-
N(xt) for any fuzzy point xt (0 < t ≤ 1) in an fts X (by (1)).
(iii) Let G1, G2 ∈ τ . If G1

∧
G2 = 0X , then by construction of τ ,

G1

∧
G2 ∈ τ . Suppose G1

∧
G2 6= 0X . Let xt ∈ G1

∧
G2 where

0 < t ≤ 1. Then G1(x) ≥ t, G2(x) ≥ t. Since G1, G2 ∈ τ , by defi-
nition of τ , there exist F1, F2 ∈ fgγ∗-N(xt) such that xt ∈ F1 ≤ G1,
xt ∈ F2 ≤ G2. Then xt ∈ F1

∧
F2 ≤ G1

∧
G2. By (2), F1

∧
F2 ∈ fgγ∗-

N(xt) and so G1

∧
G2 ∈ τ by construction of τ .

(iv) Let G = {Gα : α ∈ Λ} where Gα ∈ τ , for each α ∈ Λ. Let

xt ∈
∨
α∈Λ

Gα. Then there exists β ∈ Λ such that xt ∈ Gβ. By defini-

tion of τ , there exists Fβ ∈ fgγ∗-N(xt) such that xt ∈ Fβ ≤ Gβ ≤∨
α∈Λ

Gα ⇒
∨
α∈Λ

Gα ∈ τ .

It follows that τ is a fuzzy topology on X.

4. fgγ∗-Closure Operator and fgγ∗-Open, fgγ∗-Closed
Functions

In this section we first introduce a new type of generalized version of
fuzzy closure operator which is an idempotent operator. Afterwards,
two new types of functions are introduced and studied and character-
ized these two functions by this newly defined operator.
Definition 4.1. Let (X, τ) be an fts and A ∈ IX . Then fgγ∗-closure
and fgγ∗-interior of A, denoted by fgγ∗cl(A) and fgγ∗int(A), are
defined as follow:
fgγ∗cl(A) =

∧
{F : A ≤ F, F is fgγ∗-closed set in X},

fgγ∗int(A) =
∨
{G : G ≤ A,G is fgγ∗-open set in X}.

Remark 4.2. It is clear from definition that for any A ∈ IX ,
A ≤ fgγ∗cl(A) ≤ clA. If A is fgγ∗-closed set in an fts X, then
A = fgγ∗cl(A). Similarly, intA ≤ fgγ∗int(A) ≤ A. If A is fgγ∗-
open set in an fts X, then A = fgγ∗int(A). It follows from Remark
3.7 that fgγ∗cl(A) (resp., fgγ∗int(A)) may not be fgγ∗-closed (resp.,
fgγ∗-open) set in an fts X.
Result 4.3. Let (X, τ) be an fts and A ∈ IX . Then for a fuzzy point
xt in X, xt ∈ fgγ∗cl(A) iff every fgγ∗-open q-nbd U of xt, UqA.
Proof. Let xt ∈ fgγ∗cl(A) for any fuzzy set A in an fts X and F
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be any fgγ∗-open q-nbd of xt. Then xtqF ⇒ xt 6∈ 1X \ F which is
fgγ∗-closed set in X. Then by Definition 4.1, A 6≤ 1X \ F ⇒ there
exists y ∈ X such that A(y) > 1− F (y)⇒ AqF .

Conversely, let for every fgγ∗-open q-nbd F of xt, FqA. If possible,
let xt 6∈ fgγ∗cl(A). Then by Definition 4.1, there exists an fgγ∗-
closed set U in X with A ≤ U , xt 6∈ U . Then xtq(1X \ U) which
being fgγ∗-open set in X is fgγ∗-open q-nbd of xt. By assumption,
(1X \ U)qA⇒ (1X \ A)qA, a contradiction.
Theorem 4.4. Let (X, τ) be an fts and A,B ∈ IX . Then the follow-
ing statements are true:
(i) fgγ∗cl(0X) = 0X ,
(ii) fgγ∗cl(1X) = 1X ,
(iii) A ≤ B ⇒ fgγ∗cl(A) ≤ fgγ∗cl(B),
(iv) fgγ∗cl(A

∨
B) = fgγ∗cl(A)

∨
fgγ∗cl(B),

(v) fgγ∗cl(A ∧ B) ≤ fgγ∗cl(A) ∧ fgγ∗cl(B), equality does not hold,
in general, follows from Example 3.8,
(vi) fgγ∗cl(fgγ∗cl(A)) = fgγ∗cl(A).
Proof. (i), (ii) and (iii) are obvious.
(iv) From (iii), fgγ∗cl(A)

∨
fgγ∗cl(B) ≤ fgγ∗cl(A

∨
B).

To prove the converse, let xα ∈ fgγ∗cl(A
∨
B). Then by Result

4.3, for any fgγ∗-open set U in X with xαqU , Uq(A
∨
B) ⇒ there

exists y ∈ X such that U(y) + max{A(y), B(y)} > 1 ⇒ either
U(y) +A(y) > 1 or U(y) +B(y) > 1⇒ either UqA or UqB ⇒ either
xα ∈ fgγ∗cl(A) or xα ∈ fgγ∗cl(B)⇒ xα ∈ fgγ∗cl(A)

∨
fgγ∗cl(B).

(v) Follows from (iii).
(vi) As A ≤ fgγ∗cl(A), for any A ∈ IX , fgγ∗cl(A) ≤
fgγ∗cl(fgγ∗cl(A)) (by (iii)).

Conversely, let xα ∈ fgγ∗cl(fgγ∗cl(A)) = fgγ∗cl(B) where B =
fgγ∗cl(A). Let U be any fgγ∗-open set in X with xαqU . Then
UqB implies that there exists y ∈ X such that U(y) + B(y) > 1.
Let B(y) = t. Then ytqU and yt ∈ B = fgγ∗cl(A) ⇒ UqA
⇒ xα ∈ fgγ∗cl(A)⇒ fgγ∗cl(fgγ∗cl(A)) ≤ fgγ∗cl(A). Consequently,
fgγ∗cl(fgγ∗cl(A)) = fgγ∗cl(A).
Theorem 4.5. Let (X, τ) be an fts and A ∈ IX . Then the following
statements hold:
(i) fgγ∗cl(1X \ A) = 1X \ fgγ∗int(A)
(ii) fgγ∗int(1X \ A) = 1X \ fgγ∗cl(A).
Proof (i). Let xt ∈ fgγ∗cl(1X \ A) for a fuzzy set A in an fts (X, τ).
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If possible, let xt 6∈ 1X \ fgγ∗int(A). Then 1 − (fgγ∗int(A))(x) <
t ⇒ [fgγ∗int(A)](x) + t > 1 ⇒ fgγ∗int(A)qxt ⇒ there exists
at least one fgγ∗-open set F ≤ A with xtqF ⇒ xtqA. As xt ∈
fgγ∗cl(1X \ A), F q(1X \ A)⇒ Aq(1X \ A), a contradiction. Hence

fgγ∗cl(1X \ A) ≤ 1X \ fgγ∗int(A)...(1)

Conversely, let xt ∈ 1X \ fgγ∗int(A). Then 1− [(fgγ∗int(A)](x) ≥
t⇒ xt 6 q(fgγ∗int(A))⇒ xt 6 qF for every fgγ∗-open set F contained
in A ... (2).
Let U be any fgγ∗-closed set in X such that 1X \ A ≤ U . Then
1X \ U ≤ A. Now 1X \ U is fgγ∗-open set in X contained in A. By
(2), xt 6 q(1X \ U)⇒ xt ∈ U ⇒ xt ∈ fgγ∗cl(1X \ A) and so

1X \ fgγ∗int(A) ≤ fgγ∗cl(1X \ A)...(3).

Combining (1) and (3), (i) follows.
(ii) Putting 1X \A for A in (i), we get fgγ∗cl(A) = 1X \ fgγ∗int(1X \
A)⇒ fgγ∗int(1X \ A) = 1X \ fgγ∗cl(A).

Let us now recall the following definition from [18] for ready refer-
ences.
Definition 4.6 [18]. A function f : X → Y is called fuzzy open
(resp., fuzzy closed) if f(U) is fuzzy open (resp., fuzzy closed) set in
Y for every fuzzy open (resp., fuzzy closed) set U in X.

Let us now introduce the following concept.
Definition 4.7. A function h : X → Y is called fuzzy generalized
γ∗-open (fgγ∗-open, for short) function if h(U) is fgγ∗-open set in Y
for every fuzzy open set U in X.
Remark 4.8. It is clear that fuzzy open function is fgγ∗-open func-
tion. But the converse need not be true, as it seen from the following
example.
Example 4.9. fgγ∗-open function does not imply fuzzy open func-
tion
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X} where A(a) =
0.4, A(b) = 0.6. Then (X, τ1) and (X, τ2) are fts’s. Consider the iden-
tity function i : (X, τ1) → (X, τ2). Since every fuzzy set in (X, τ2) is
fgγ∗-open set in (X, τ2), clearly i is fgγ∗-open function. But A ∈ τ1,
i(A) = A 6∈ τ2 ⇒ i is not a fuzzy open function.
Theorem 4.10. For a bijective function h : X → Y , the following
statements are equivalent:
(i) h is fgγ∗-open,
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(ii) h(intA) ≤ fgγ∗int(h(A)), for all A ∈ IX ,
(iii) for each fuzzy point xα in X and each fuzzy open set U in X
containing xα, there exists an fgγ∗-open set V in Y containing h(xα)
such that V ≤ h(U).
Proof (i) ⇒ (ii). Let A ∈ IX . Then intA is a fuzzy open set in X.
By (i), h(intA) is fgγ∗-open set in Y . Since h(intA) ≤ h(A) and
fgγ∗int(h(A)) is the union of all fgγ∗-open sets contained in h(A),
we have h(intA) ≤ fgγ∗int(h(A)).
(ii)⇒ (i). Let U be any fuzzy open set in X. Then h(U) = h(intU) ≤
fgγ∗int(h(U)) (by (ii)) ⇒ h(U) is fgγ∗-open set in Y ⇒ h is fgγ∗-
open function.
(ii) ⇒ (iii). Let xα be a fuzzy point in X, and U , a fuzzy open set in
X such that xα ∈ U . Then h(xα) ∈ h(U) = h(intU) ≤ fgγ∗int(h(U))
(by (ii)). Then h(U) is fgγ∗-open set in Y . Let V = h(U). Then
h(xα) ∈ V and V ≤ h(U).
(iii) ⇒ (i). Let U be any fuzzy open set in X and yα, any fuzzy
point in h(U), i.e., yα ∈ h(U). Then there exists unique x ∈ X
such that h(x) = y (as h is bijective). Then [h(U)](y) ≥ α ⇒
U(h−1(y)) ≥ α ⇒ U(x) ≥ α ⇒ xα ∈ U . By (iii), there ex-
ists fgγ∗-open set V in Y such that h(xα) ∈ V and V ≤ h(U).
Then h(xα) ∈ V = fgγ∗int(V ) ≤ fgγ∗int(h(U)). Since yα is
taken arbitrarily and h(U) is the union of all fuzzy points in h(U),
h(U) ≤ fgγ∗int(f(U))⇒ h(U) is fgγ∗-open set in Y ⇒ h is an fgγ∗-
open function.
Theorem 4.11. If h : X → Y is fgγ∗-open, bijective function, then
the following statements are true:
(i) for each fuzzy point xα in X and each fuzzy open q-nbd U of xα
in X, there exists an fgγ∗-open q-nbd V of h(xα) in Y such that
V ≤ h(U),
(ii) h−1(fgγ∗cl(B)) ≤ cl(h−1(B)), for all B ∈ IY .
Proof (i). Let xα be a fuzzy point inX and U be any fuzzy open q-nbd
of xα in X. Then xαqU = intU ⇒ h(xα)qh(intU) ≤ fgγ∗int(h(U))
(by Theorem 4.10 (i)⇒(ii)) implies that there exists at least one fgγ∗-
open q-nbd V of h(xα) in Y with V ≤ h(U).
(ii) Let xα be any fuzzy point in X such that xα 6∈ cl(h−1(B)) for any
B ∈ IY . Then there exists a fuzzy open q-nbd U of xα in X such that
U 6 qh−1(B). Now

h(xα)qh(U)...(1)
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where h(U) is fgγ∗-open set in Y . Now h−1(B) ≤ 1X \ U which
is a fuzzy closed set in X ⇒ B ≤ h(1X \ U) (as h is injective) ≤
1Y \ h(U) ⇒ B 6 qh(U). Let V = 1Y \ h(U). Then B ≤ V which
is fgγ∗-closed set in Y . We claim that h(xα) 6∈ V . If possible, let
h(xα) ∈ V = 1Y \ h(U). Then 1− [h(U)](h(x)) ≥ α ⇒ h(U) 6 qh(xα),
contradicting (1). So h(xα) 6∈ V ⇒ h(xα) 6∈ fgγ∗cl(B) ⇒ xα 6∈
h−1(fgγ∗cl(B))⇒ h−1(fgγ∗cl(B)) ≤ cl(h−1(B)).
Theorem 4.12. An injective function h : X → Y is fgγ∗-open if
and only if for each B ∈ IY and F , a fuzzy closed set in X with
h−1(B) ≤ F , there exists an fgγ∗-closed set V in Y such that B ≤ V
and h−1(V ) ≤ F .
Proof. Let B ∈ IY and F , a fuzzy closed set in X with h−1(B) ≤ F .
Then 1X \ h−1(B) ≥ 1X \ F where 1X \ F is a fuzzy open set in
X ⇒ h(1X \ F ) ≤ h(1X \ h−1(B)) ≤ 1Y \ B (as h is injective) where
h(1X \ F ) is an fgγ∗-open set in Y . Let V = 1Y \ h(1X \ F ). Then
V is fgγ∗-closed set in Y such that B ≤ V . Now h−1(V ) = h−1(1Y \
h(1X \ F )) = 1X \ h−1(h(1X \ F )) ≤ F .

Conversely, let F be a fuzzy open set in X. Then 1X \ F is a fuzzy
closed set in X. We have to show that h(F ) is an fgγ∗-open set in
Y . Now h−1(1Y \ h(F )) ≤ 1X \ F (as h is injective). By assumption,
there exists an fgγ∗-closed set V in Y such that

1Y \ h(F ) ≤ V...(1)

and h−1(V ) ≤ 1X \ F . Therefore, F ≤ 1X \ h−1(V ) implies that

h(F ) ≤ h(1X \ h−1(V )) ≤ 1Y \ V...(2)

(as h is injective). Combining (1) and (2), h(F ) = 1Y \ V which is an
fgγ∗-open set in Y . Hence h is fgγ∗-open function.
Definition 4.13. A function h : X → Y is called fuzzy generalized
γ∗-closed (fgγ∗-closed, for short) function if h(A) is fgγ∗-closed set
in Y for each fuzzy closed set A in X.
Remark 4.14. It is obvious that every fuzzy closed function is fgγ∗-
closed function, but the converse may not be true as it follows from
Example 4.9. Here 1X \ A ∈ τ c1 , but i(1X \ A) = 1X \ A 6∈ τ c2 ⇒ i
is not a fuzzy closed function. But since every fuzzy set in (X, τ2) is
fgγ∗-closed set in (X, τ2), clearly i is fgγ∗-closed function.
Theorem 4.15. A bijective function h : X → Y is fgγ∗-closed if and
only if fgγ∗cl(h(A)) ≤ h(clA), for all A ∈ IX .
Proof. Let us suppose that h : X → Y be an fgγ∗-closed function and
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A ∈ IX . Then h(cl(A)) is fgγ∗-closed set in Y . Since h(A) ≤ h(clA)
and fgγ∗cl(h(A)) is the intersection of all fgγ∗-closed sets in Y con-
taining h(A), we have fgγ∗cl(h(A)) ≤ h(clA).

Conversely, let for any A ∈ IX , fgγ∗cl(h(A)) ≤ h(clA). Let U be
any fuzzy closed set in X. Then h(U) = h(clU) ≥ fgγ∗cl(h(U)) ⇒
h(U) is an fgγ∗-closed set in Y ⇒ h is an fgγ∗-closed function.
Theorem 4.16. If h : X → Y is an fgγ∗-closed bijective function,
then the following statements hold:
(i) for each fuzzy point xα in X and each fuzzy closed set U in X with
xα 6 qU , there exists an fgγ∗-closed set V in Y with h(xα) 6 qV such
that V ≥ h(U),
(ii) h−1(fgγ∗int(B)) ≥ int(h−1(B)), for all B ∈ IY .
Proof (i). Let xα be a fuzzy point in X and U be any fuzzy closed
set in X with xα 6 qU = clU ⇒ h(xα) 6 qh(clU) ≥ fgγ∗cl(h(U)) (by
Theorem 4.15) ⇒ h(xα) 6 qV for some fgγ∗-closed set V in Y with
V ≥ h(U).
(ii). Let B ∈ IY and xα be any fuzzy point in X such that
xα ∈ int(h−1(B)). Then there exists a fuzzy open set U in X with
U ≤ h−1(B) such that xα ∈ U . Then 1X \ U ≥ 1X \ h−1(B) ⇒
h(1X \ U) ≥ h(1X \ h−1(B)) where h(1X \ U) is an fgγ∗-closed set in
Y . Let V = 1Y \ h(1X \ U). Then V is an fgγ∗-open set in Y and
V = 1Y \ h(1X \ U) ≤ 1Y \ h(1X \ h−1(B)) ≤ 1Y \ (1Y \ B) = B (as
h is injective). Now U(x) ≥ α ⇒ xα 6 q(1X \ U) ⇒ h(xα) 6 qh(1X \ U)
⇒ h(xα) ≤ 1Y \ h(1X \ U) = V ⇒ h(xα) ∈ V = fgγ∗int(V ) ≤
fgγ∗int(B) ⇒ xα ∈ h−1(fgγ∗int(B)). Since xα is taken arbitrarily,
int(h−1(B)) ≤ h−1(fgγ∗int(B)), for all B ∈ IY .
Remark 4.17. Composition of two fgγ∗-closed (resp., fgγ∗-open)
functions need not be so, as it seen from the following example.
Example 4.18. Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X},
τ3 = {0X , 1X , B, C,D} where A(a) = 0.6, A(b) = 0.5, B(a) =
B(b) = 0.4, C(a) = 0.4, C(b) = 0.6, D(a) = 0.5, D(b) = 0.6. Then
(X, τ1), (X, τ2) and (X, τ3) are fts’s. Consider two identity functions
i1 : (X, τ1) → (X, τ2) and i2 : (X, τ2) → (X, τ3). Clearly i1 and i2 are
fgγ∗-closed functions. Let i3 = i2 ◦ i1 : (X, τ1) → (X, τ3). We claim
that i3 is not fgγ∗-closed function. Indeed, 1X \A ∈ τ c1 , i3(1X \A) =
1X \ A < C ∈ FSO(X, τ3). But γclτ3(1X \ A) = D 6≤ C ⇒ 1X \ A is
not fgγ∗-closed set in (X, τ3) ⇒ i3 is not fgγ∗-closed function.

Similarly we can show that i3 is not fgγ∗-open function though i1
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and i2 are fgγ∗-open functions.
Theorem 4.19. If h1 : X → Y is fuzzy closed (resp., fuzzy open)
function and h2 : Y → Z is fgγ∗-closed (resp., fgγ∗-open) function,
then h2 ◦ h1 : X → Z is fgγ∗-closed (resp., fgγ∗-open) function.
Proof. Obvious.

We now recall the following definitions from [3, 5, 6, 7] for ready
references.
Definition 4.20. Let (X, τ1)→ (Y, τ2) be a function. Then h is called
an
(i) fg-closed function [3] if h(A) is fg-closed set in Y for every A ∈ τ c1 ,
(ii) fsg-closed function [3] if h(A) is fsg-closed set in Y for every
A ∈ τ c1 ,
(iii) fgβ-closed function [6] if h(A) is fgβ-closed set in Y for every
A ∈ τ c1 ,
(iv) fgs∗-closed function [5] if h(A) is fgs∗-closed set in Y for every
A ∈ τ c1 ,
(v) fgγ-closed function [7] if h(A) is fgγ-closed set in Y for every
A ∈ τ c1 .
Remark 4.21. It is obvious that
(i) fgγ∗-closed function is fgβ-closed function as well as fgγ-closed
function,
(ii) fsg-closed function is fgγ∗-closed function,
(iii) fgs∗-closed function is fgγ∗-closed function.
But the converses are not true, in general, follow from the following
examples.
Also (iv) fg-closed function and fgγ∗-closed function are independent
concepts follow from the following examples.
Example 4.22. None of fg-closed function, fgβ-closed function,
fgγ-closed function implies fgγ∗-closed function
Let X = {a}, τ1 = {0X , 1X , C}, τ2 = {0X , 1X , A,B} where A(a) =
0.45, B(a) = 0.6, C(a) = 0.3. Then (X, τ1) and (X, τ2) are fts’s. Con-
sider the identity function i : (X, τ1) → (X, τ2). Now 1X \ C ∈ τc1,
i(1X \ C) = 1X \ C ∈ FSO(X, τ2) as FSO(X, τ2) = {0X , 1X , U, V }
where A ≤ U ≤ 1X \A, V ≥ B and FγO(X, τ2) = {0X , 1X ,W} where
W > 1X \B and FγC(X, τ2) = {0X , 1X , 1X \W} where 1X \W < B.
So γclτ2(1X \ C) = 1X 6≤ 1X \ C ⇒ 1X \ C is not fgγ∗-closed set in
(X, τ2) ⇒ i is not fgγ∗-closed function. Now 1X \ C < 1X ∈ τ2 only
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and so clτ2(1X \C) ≤ 1X ⇒ 1X \C is fg-closed set in (X, τ2)⇒ i is fg-
closed function. Also γclτ2(1X \C) = 1X ⇒ 1X \C is fgγ-closed set in
(X, τ2)⇒ i is fgγ-closed function. Again βclτ2(1X \C) ≤ 1X ⇒ 1X \C
is fgβ-closed set in (X, τ2)⇒ i is fgβ-closed function.
Example 4.23. None of fg-closed function, fsg-closed function,
fgs∗-closed function is implied by fgγ∗-closed function
Let X = {a}, τ1 = {0X , 1X , C}, τ2 = {0X , 1X , A,B} where
A(a) = 0.45, B(a) = 0.6, C(a) = 0.44. Then (X, τ1) and (X, τ2)
are fts’s. Consider the identity function i : (X, τ1) → (X, τ2). Now
FSO(X, τ2) = {0X , 1X , U, V } where A ≤ U ≤ 1X \ A, V ≥ B.
Here 1X \ C ∈ τ c1 , i(1X \ C) = 1X \ C < V ∈ FSO(X, τ2). Then
γclτ2(1X \C) = 1X \C < V ⇒ 1X \C is fgγ∗-closed set in (X, τ2)⇒ i
is fgγ∗-closed function. But sclτ2(1X \ C) = 1X 6≤ V ⇒ 1X \ C
is not fsg-closed set in (X, τ2) ⇒ i is not fsg-closed function.
Again clτ2(1X \ C) = 1X 6≤ V ⇒ 1X \ C is not fgs∗-closed set in
(X, τ2) ⇒ i is not fgs∗-closed function.. Also 1X \ C < B ∈ τ2, but
clτ2(1X \C) = 1X 6≤ B ⇒ 1X \C is not fg-closed set in (X, τ2)⇒ i is
not fg-closed function.

5. fgγ∗-Regular, fgγ∗-Normal and fgγ∗-Compact Spaces

In this section two new types of separation axioms are introduced
and characterized by fgγ∗-closed set. Also, a new type of fuzzy com-
pactness is introduced.
Definition 5.1. An fts (X, τ) is said to be fgγ∗-regular space if for
any fuzzy point xt in X and each fgγ∗-closed set F in X with xt 6∈ F ,
there exist U, V ∈ FγO(X) such that xt ∈ U, F ≤ V and U 6 qV .
Theorem 5.2. In an fts (X, τ), the following statements are equiva-
lent:
(i) X is fgγ∗-regular,
(ii) for each fuzzy point xt in X and any fgγ∗-open q-nbd U of xt,
there exists V ∈ FγO(X) such that xt ∈ V and γclV ≤ U ,
(iii) for each fuzzy point xt in X and each fgγ∗-closed set A of X with
xt 6∈ A, there exists U ∈ FγO(X) with xt ∈ U such that γclU 6 qA.
Proof (i) ⇒ (ii). Let xt be a fuzzy point in X and U , any fgγ∗-open
q-nbd of xt. Then xtqU ⇒ U(x) + t > 1 ⇒ xt 6∈ 1X \ U which is an
fgγ∗-closed set in X. By (i), there exist V,W ∈ FγO(X) such that
xt ∈ V, 1X \ U ≤ W and V 6 qW . Then V ≤ 1X \ W ⇒ γclV ≤
γcl(1X \W ) = 1X \W ≤ U .
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(ii) ⇒ (iii). Let xt be a fuzzy point in X and A, an fgγ∗-closed set in
X with xt 6∈ A. Then A(x) < t⇒ xtq(1X \A) which being fgγ∗-open
set in X is fgγ∗-open q-nbd of xt. So by (ii), there exists V ∈ FγO(X)
such that xt ∈ V and γclV ≤ 1X \ A. Then γclV 6 qA.
(iii) ⇒ (i). Let xt be a fuzzy point in X and F be any fgγ∗-closed
set in X with xt 6∈ F . Then by (iii), there exists U ∈ FγO(X) such
that xt ∈ U and γclU 6 qF . Then F ≤ 1X \ γclU (=V , say). So
V ∈ FγO(X) and V 6 qU as U 6 q(1X \ γclU). Consequently, X is
fgγ∗-regular space.
Definition 5.3. An fts (X, τ) is called fgγ∗-normal space if for
each pair of fgγ∗-closed sets A,B in X with A 6 qB, there exist
U, V ∈ FγO(X) such that A ≤ U,B ≤ V and U 6 qV .
Theorem 5.4. An fts (X, τ) is fgγ∗-normal space if and only if for
every fgγ∗-closed set F and fgγ∗-open set G in X with F ≤ G, there
exists H ∈ FγO(X) such that F ≤ H ≤ γclH ≤ G.
Proof. Let X be fgγ∗-normal space and let F be fgγ∗-closed set and
G be fgγ∗-open set in X with F ≤ G. Then F 6 q(1X \G) where 1X \G
is fgγ∗-closed set in X. By hypothesis, there exist H,T ∈ FγO(X)
such that F ≤ H, 1X \ G ≤ T and H 6 qT . Then H ≤ 1X \ T ≤ G.
Therefore, F ≤ H ≤ γclH ≤ γcl(1X \ T ) = 1X \ T ≤ G.

Conversely, let A,B be two fgγ∗-closed sets in X with A 6 qB.
Then A ≤ 1X \ B. By hypothesis, there exists H ∈ FγO(X) such
that A ≤ H ≤ γclH ≤ 1X \ B ⇒ A ≤ H,B ≤ 1X \ γclH (=V , say).
Then V ∈ FγO(X) and so B ≤ V . Also as H 6 q(1X \ γclH), H 6 qV .
Consequently, X is fgγ∗-normal space.

We first recall the following definitions from [1, 8, 12, 10, 3] for ready
references.
Definition 5.5. Let (X, τ) be an fts and A ∈ IX . A collection U of
fuzzy sets in X is called a fuzzy cover of A if

⋃
U ≥ A [12]. If each

member of U is fuzzy open (resp., fuzzy regular open, fuzzy γ-open)
in X, then U is called a fuzzy open [12] (resp., fuzzy regular open [1],
fuzzy γ-open [4]) cover of A. If, in particular, A = 1X , we get the
definition of fuzzy cover of X as

⋃
U = 1X [8].

Definition 5.6. Let (X, τ) be an fts and A ∈ IX . Then a fuzzy cover
U of A (resp., of X) is said to have a finite subcover U0 if U0 is a finite
subcollection of U such that

⋃
U0 ≥ A [12]. If, in particular A = 1X ,

we get
⋃
U0 = 1X [8].

Definition 5.7. Let (X, τ) be an fts and A ∈ IX . Then A is called
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fuzzy compact [8] (resp., fuzzy almost compact [9], fuzzy nearly com-
pact [15], fuzzy γ-compact [4]) set if every fuzzy open (resp., fuzzy
open, fuzzy regular open, fuzzy γ-open) cover U of A has a finite sub-

collection U0 such that
⋃
U0 ≥ A (resp.,

⋃
U∈U0

clU ≥ A,
⋃
U0 ≥ A,⋃

U0 ≥ A). If, in particular, A = 1X , we get the definition of fuzzy
compact [8] (resp., fuzzy almost compact [9], fuzzy nearly compact

[10], fuzzy γ-compact [4]) space as
⋃
U0 = 1X (resp.,

⋃
U∈U0

clU = 1X ,⋃
U0 = 1X ,

⋃
U0 = 1X).

Let us now introduce the following concept.
Definition 5.8. Let (X, τ) be an fts and A ∈ IX . Then A is called
fgγ∗-compact if every fuzzy cover U of A by fgγ∗-open sets of X has
a finite subcover. If, in particular, A = 1X , we get the definition of
fgγ∗-compact space X.
Theorem 5.9. Every fgγ∗-closed set in an fgγ∗-compact space X is
fgγ∗-compact.
Proof. Let A(∈ IX) be an fgγ∗-closed set in an fgγ∗-compact space
X. Let U be a fuzzy cover of A by fgγ∗-open sets of X. Then
V = U

⋃
(1X \ A) is a fuzzy cover of X by fgγ∗-open sets of X. As

X is fgγ∗-compact space, V has a finite subcollection V0 which also
covers X. If V0 contains 1X \ A, we omit it and get a finite subcover
of A. Hence A is fgγ∗-compact set.
Remark 5.10. It is clear from definitions that fgγ∗-compact space
is fuzzy compact (resp., fuzzy almost compact, fuzzy nearly compact,
fuzzy γ-compact) space.

6. fgγ∗-Continuous and fgγ∗-Irresolute Functions

After the introduction of fuzzy continuity [8] different types of gener-
alized version of fuzzy continuous-like functions have been introduced
and studied in [3, 5, 6, 7]. Here a new type of generalized version
of fuzzy continuous-like function is introduced which is more general
than the notion of fuzzy continuous function. Then it is proved that
fgγ∗-continuous image of an fgγ∗-regular (resp., fgγ∗-normal, fgγ∗-
compact) space is fuzzy regular [14] (resp., fuzzy normal [13], fuzzy
compact [8], fuzzy almost compact [9], fuzzy nearly compact [10])
space. Again a new type of generalized version of fuzzy irresolute func-
tion, viz., fgγ∗-irresolute function is introduced and studied which is
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strictly weaker than that of fgγ-continuous function and independent
concept of fuzzy continuous function. But it is shown that under fgγ∗-
irresolute function fgγ∗-regularity, fgγ∗-normality, fgγ∗-compactness
remain invariant.

Let us first recall the following definitions from [4, 8, 14, 13] for
ready references.
Definition 6.1 [8]. A function h : X → Y is said to be fuzzy contin-
uous function if h−1(V ) is fuzzy open set in X for every fuzzy open
set V in Y .
Definition 6.2 [4]. A function f : X → Y is said to be fuzzy γ-open
if f(U) is fuzzy γ-open set in Y for every fuzzy γ-open set U in X.
Definition 6.3 [4]. An fts (X, τ) is called fTγ-space if every fuzzy
γ-open set in X is fuzzy open set in X.
Definition 6.4 [14]. An fts (X, τ) is called fuzzy regular space if for
any fuzzy point xα in X and any fuzzy closed set F in X with xα 6∈ F ,
there exist fuzzy open sets U, V in X such that xα ∈ U, F ≤ V and
U 6 qV .
Definition 6.5 [13]. An fts (X, τ) is called fuzzy normal space if for
each pair of fuzzy closed sets A,B in X with A 6 qB, there exist fuzzy
open sets U, V in X such that A ≤ U,B ≤ V and U 6 qV .

Now we introduce the following concept.
Definition 6.6. A function h : X → Y is said to be fgγ∗-continuous
function if h−1(V ) is fgγ∗-closed set in X for every fuzzy closed set V
in Y .
Remark 6.7. Since every fuzzy closed set is fuzzy γ-closed set, it
is clear that fuzzy continuous function is fgγ∗-continuous, but the
converse need not be true, in general, as it seen from the following
example.
Example 6.8. fgγ∗-continuity does not imply fuzzy continuity.
Let X = {a, b}, τ1 = {0X , 1X}, τ2 = {0X , 1X , A} where A(a) = A(b) =
0.5. Then (X, τ1) and (X, τ2) are fts’s. Consider the identity function
i : (X, τ1) → (X, τ2). Since every fuzzy set in (X, τ1) is fgγ∗-closed
set in (X, τ1), so clearly i is fgγ∗-continuous function. But A ∈ τ2,
i−1(A) = A 6∈ τ1 ⇒ i is not a fuzzy continuous function.
Theorem 6.9. Let h : (X, τ) → (Y, σ) be a function. Then the fol-
lowing statements are equivalent:
(i) h is fgγ∗-continuous function,
(ii) for each fuzzy point xα in X and each fuzzy open nbd V of h(xα) in
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Y , there exists an fgγ∗-open nbd U of xα in X such that h(U) ≤ V ,
(iii) h(fgγ∗cl(A)) ≤ cl(h(A)), for all A ∈ IX ,
(iv) fgγ∗cl(h−1(B)) ≤ h−1(clB), for all B ∈ IY .
Proof (i)⇒ (ii). Let xα be a fuzzy point in X and V , any fuzzy open
nbd of h(xα) in Y . Then xα ∈ h−1(V ) which is fgγ∗-open in X (by
(i)). Let U = h−1(V ). Then h(U) = h(h−1(V )) ≤ V .
(ii)⇒ (i). Let A be any fuzzy open set in Y and xα, a fuzzy point in X
such that xα ∈ h−1(A). Then h(xα) ∈ A where A is a fuzzy open nbd
of h(xα) in Y . By (ii), there exists an fgγ∗-open nbd U of xα in X such
that h(U) ≤ A. Then xα ∈ U ≤ h−1(A) ⇒ xα ∈ U = fgγ∗int(U) ≤
fgγ∗int(h−1(A)). Since xα is taken arbitrarily and h−1(A) is the union
of all fuzzy points in h−1(A), h−1(A) ≤ fgγ∗int(h−1(A))⇒ h−1(A) is
an fgγ∗-open set in X ⇒ h is an fgγ∗-continuous function.
(i) ⇒ (iii). Let A ∈ IX . Then cl(h(A)) is a fuzzy closed
set in Y . By (i), h−1(cl(h(A))) is fgγ∗-closed set in X.
Now A ≤ h−1(h(A)) ≤ h−1(cl(h(A))) and so fgγ∗cl(A) ≤
fgγ∗cl(h−1(cl(h(A)))) = h−1(cl(h(A)))⇒ h(fgγ∗cl(A)) ≤ cl(h(A)).
(iii) ⇒ (i). Let V be a fuzzy closed set in Y . Put U = h−1(V ). Then
U ∈ IX . By (iii), h(fgγ∗cl(U)) ≤ cl(h(U)) = cl(h(h−1(V ))) ≤ clV =
V ⇒ fgγ∗cl(U) ≤ h−1(V ) = U ⇒ U is fgγ∗-closed set in X ⇒ h is
fgγ∗-continuous function.
(iii) ⇒ (iv). Let B ∈ IY and A = h−1(B). Then A ∈ IX . By (iii),
h(fgγ∗cl(A)) ≤ cl(h(A)) ⇒ h(fgγ∗cl(h−1(B))) ≤ cl(h(h−1(B))) ≤
clB ⇒ fgγ∗cl(h−1(B)) ≤ h−1(clB).
(iv) ⇒ (iii). Let A ∈ IX . Then h(A) ∈ IY . By
(iv), fgγ∗cl(h−1(h(A))) ≤ h−1(cl(h(A))) ⇒ fgγ∗cl(A) ≤
fgγ∗cl(h−1(h(A))) ≤ h−1(cl(h(A)))⇒ h(fgγ∗cl(A)) ≤ cl(h(A)).
Remark 6.10. A composition of two fgγ∗-continuous functions need
not be so, as it seen from the following example.
Example 6.11. Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X},
τ3 = {0X , 1X , B} where A(a) = 0.4, A(b) = 0.7, B(a) = 0.6, B(b) =
0.3. Then (X, τ1), (X, τ2) and (X, τ3) are fts’s. Consider two iden-
tity functions i1 : (X, τ1) → (X, τ2) and i2 : (X, τ2) → (X, τ3). Then
clearly i1 and i2 are fgγ∗-continuous functions. Now 1X \B ∈ τ c3 . So
(i2 ◦ i1)−1(1X \B) = 1X \B ≤ A ∈ FSO(X, τ1). But γclτ1(1X \B) =
1X 6≤ A⇒ 1X \ B is not fgγ∗-closed set in (X, τ1)⇒ i2 ◦ i1 is not an
fgγ∗-continuous function.
Theorem 6.12. If h1 : X → Y is fgγ∗-continuous function and
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h2 : Y → Z is fuzzy continuous function, then h2 ◦ h1 : X → Z is
fgγ∗-continuous function.
Proof. Obvious.
Theorem 6.13. If a bijective function h : X → Y is fgγ∗-continuous,
fuzzy open function from an fgγ∗-regular, fTγ-space X onto an fts Y ,
then Y is fuzzy regular space.
Proof. Let yα be a fuzzy point in Y and F , a fuzzy closed set in Y
with yα 6∈ F . As h is bijective, there exists unique x ∈ X such that
h(x) = y. So h(xα) 6∈ F ⇒ xα 6∈ h−1(F ) where h−1(F ) is fgγ∗-closed
set in X (as h is an fgγ∗-continuous function). By hypothesis, there
exist U, V ∈ FγO(X) such that xα ∈ U, h−1(F ) ≤ V and U 6 qV .
Then h(xα) ∈ h(U), F = h(h−1(F )) (as h is bijective)≤ h(V ) and
h(U) 6 qh(V ). Since X is fTγ-space, U, V are fuzzy open sets in
X. Now as h is a fuzzy open function, h(U), h(V ) are fuzzy open
sets in Y with yα ∈ h(U), F ≤ h(V ) and h(U) 6 qh(V ) (Indeed,
h(U)qh(V ) ⇒ there exists z ∈ Y such that [h(U)](z) + [h(V )](z) >
1⇒ U(h−1(z)) +V (h−1(z)) > 1 as h is bijective⇒ UqV , a contradic-
tion). Hence Y is a fuzzy regular space.

In a similar manner we can prove the following theorems easily.
Theorem 6.14. If a bijective function h : X → Y is fgγ∗-continuous,
fuzzy open function from an fgγ∗-normal, fTγ-space X onto an fts Y ,
then Y is fuzzy normal space.
Theorem 6.15. If a bijective function h : X → Y is fgγ∗-continuous,
fuzzy γ-open function from an fgγ∗-regular (resp., fgγ∗-normal) space
X onto an fTγ-space Y , then Y is fuzzy regular (resp., fuzzy normal)
space.
Definition 6.16. A function h : X → Y is called fuzzy generalized
γ∗-irresolute (fgγ∗-irresolute, for short) function if h−1(U) is an fgγ∗-
open set in X for every fgγ∗-open set U in Y .

Now we state the following two theorems for which the proofs are
very similar to that of Theorem 6.13.
Theorem 6.17. If a bijective function h : X → Y is fgγ∗-irresolute,
fuzzy γ-open function from an fgγ∗-regular (resp., fgγ∗-normal) space
X onto an fts Y , then Y is an fgγ∗-regular (resp., fgγ∗-normal) space.
Theorem 6.18. If a bijective function h : X → Y is fgγ∗-irresolute,
fuzzy open function from an fgγ∗-regular (resp., fgγ∗-normal), fTγ-
space X onto an fts Y , then Y is fgγ∗-regular (resp., fgγ∗-normal)
space.
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Theorem 6.19. A function h : X → Y is fgγ∗-irresolute function if
and only if for each fuzzy point xα in X and each fgγ∗-open nbd V
in Y of h(xα), there exists an fgγ∗-open nbd U in X of xα such that
h(U) ≤ V .
Proof. Let h : X → Y be an fgγ∗-irresolute function. Let xα be a
fuzzy point in X and V be any fgγ∗-open nbd of h(xα) in Y . Then
h(xα) ∈ V ⇒ xα ∈ h−1(V ) which being an fgγ∗-open set in X is an
fgγ∗-open nbd of xα in X. Put U = h−1(V ). Then U is an fgγ∗-open
nbd of xα in X and h(U) = h(h−1(V )) ≤ V .

Conversely, let A be an fgγ∗-open set in Y and xα be any fuzzy
point in X such that xα ∈ h−1(A). Then h(xα) ∈ A. By hy-
pothesis, there exists an fgγ∗-open nbd U of xα in X such that
h(U) ≤ A ⇒ xα ∈ U = fgγ∗int(U) ≤ fgγ∗int(h−1(A)). Since xα is
taken arbitrarily and h−1(A) is the union of all fuzzy points in h−1(A),
h−1(A) ≤ fgγ∗int(h−1(A)) ⇒ h−1(A) = fgγ∗int(h−1(A)) ⇒ h−1(A)
is fgγ∗-open set in X ⇒ h is an fgγ∗-irresolute function.
Theorem 6.20. Let h : X → Y be an fgγ∗-continuous function from
X onto an fts Y and A(∈ IX) be an fgγ∗-compact set in X. Then
h(A) is a fuzzy compact (resp., fuzzy almost compact, fuzzy nearly
compact) set in Y .
Proof. Let U = {Uα : α ∈ Λ} be a fuzzy cover of h(A) by
fuzzy open (resp., fuzzy open, fuzzy regular open) sets of Y . Then

h(A) ≤
⋃
α∈Λ

Uα ⇒ A ≤ h−1(
⋃
α∈Λ

Uα) =
⋃
α∈Λ

h−1(Uα). Then V =

{h−1(Uα) : α ∈ Λ} is a fuzzy cover of A by fgγ∗-open sets of X
as h is an fgγ∗-continuous function. As A is fgγ∗-compact set in X,

there exists a finite subcollection Λ0 of Λ such that A ≤
⋃
α∈Λ0

h−1(Uα)

⇒ h(A) ≤ h(
⋃
α∈Λ0

h−1(Uα) ≤
⋃
α∈Λ0

Uα ⇒ h(A) is fuzzy compact (resp.,

fuzzy almost compact, fuzzy nearly compact) set in Y .
Since fuzzy open set fgγ∗-open, we can state the following theorems

easily the proofs of which are same as that of Theorem 6.20.
Theorem 6.21. Let h : X → Y be an fgγ∗-irresolute function from
X onto an fts Y and A(∈ IX) be an fgγ∗-compact set in X. Then
h(A) is fgγ∗-compact (resp., fuzzy compact, fuzzy almost compact,
fuzzy nearly compact) set in Y .
Theorem 6.22. Let h : X → Y be an fgγ∗-continuous function from
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an fgγ∗-compact space X onto an fts Y . Then Y is fuzzy compact
(resp., fuzzy almost compact, fuzzy nearly compact) space.
Theorem 6.23. Let h : X → Y be an fgγ∗-irresolute function from
an fgγ∗-compact space X onto an fts Y . Then Y is fgγ∗-compact
(resp., fuzzy compact, fuzzy almost compact, fuzzy nearly compact)
space.
Remark 6.24. It is clear from definitions that (i) fgγ∗-irresolute
function is fgγ∗-continuous, but the converse may not be true, as it
seen from the following example.
Also (ii) fuzzy continuity and fgγ∗-irresoluteness are independent con-
cepts follow from the following examples.
Example 6.25. None of fuzzy continuous function, fgγ∗-continuous
function implies that of fgγ∗-irresolute function
Let X = {a}, τ1 = {0X , 1X , A,B}, τ2 = {0X , 1X} where A(a) =
0.45, B(a) = 0.6. Then (X.τ1) and (X, τ2) are fts’s. Consider the
identity function i : (X, τ1) → (X, τ2). Now every fuzzy set in
(X, τ2) is fgγ∗-closed set in (X, τ2). Consider the fuzzy set C de-
fined by C(a) = 0.7. Then C is fgγ∗-closed set in (X, τ2). Now
i−1(C) = C ≤ C ∈ FSO(X, τ1). But γclτ1C = 1X 6≤ C ⇒ C is not
fgγ∗-closed set in (X, τ1) ⇒ i is not fgγ∗-irresolute function. But
clearly i is fuzzy continuous as well as fgγ∗-continuous function.
Example 6.26. There exists an fgγ∗-irresolute function which is not
fuzzy continuous
Let X = {a, b}, τ1 = {0X , 1X}, τ2 = {0X , 1X , A} where A(a) =
0.4, A(b) = 0.7. Then (X, τ1) and (X, τ2) are fts’s. Consider the
identity function i : (X, τ1)→ (X, τ2). Since every fuzzy set in (X, τ1)
is fgγ∗-closed set in (X, τ1), clearly i is fgγ∗-irresolute function. But
i−1(A) = A 6∈ τ1 ⇒ i is not fuzzy continuous function.

Now to establish the mutual relationships of these newly defined
types of functions with the functions defined in [3, 5, 6, 7], we have to
recall the following functions from [3, 5, 6, 7] for ready references.
Definition 6.27. Let h : (X, τ1) → (Y, τ2) be a function. Then h is
called
(i) fg-continuous [3] if h−1(V ) is fg-closed set in X for every V ∈ τ c2 ,
(ii) fgβ-continuous [6] if h−1(V ) is fgβ-closed set in X for every
V ∈ τ c2 ,
(iii) fsg-continuous [3] if h−1(V ) is fsg-closed set in X closed set in
X for every V ∈ τ c2 ,
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(iv) fgs∗-continuous function [5] if h−1(V ) is fgs∗-closed set in X for
every V ∈ τ c2 ,
(v) fgγ-continuous [7] if h−1(V ) is fgγ-closed set in X for every
V ∈ τ c2 .
Remark 6.28. It is clear from definitions that
(i) every fgγ∗-continuous function is fgγ-continuous as well as fgβ-
continuous,
(ii) fsg-continuous functions and fgs∗-continuous functions are both
fgγ∗-continuous functions.
But the converses are not true, in general, follow from the following
examples.
Also (iii) fg-continuity and fgγ∗-continuity are independent concepts
as it seen from the following examples.
Example 6.29. None of fg-continuity, fgβ-continuity, fgγ-
continuity implies that of fgγ∗-continuity
Let X = {a}, τ1 = {0X , 1X , A,B}, τ2 = {0X , 1X , C} where A(a) =
0.45, B(a) = 0.6, C(a) = 0.3. Then (X, τ1) and (X, τ2) are fts’s. Con-
sider the identity function i : (X, τ1) → (X, τ2). Now 1X \ C ∈ τ c2 ,
i−1(1X \ C) = 1X \ C ≤ 1X \ C ∈ FSO(X, τ1). But γclτ1(1X \ C) =
1X 6≤ 1X \ C ⇒ 1X \ C is not fgγ∗-closed set in (X, τ1) ⇒ i is not
fgγ∗-continuous function. But as 1X is the only fuzzy open set in
(X, τ1) containing 1X \ C, clearly i is fg-continuous, fgβ-continuous
and fgγ-continuous function.
Example 6.30. None of fg-continuity, fsg-continuity, fgs∗-
continuity is implied by fgγ∗-continuity
Let X = {a}, τ1 = {0X , 1X , A,B}, τ2 = {0X , 1X , C} where A(a) =
0.45, B(a) = 0.6, C(a) = 0.44. Then (X, τ1) and (X, τ2) are fts’s. Con-
sider the identity function i : (X, τ1) → (X, τ2). Now 1X \ C ∈ τ c2 ,
i−1(1X \ C) = 1X \ C < B ∈ FSO(X, τ1). Now γclτ1(1X \ C) =
1X \ C < B ⇒ 1X \ C is fgγ∗-closed set in (X, τ1) ⇒ i is fgγ∗-
continuous function. But sclτ1(1X \ C) = 1X 6≤ B ⇒ 1X \ C is
not fsg-closed set in (X, τ1) ⇒ i is not fsg-continuous function.
Also clτ1(1X \ C) = 1X 6≤ B ⇒ 1X \ C is not fgs∗-closed set in
(X, τ1) ⇒ i is not fgs∗-continuous function. Again 1X \ C < B ∈ τ1,
but clτ1(1X \C) = 1X 6≤ B ⇒ 1X \C is not fg-closed set in (X, τ1)⇒ i
is not fg-continuous function.
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7. fgγ∗-T2 Space

The notion of fuzzy T2-space was introduced in [14]. Afterwards,
several types of fuzzy separation axioms have been introduced and
studied by many mathematicians. In this context here we introduce a
new type of generalized version of separation axiom in fuzzy topology.
Afterwards, a strong and weak form of the notion of fgγ∗-continuous
function are introduced and also some of their applications are shown.

We first recall the following definition and theorem from [14, 15] for
ready references.
Definition 7.1 [14]. An fts (X, τ) is called fuzzy T2-space if for
any two distinct fuzzy points xα and yβ; when x 6= y, there exist
fuzzy open sets U1, U2, V1, V2 such that xα ∈ U1, yβqV1, U1 6 qV1 and
xαqU2, yβ ∈ V2, U2 6 qV2; when x = y and α < β (say), there exist
fuzzy open sets U and V in X such that xα ∈ U, yβqV and U 6 qV .
Theorem 7.2 [15]. An fts (X, τ) is fuzzy T2-space if and only if for
any two distinct fuzzy points xα and yβ in X; when x 6= y, there exist
fuzzy open sets U, V in X such that xαqU , yβqV and U 6 qV ; when
x = y and α < β (say), xα has a fuzzy open nbd U and yβ has a fuzzy
open q-nbd V such that U 6 qV .

Let us introduce the following concept.
Definition 7.3. An fts (X, τ) is called fgγ∗-T2 space, if for any two
distinct fuzzy points xα and yβ in X; when x 6= y, there exist fgγ∗-
open sets U, V in X such that xαqU , yβqV and U 6 qV ; when x = y
and α < β (say), xα has an fgγ∗-open nbd U and yβ has an fgγ∗-open
q-nbd V such that U 6 qV .
Theorem 7.4. If an injective function h : X → Y is fgγ∗-continuous
function from an fts X onto a fuzzy T2-space Y , then X is fgγ∗-T2

space.
Proof. Let xα and yβ be two distinct fuzzy points in X. Then h(xα)
(= zα, say) and h(yβ)(= wβ, say) are two distinct fuzzy points in Y .
Case I. Suppose x 6= y. Then z 6= w. Since Y is fuzzy T2-space, there
exist fuzzy open sets U, V in Y such that zαqU,wβqV and U 6 qV .
As h is fgγ∗-continuous function, h−1(U) and h−1(V ) are fgγ∗-open
sets in X with xαqh

−1(U), yβqh
−1(V ) and h−1(U) 6 qh−1(V ) [Indeed,

zαqU ⇒ U(z) + α > 1⇒ U(h(x)) + α > 1⇒ [h−1(U)](x) + α > 1⇒
xαqh

−1(U). Again, h−1(U)qh−1(V ) ⇒ there exists t ∈ X such that
[h−1(U)](t) + [h−1(V )](t) > 1 ⇒ U(h(t)) + V (h(t)) > 1 ⇒ UqV , a
contradiction].
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Case II. Suppose x = y and α < β (say). Then z = w and
α < β. Since Y is fuzzy T2-space, there exist a fuzzy open nbd
U of xα and a fuzzy open q-nbd V of wβ such that U 6 qV . Then
U(z) ≥ α ⇒ [h−1(U)](x) ≥ α ⇒ xα ∈ h−1(U), yβqh

−1(V ) and
h−1(U) 6 qh−1(V ) where h−1(U) and h−1(V ) are fgγ∗-open sets in X
as h is fgγ∗-continuous function. Consequently, X is fgγ∗-T2-space.

In a similar manner, we can prove the following theorems.
Theorem 7.5. If a bijective function h : X → Y is fgγ∗-irresolute
function from an fts X onto an fgγ∗-T2 space Y , then X is fgγ∗-T2

space.
Theorem 7.6. If a bijective function h : X → Y is fgγ∗-open func-
tion from a fuzzy T2-space X onto an fts Y , then Y is fgγ∗-T2-space.
Definition 7.7. A function h : X → Y is called

(i) strongly fgγ∗-continuous if h−1(V ) is fuzzy closed set in X for
every fgγ∗-closed set V in Y ,

(ii) weakly fgγ∗-continuous if h−1(V ) ∈ FγC(X) for every fgγ∗-
closed set V in Y .
Remark 7.8. It is clear from above discussion that every strongly
fgγ∗-continuous function is weakly fgγ∗-continuous, fgγ∗-continuous
and fgγ∗-irresolute functions. But the converses are not true, in gen-
eral, as it follow from the following example.
Example 7.9. None of weakly fgγ∗-continuity, fgγ∗-continuity and
fgγ∗-irresoluteness implies strongly fgγ∗-continuity
Let X = {a, b}, τ1 = {0X , 1X}, τ2 = {0X , 1X , A} where A(a) =
0.4, A(b) = 0.7. Then (X, τ1) and (X, τ2) are fts’s. Consider the
identity function i : (X, τ1) → (X, τ2). Since every fuzzy set in
(X, τ1) is fuzzy γ-closed as well as fgγ∗-closed set in (X, τ1), clearly
i is weakly fgγ∗-continuous function, fgγ∗-continuous function and
fgγ∗-irresolute function. Now consider the fuzzy set B defined by
B(a) = B(b) = 0.5. Since B is fuzzy γ-closed set in (X, τ2), B is
clearly fgγ∗-closed set in (X, τ2). But i−1(B) = B 6∈ τ c1 ⇒ i is not
strongly fgγ∗-continuous function.
Remark 7.10. Every weakly fgγ∗-continuous function is fgγ∗-
continuous function as well as fgγ∗-irresolute, but the converses are
not true, in general, follow from the following examples.
Example 7.11. fgγ∗-continuity does not imply weakly fgγ∗-
continuity
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X} where A(a) =



42 ANJANA BHATTACHARYYA

0.5, A(b) = 0.6. Then (X, τ1) and (X, τ2) are fts’s. Consider the
identity function i : (X, τ1) → (X, τ2). Clearly i is fgγ∗-continuous
function. Since every fuzzy set in (X, τ2) is fgγ∗-closed set in (X, τ2),
A is also fgγ∗-closed set in (X, τ2). Now i−1(A) = A 6∈ FγC(X, τ1) as
(cl(intA))

∧
(int(clA)) = 1X 6≤ A ⇒ i is not weakly fgγ∗-continuous

function.
Example 7.12. fgγ∗-irresoluteness does not imply weakly fgγ∗-
continuity
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B} where A(a) =
0.5, A(b) = 0.4, B(a) = 0.5, B(b) = 0.6. Then (X, τ1) and (X, τ2)
are fts’s. Consider the identity function i : (X, τ1) → (X, τ2). Now
FSO(X, τ1) = {0X , 1X , T} where A ≤ T ≤ 1X \ A, FγC(X, τ1) =
{0X , 1X ,M} whereM ≤ 1X\A, FSO(X, τ2) = {0X , 1X , U} where U ≥
B, the collection of all fgγ∗-closed sets in (X, τ2) = FγC(X, τ2) =
{0X , 1X , V } where V 6≥ B. Now consider the fuzzy set C such that
C ≤ B. Then clearly C ∈ FγC(X, τ1). Now i−1(C) = C ⇒ C is
fgγ∗-closed set in (X, τ1). But if C 6≥ B, then 1X is the only fuzzy
semiopen set in (X, τ1) containing C and so γclτ1C ≤ 1X ⇒ C is
fgγ∗-closed set in (X, τ1) ⇒ i is fgγ∗-irresolute function. Next con-
sider the fuzzy set D defined by D(a) = 0.6, D(b) = 0.5. Then as
D 6≥ B, D is fgγ∗-closed set in (X, τ2). Now i−1(D) = D. But
(clintD)

∧
(intclD) = 1X \ A 6≤ D ⇒ D 6∈ FγC(X, τ1) ⇒ i is not

weakly fgγ∗-continuous function.
Remark 7.13. It is clear from definitions that
(i) strongly fgγ∗-continuity implies fuzzy continuity, but not con-
versely as follows from the next example,
(ii) weakly fgγ∗-continuity and fuzzy continuity are independent con-
cepts, see the following examples.
Example 7.14. Fuzzy continuity does not imply strongly fgγ∗-
continuity as well as weakly fgγ∗-continuity
Consider Example 7.11. Here i is not weakly fgγ∗-continuous function
and so by Remark 7.8, i is not also strongly fgγ∗-continuous function.
Obviously i is fuzzy continuous function.
Example 7.15. Weakly fgγ∗-continuous function does not imply
fuzzy continuous function
Consider Example 7.9. Here i is weakly fgγ∗-continuous function.
But clearly i is not fuzzy continuous function as A ∈ τ2, but i−1(A) =
A 6∈ τ c1 .
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Since fuzzy open set is fuzzy γ-open and hence fgγ∗-open, we can
prove the following theorems easily.
Theorem 7.16. If a bijective function h : X → Y is strongly fgγ∗-
continuous, fuzzy open function from a fuzzy regular (resp., fuzzy
normal) space X onto an fts Y , then Y is fgγ∗-regular (resp., fgγ∗-
normal) space.
Theorem 7.17. If a bijective function h : X → Y is weakly fgγ∗-
continuous, fuzzy γ-open function from an fgγ∗-regular (resp., fgγ∗-
normal) space X onto an fts Y , then Y is fgγ∗-regular (resp., fgγ∗-
normal) space.
Theorem 7.18. If a bijective function h : X → Y is strongly fgγ∗-
continuous, fuzzy γ-open function from an fgγ∗-regular (resp., fgγ∗-
normal) space X onto an fts Y , then Y is fgγ∗-regular (resp., fgγ∗-
normal) space.
Theorem 7.19. If a bijective function h : X → Y is weakly fgγ∗-
continuous, fuzzy open function from a fuzzy regular (resp., fuzzy
normal), fTγ-space X onto an fts Y , then Y is fgγ∗-regular (resp.,
fgγ∗-normal) space.
Theorem 7.20. If a bijective function h : X → Y is strongly fgγ∗-
continuous (resp., weakly fgγ∗-continuous) function from an fts X
onto an fgγ∗-T2 space Y , then X is fuzzy T2 space (resp., fgγ∗-T2

space).
Theorem 7.21. If a bijective function h : X → Y is strongly fgγ∗-
continuous (resp., weakly fgγ∗-continuous) function from a fuzzy com-
pact (resp., fuzzy γ-compact) space X onto an fts Y , then Y is fgγ∗-
compact space.
Note 7.22. It is clear from definitions that composition of two
strongly fgγ∗-continuous (resp., weakly fgγ∗-continuous) functions
is also so.
Theorem 7.23. (i) If h1 : X → Y is strongly fgγ∗-continuous and
h2 : Y → Z is weakly fgγ∗-continuous functions, then h2◦h1 : X → Z
is strongly fgγ∗-continuous function.
(ii) If h1 : X → Y is weakly fgγ∗-continuous and h2 : Y → Z is
strongly fgγ∗-continuous functions, then h2 ◦ h1 : X → Z is weakly
fgγ∗-continuous function.
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