“Vasile Alecsandri” University of Bacau
Faculty of Sciences

Scientific Studies and Research

Series Mathematics and Informatics
Vol. 30 (2020), No. 1, 17 - 44

ON fgy*-CLOSED SETS IN FUZZY TOPOLOGICAL
SPACES
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Abstract. Starting with Chang [8], many mathematicians have
engaged themselves to introduce different types of fuzzy closed-like sets
in a fuzzy topological space (fts, for short). Afterwards, in [2, 3, 5, 6, 7]
the notion of generalized versions of fuzzy closed set have been studied.
In this paper a new type of generalized version of fuzzy 7-closed set is
introduced and studied using vy-closed set as a basic tool.

1. INTRODUCTION

This paper deals with a new type of generalized version of closed set
in fuzzy topological space, viz., fgy*-closed set using fuzzy y-open set
[4] as a basic tool. It is shown that the collection of all fgvy*-closed sets
is stronger than that of fuzzy ~-closed set [4], but weaker than that of
fgry-closed set [7]. Also the mutual relationship of this set with fgs*-
closed set [5], fsg-closed set [3], fgf-closed set [3] are established.
Again we introduce a new type of closure operator, viz., fgvy*-closure
operator which is an idempotent operator. Afterwards, fgv*-open,
fgv*-closed, fgvy*-compactness and fgv*-irresolute functions are in-
troduced and studied. Then establish the mutual relationship of these
functions with fuzzy open function [18], fuzzy closed function [18] and
fuzzy continuous function [8].
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It is shown that fgvy*-continuous image of fgvy*-regular, fgvy*-
normal and fgy*-compact spaces are fuzzy regular [14], fuzzy normal
[13] and fuzzy compact [8] spaces respectively. Lastly, a new type of
separation axiom, viz., fgy*-T, space is introduced and shown that
the inverse image of fuzzy T,-space [14] (resp., fgv*-T, space) under
fgy*-continuous function (resp., fgy*-irresolute function) is fgvy*-Ts
space.

2. PRELIMINARIES

Throughout this paper (X, 7) or simply by X we shall mean a fuzzy
topological space (fts, for short) in the sense of Chang [8]. In [19], L.A.
Zadeh introduced fuzzy set as follows: A fuzzy set A is a function from
a non-empty set X into the closed interval I = [0,1], i.e., A € IX.
The support [19] of a fuzzy set A, denoted by suppA and is defined
by suppA = {x € X : A(x) # 0}. The fuzzy set with the singleton
support {z} C X and the value ¢t (0 < ¢ < 1) will be denoted by z;. Ox
and 1x are the constant fuzzy sets taking values 0 and 1 respectively in
X. The complement [19] of a fuzzy set A in X is denoted by 1x\ A and
is defined by (1x\ A)(z) = 1—A(z), for each x € X. For any two fuzzy
sets A, B in X, A < B means A(z) < B(z), for all x € X [19] while
AgB means A is quasi-coincident (q-coincident, for short) [17] with B,
i.e., there exists x € X such that A(z) + B(z) > 1. The negation of
these two statements will be denoted by A £ B and A 4B respectively.
For a fuzzy point z; and a fuzzy set A, z; € A means A(x) > t, i.e.,
x; < A. For a fuzzy set A, clA and int A will stand for fuzzy closure [§]
and fuzzy interior [8] respectively. A fuzzy set A in X is called fuzzy
regular open [1] (resp., fuzzy semiopen [1], fuzzy [-open [11], fuzzy
~v-open [4]) if A = int(clA) (resp., A < cl(intA), A < cl(int(clA)),
A < cl(intA) \/ int(clA)). The complement of a fuzzy semiopen (resp.,
fuzzy p-open, fuzzy v-open) set is called fuzzy semiclosed [1] (resp.,
fuzzy p-closed [11], fuzzy ~-closed [4]). The intersection of all fuzzy
semiclosed (resp., fuzzy [-closed, fuzzy 7-closed) sets containing a
fuzzy set A is called fuzzy semiclosure [1] (resp., fuzzy [5-closure [11],
fuzzy ~-closure [4]) of A, to be denoted by sclA (resp., SclA, yclA).
The union of all fuzzy v-open sets contained in a fuzzy set A in an
fts X is called fuzzy ~y-interior of A, denoted by ~vintA [4]. A(€ I¥)
is fuzzy ~-closed (resp., fuzzy ~y-open) iff A = vyclA [4] (resp., yintA
[4]). A fuzzy set A is called a fuzzy neighbourhood (fuzzy nbd, for
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short) [17] of a fuzzy point z, if there exists a fuzzy open set U in X
such that z, € U < A. If; in addition, A is fuzzy open (resp., fuzzy
v-open), then A is called fuzzy open nbd [17] (resp., fuzzy ~-open
nbd [4]) of z,. A fuzzy set A is called a fuzzy quasi neighbourhood
(fuzzy ¢-nbd, for short) [17] of a fuzzy point z, in an fts X if there
is a fuzzy open set U in X such that z,qU < A. If, in addition, A
is fuzzy open (resp., fuzzy y-open), then A is called fuzzy open ¢g-nbd
[17] (resp., fuzzy v-open ¢-nbd [4]) of z,. The collection of all fuzzy
open (resp., fuzzy regular open, fuzzy semiopen, fuzzy (S-open, fuzzy
~v-open) sets in an fts X is denoted by 7 (resp., FRO(X), FSO(X),
FBO(X), FyO(X)). The collection of all fuzzy closed (resp., fuzzy
semiclosed, fuzzy [-closed, fuzzy ~-closed) sets in an fts X is denoted
by 7¢ (resp., FSC(X), FBC(X), FyC(X)).

3. fgy*-CLOSED SET: SOME PROPERTIES

In this section a new type of generalized version of fuzzy closed set,
viz., fgv*-closed set is introduced and studied. Some properties of
this newly defined set are shown. Again mutual relationship of this
set and the sets defined in [2, 3, 5, 6, 7] are established.

We first recall the following definitions from [2, 3, 5, 6, 7] for ready
references.

Definition 3.1. Let (X, 7) be an fts and A € IX. Then A is called
(i) fuzzy generalized closed (fg-closed, for short) [2, 3] if clA < U
whenever A < U € 7,

(ii) fuzzy semi generalized closed ( fsg-closed, for short) [3] if sclA < U
whenever A < U € FSO(X),

(iil) fuzzy generalized S-closed ( fg/5-closed, for short) [3] if fclA < U
whenever A < U € T,

(iv) fgs*-closed set [6] if clA < U whenever A < U € FSO(X,n),
(v) fuzzy generalized ~y-closed (fgy-closed, for short) [7] if yelA < U
whenever A < U € 7.

The complements of the above mentioned fuzzy sets are called their
respective open sets.

Now we introduce the following concept.

Definition 3.2. Let (X,7) be an fts and A € I*. Then A is
called fuzzy generalized ~*-closed (fgy*-closed, for short) set in X
if yelA < U whenever A < U € FSO(X).

The complement of an fgvy*-closed set is called fuzzy generalized



20 ANJANA BHATTACHARYYA

~v*-open (fgy*-open, for short) set.

Remark 3.3. It is clear from definitions that

(i) fgv*-closed set is fgfB-closed set as well as fgvy-closed set,

(ii) fsg-closed set is fgy*-closed set and fgs*-closed set is fgy*-closed
set,

(iii) fuzzy ~y-closed set is fgvy*-closed set.

But the converses are not true, in general, follow from the following
examples.

(iv) fgy*-closed set and fg-closed set are independent concepts as fol-
lows from the next examples.

Example 3.4. None of the properties of fg-closedness, fgf3-
closedness, fgy-closedness implies that of fgvy*-closedness

Let X = {a}, 7 = {0x, 1xA, B} where A(a) = 0.45, B(a) = 0.6. Then
(X, 7)isan fts. Here FSO(X) = {ox,1x,U,V} where A <U < 1x\A
and V. > B, FyO(X) = {0x,1x,W} where W > 1x \ B and
F~C(X) ={0x,1x,1x \ W} where 1x \ W < B. Consider the fuzzy
set C' defined by C(a) = 0.7. Then 1y is the only fuzzy open set in
(X, 7) containing C' and so clC < 1y, fclC < 1x, vclC < 1x imply
that C is fg-closed set, fgfS-closed set and fgvy-closed set. But as
C € FSO(X), C < C and vclC = 1x £ C implies that C' is not
fgy*-closed set in (X, 7).

Example 3.5. None of fg-closedness , fsg-closedness, fgs*-
closedness is implied by fgvy*-closedness Consider Example 3.4 and
the fuzzy set D defined by D(a) = 0.56. Then D < B € FSO(X).
Now ~clD = D < B implies that D is fgy*-closed set in (X, 7).
But sclD = 1x £ B = D is not fsg-closed set in (X, 7). Also
cdD = 1x £ B = D is not fgs*-closed set in (X,7). Again
D < BerT. ButedD = 1x £ B = D is not fg-closed set in
(X, 7).

Example 3.6. There exists an fgy*-closed set which is not fuzzy
closed

Let X = {a,b}, 7 = {0x, 1x, A} where A(a) = 0.5, A(b) = 0.4. Then
(X,7) is an fts. Here F.SO(X,7) = {0x,1x,U} where A < U <
1x \ A. Consider the fuzzy set B defined by B(a) = 0.7, B(b) = 0.5.
Then B ¢ FyC(X, ), because (clintB) \/(intclB) = 1x \ A £ B. As
lx € FSO(X, 1) only containing B, B is fgy*-closed set in (X, 7).
Remark 3.7. It is obvious that union of two fgvy*-closed sets is also
so. But intersection of two fgvy*-closed sets need not be so, as it seen
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from the following example.

Example 3.8. Let X = {a,b}, 7 = {Ox,1x, A, B} where A(a) =
0.5, A(b) = 0.4, B(a) = 0.4, B(b) = 0.3. Then (X, 7) is an fts. Here
FSO(X) = {0x,1x,U} where B < U < 1x \ A. Consider two
fuzzy sets C' and D defined by C(a) = 0.6,C'(b) = 0.55,D(a) =
0.45, D(b) = 0.7. Then clearly C' and D are fgvy*-closed sets in (X, 7).
Let E=C A D. Then E(a) = 0.45, E(b) = 0.55. Then E € FSO(X).
So E < E. Now (clintE) N(intclE) = (1x \A)ANA=A L E. So
velE £ E, ie., E ¢ FyC(X) and so yclE # E = E is not fgvy*-
closed set in X.

From the above discussion we can conclude that the collection of all
fgy*-open sets does not form a fuzzy topology.

Theorem 3.9. If A(e IX) is fgy*-closed set in X and B € I is such
that A < B < vclA, then B is also fgy*-closed set in X.

Proof. Let U € FSO(X) be such that B < U. Then by hypothesis,
A< B<U. As Ais fgvy*-closed set in X, yclA < U andso A < B <
velA < U = vyelA < ~velB < vcl(yelA) = velA < U = ~velB < U.
Consequently, B is fgy*-closed set in X.

Theorem 3.10. Let (X, 7) be an fts and A, B € I, If yintA < B <
A and A is fgy*-open set in X, then B is also fgy*-open set in X.
Proof. vintA < B< A= 1x\A<1x\B < 1x\yintA=cl(1x\A)
where 1x \ A is fgy*-closed set in X. By Theorem 3.9, 1x\ B is fgv*-
closed set in X = B is fgy*-open set in X.

Theorem 3.11. Let (X,7) be an fts and A € I*. Then A is fgvy*-
open set in X iff K < ~intA whenever K < A and K € FSC(X).
Proof. Let A(e I¥) be fgy*-open set in X and K < A where
K € FSC(X). Then 1x\ A < 1x\ K where 1x \ A is fgy*-closed set
in X and 1x\ K € FSO(X). Sovel(1x\A) < 1x\K = 1x\vintA <
1y \ K = K < ~intA.

Conversely, let K < yintA whenever K < A, K € FSC(X). Then
Ix \ K = 1x\ Ais fgy*-closed set in X = A is fgy*-open set in X.
Theorem 3.12. Let (X,7) be an fts and A(e I¥). If A is fuzzy
semiopen set as well as fgvy*-closed set in X, then A € FyC(X).
Proof. Now A < A € FSO(X). By hypothesis, 7clA < A (as A is
fgvy*-closed set in X) = A =~yclA = A e FyC(X).

Similarly we can state the following theorem easily.

Theorem 3.13. Let (X, 7) be an fts and A(€ ) € FRO(X) as well
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as A is fgvy*-closed set in X, then A € FyC(X).

Theorem 3.14. Let (X, 7) be an fts and A(€ IX) be fgy*-closed set
in X and F € FSC(X) with A 4F. Then vclA 4F.

Proof. Now A gF = A < 1x \ F € FSO(X). By assumption,
velA < 1x \ F = yclA 4F.

Remark 3.15. The converse of Theorem 3.14 may not be true, in
general, as it seen from the following example.

Example 3.16. Let X = {a,b}, 7 = {0x,1x,A, B,C} where
A(a) = A(b) = 04,B(a) = 04,B(b) = 0.6,C(a) = 0.5,C(b) =
0.6. Then (X,7) is an fts. Consider the fuzzy set D defined by
D(a) = 0.4,D(b) = 0.5. Now 1x \ C € FSC(X) and D f4(1x \ C),
velD = C f(1x \ C). But D is not fgy*-closed set in X. Indeed,
D < B e FSO(X) and vclD = C £ B.

Definition 3.17. Let (X, 7) be an fts and z,, a fuzzy point in X. A
fuzzy set A is called a fuzzy generalized y*-neighbourhood ( fgvy*-nbd,
for short) of z,, if there exists an fgy*-open set U in X such that
To < U < A. If, in addition, A is fgy*-open set in X, then A is called
an fgy*-open nbd of z,.

Definition 3.18. Let (X, 7) be an fts and z,, a fuzzy point in X. A
fuzzy set A is called a fuzzy generalized v*-quasi neighbourhood( f g~y*-
g-nbd, for short) of z, if there is an fgvy*-open set U in X such that
ToqU < A. If) in addition, A is fgy*-open set in X, then A is called
an fgvy*-open ¢-nbd of z,.

Note 3.19. It is clear from definitions that every fgy*-open set is
an fgv*-open nbd of each of its points. But every fgv*-nbd of z,
may not be an fgy*-open set containing x, as follows from the next
example.

Example 3.20. Consider Example 3.16 and the fuzzy set E defined
by E(a) = 0.6, E(b) = 0.5 and the fuzzy point ag4. We claim that £
is an fgv*-nbd of ag4 though E is not an fgy*-open set in X. Indeed,
(Ix\E)(a) =04, (1x\ E)(b) =0.5. Thenas B e 7, B € FSO(X) ad
so1x\E < B. Nowycl(1x\E) £ Basno fuzzyset U, 1x\E <U < B
is fuzzy ~-closed set in X = 1x \ £ is not fgvy*-closed set in X = E
is not fgy*-open set in X. But as A(a) = 0.4,a04 € A € 7 and since
every fuzzy open set being fuzzy y-open set is fgvy*-open set in X.
Also, agy € A< E = FEis an fgy*-nbd of ag4.

Note 3.21. Every fuzzy open nbd (resp., open ¢g-nbd) of a fuzzy point
To is an fgy*-open nbd (resp., fgy*-open ¢-nbd) of z,, but converses
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are not true, in general, follow from the next example.

Example 3.22. Let X = {a,b}, 7 = {0x,1x, A} where A(a) =
0.5, A(b) = 0.4. Then (X, 7) is an fts. Consider the fuzzy point bg 45
and the fuzzy set B defined by B(a) = B(b) = 0.5. Clearly B is not a
fuzzy open nbd of by45. But as B € FyO(X), B is fgy*-open nbd of
bo.45. Again consider the fuzzy point byg. Then B is not a fuzzy open
g-nbd of by g as by 4A < B. But as bygqB where B is an fgvy*-open
set in X = B is an fgvy*-open ¢-nbd of byg.

Theorem 3.23. Let F(€ IX) be an fgy*-closed set in an fts X with
x; € 1x \ F. Then there exists an fgvy*-nbd G of x; such that G 4F.
Proof. Let z; € 1x \ F where 1x \ F' be an fgy*-open set in X. Then
1x \ F'is an fgvy*-open nbd of x;. So by definition, there exists an
fgvy*-open set G in X such that x; € G < 1x \ F = G is an fgvy*-nbd
of xy with G 4F.

Definition 3.24. The set of all fgy*-nbds of a fuzzy point
(0 <t <1)in an fts (X,7) is called the fgy*-nbd system at i,
denoted by fgv*-N(z;).

Theorem 3.25. For a fuzzy point x; in an fts (X, 7), the following
statements hold :

(1) fgv*-N(z:) # 0,

(ii)) G € fgy*-N(x) = x; € G,

(i) G € fgy*-N(x;) and F > G = F € fgv*-N(zy),

(iv) F.G € fgv"-N(z:) = F NG € fgy"-N(z),

(v) G € fgy*-N(z:) = there exists F' € fgv*-N(x;) such that FF < G
and F' € fgv*-N(yy) for every yy € F.

Proof. (i) Since 1x being an fgy*-open set is an fgy*-nbd of z;
(0 <t<1), fgy-N(z:) # 0.

(ii) and (iii) are obvious.

(iv) Since intersection of two fgvy*-open sets is fgy*-open, (iv) is ob-
vious.

(v) Follows from Note 3.19 and Definition 3.24.

Theorem 3.26. Let x; be a fuzzy point in an fts (X, 7). Let fgvy*-
N(z;) be a non-empty collection of fuzzy sets in X satisfying the
following conditions :

(1) G € fgv*-N(x;) = x4 € G,

(2) F.G € fgy"-N(z) = FANG € fg7"-N(z).

Let 7 consist of Ox and all those non-empty fuzzy sets G of X having
the property that x; € G = there exists an F' € fgy*-N(x;) such that
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xy € FF < G. Then 7 is a fuzzy topology on X.

Proof. (i) By hypothesis, 0x € 7.

(ii) It is clear from the given property of 7 that 1x € 7 as 1x € fgy*-
N(z;) for any fuzzy point x; (0 < ¢ < 1) in an fts X (by (1)).

(iii) Let G1,Go € 7. If G; A\ G2 = Ox, then by construction of T,
Gi\NGs € 7. Suppose Gy NGy # 0x. Let z, € Gy \ Gy where
0 <t <1 Then Gi(z) > t,Ga(x) > t. Since G1,Gy € 7, by defi-
nition of 7, there exist Fy, Fy € fgy*-N(z;) such that =, € F} < Gy,
Ty € F2 S GQ. Then Ty € F1 /\F2 S Gl /\G2 By (2), F1 /\FQ € fg')/*—
N(z) and so G4 A\ G2 € T by construction of 7.

(iv) Let G = {G, : « € A} where G, € T, for each @« € A. Let

Ty € \/Ga. Then there exists 8 € A such that x; € G. By defini-

acl
tion of 7, there exists F € fgy*-N(xz;) such that z;, € Fz < G <

\/Ga = \/Ga €.

€N a€EA
It follows that 7 is a fuzzy topology on X.

4. fgv*-CLOSURE OPERATOR AND fg7y*-OPEN, fgv*-CLOSED
FuNcTIONS

In this section we first introduce a new type of generalized version of
fuzzy closure operator which is an idempotent operator. Afterwards,
two new types of functions are introduced and studied and character-
ized these two functions by this newly defined operator.

Definition 4.1. Let (X, 7) be an fts and A € I’X. Then fgy*-closure
and fgy*-interior of A, denoted by fgv*cl(A) and fgvy*int(A), are
defined as follow:

faycl(A) = N{F : A< F,Fis fgy*-closed set in X},

fogyrint(A) = \V{G : G < A,G is fgy*-open set in X}.

Remark 4.2. It is clear from definition that for any A € IX,
A < foy*cl(A) < clA. If Ais fgy*-closed set in an fts X, then
A = fgy*cl(A). Similarly, intA < fgy*int(A) < A. If Ais fgv*-
open set in an fts X, then A = fgy*int(A). It follows from Remark
3.7 that fgy*cl(A) (resp., fgy*int(A)) may not be fgvy*-closed (resp.,
fgy*-open) set in an fts X.

Result 4.3. Let (X, 7) be an fts and A € IX. Then for a fuzzy point
z,in X, 2y € fgy*cl(A) iff every fgvy*-open ¢-nbd U of x;, UqA.
Proof. Let z; € fgvy*cl(A) for any fuzzy set A in an fts X and F
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be any fgvy*-open ¢-nbd of x;. Then xyqF = x; ¢ 1x \ F which is
fgvy*-closed set in X. Then by Definition 4.1, A £ 1x \ F' = there
exists y € X such that A(y) > 1 — F(y) = Aq¢F.

Conversely, let for every fgy*-open ¢g-nbd F of x;, FiqA. If possible,
let z; & fgvy*cl(A). Then by Definition 4.1, there exists an fgvy*-
closed set U in X with A < U, z; ¢ U. Then z;q(1x \ U) which
being fgvy*-open set in X is fgy*-open ¢-nbd of z;. By assumption,
(Ix \U)gA = (1x \ A)gA, a contradiction.

Theorem 4.4. Let (X, 7) be an fts and A, B € I, Then the follow-
ing statements are true:

(i) fgyel(0x) = Ox,

(i) fgy*el(lx) = 1x,

(iii) A < B = fgy*cl(A) < fgy*cl(B),

(iv) fgv'cl(AV B) = fgy*cl(A)V fgv'cl(B),

(V) fgv* cl(AN B) < fgy*cl(A) A fgy*cl(B), equality does not hold,
in general, follows from Example 3.8,

(Vi) fgyel(fgyrcl(A)) = fgv el(A).

Proof. (i), (ii) and (iii) are obvious.

(iv) From (iii), fgv*cl(A)V fgv*cl(B) < fgy*cl(AV B).

To prove the converse, let z, € fgy*cl(A\/ B). Then by Result
4.3, for any fgy*-open set U in X with z,qU, Uq(A\ B) = there
exists y € X such that U(y) + maz{A(y), Bly)} > 1 = either
U(y) +A(y) > 1 or U(y) + B(y) > 1 = either UqA or U¢B = either
To € fgy*cl(A) or x4 € fgy*cl(B) = x4 € fgv*cl(A) fgv cl(B).
(v) Follows from (iii).

(vi) As A < fgy*c(A), for any A € IX, fgy*c(4) <
fgvrcl(fgvycl(A)) (by (iii)).

Conversely, let x, € fgv*cl(fgy*cl(A)) = fgy*cl(B) where B =
fgvicl(A). Let U be any fgvy*-open set in X with z,qU. Then
UqgB implies that there exists y € X such that U(y) + B(y) > 1.
Let B(y) = t. Then yqU and y, € B = fgv*cl(A) = UqA
= x4 € fgvel(A) = fgy*cl(fgy cl(A)) < fgy*cl(A). Consequently,
fgvrel(fgy cl(A)) = fgy cl(A).

Theorem 4.5. Let (X, 7) be an fts and A € IX. Then the following
statements hold:

(i) fogrrel(lx \ A) = 1x \ fgy*int(A)

(ii) fgvrint(1x \ A) = 1x \ fgy"cl(A).

Proof (i). Let z; € fgy*cl(1x \ A) for a fuzzy set A in an fts (X, 7).
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If possible, let z; & 1x \ fgv*int(A). Then 1 — (fgy*int(A))(x) <
t = [foytint(A)](x) +t > 1 = fgy*int(A)gr; = there exists
at least one fgy*-open set F < A with z,qF = x;qA. As x; €
foviel(lx \ A), Fq(1x \ A) = Aq(1x \ A), a contradiction. Hence

foviel(lx \ A) < 1x \ fgy*int(A)...(1)

Conversely, let x; € 1x \ fgy*int(A). Then 1 — [(fgvy*int(A)](z) >
t = x; 4(fgyrint(A)) = z; 4F for every fgvy*-open set F' contained
in A...(2).
Let U be any fgy*-closed set in X such that 1x \ A < U. Then
Ix \U < A. Now 1x \ U is fgvy*-open set in X contained in A. By
(2), 2 fJAx\U) =2, €U =2, € fgy*cl(lx \ A) and so

1x \ fgviint(A) < fgy"cl(1x \ A)...(3).

Combining (1) and (3), (i) follows.
(i) Putting 1x \ A for A in (i), we get fgy*cl(A) = 1x \ fgy*int(1x \
A) = fgyrint(1x \ A) = 1x \ fgy7cl(A).

Let us now recall the following definition from [18] for ready refer-
ences.
Definition 4.6 [18]. A function f : X — Y is called fuzzy open
(resp., fuzzy closed) if f(U) is fuzzy open (resp., fuzzy closed) set in
Y for every fuzzy open (resp., fuzzy closed) set U in X.

Let us now introduce the following concept.
Definition 4.7. A function h : X — Y is called fuzzy generalized
~v*-open ( fgy*-open, for short) function if h(U) is fgy*-open set in Y
for every fuzzy open set U in X.
Remark 4.8. It is clear that fuzzy open function is fgvy*-open func-
tion. But the converse need not be true, as it seen from the following
example.
Example 4.9. fgy*-open function does not imply fuzzy open func-
tion
Let X = {a,b}, m = {0x,1x,A}, m» = {0x,1x} where A(a) =
0.4, A(b) = 0.6. Then (X, 1) and (X, 7») are fts’s. Consider the iden-
tity function ¢ : (X, 7) — (X, 7). Since every fuzzy set in (X, 1) is
fgv*-open set in (X, 73), clearly i is fgvy*-open function. But A € 7y,
i(A) = A ¢ 1 = iis not a fuzzy open function.
Theorem 4.10. For a bijective function h : X — Y, the following
statements are equivalent:

(i) his fgy*-open,
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(i) h(intA) < fgytint(h(A)), for all A € IX,

(iii) for each fuzzy point x, in X and each fuzzy open set U in X
containing z,, there exists an fgy*-open set V in Y containing h(z,,)
such that V < h(U).

Proof (i) = (ii). Let A € I*. Then intA is a fuzzy open set in X.
By (i), h(intA) is fgvy*-open set in Y. Since h(intA) < h(A) and
fgv*int(h(A)) is the union of all fgvy*-open sets contained in h(A),
we have h(intA) < fgy*int(h(A)).

(ii) = (i). Let U be any fuzzy open set in X. Then h(U) = h(intU) <
fagvrint(h(U)) (by (ii)) = h(U) is fgvy*-open set in Y = his fgvy*-
open function.

(ii) = (iii). Let z, be a fuzzy point in X, and U, a fuzzy open set in
X such that z, € U. Then h(z,) € h(U) = h(intU) < fgy*int(h(U))
(by (ii)). Then h(U) is fgy*-open set in Y. Let V = h(U). Then
h(zy) € V and V < h(U).

(iii) = (i). Let U be any fuzzy open set in X and y,, any fuzzy
point in A(U), ie., yo € h(U). Then there exists unique =z € X
such that h(x) = y (as h is bijective). Then [R(U)](y) > a =
Uh'y) > a = Ulx) > a = 2z, € U. By (i), there ex-
ists fgy*-open set V in Y such that h(z,) € V and V < h(U).
Then h(z,) € V = fogy*int(V) < fgy*int(h(U)). Since y, is
taken arbitrarily and A(U) is the union of all fuzzy points in h(U),
h(U) < fgy int(f(U)) = h(U) is fgy*-open set in Y = his an fgy*-
open function.

Theorem 4.11. If h : X — Y is fgy*-open, bijective function, then
the following statements are true:

(i) for each fuzzy point z, in X and each fuzzy open ¢-nbd U of z,
in X, there exists an fgvy*-open ¢g-nbd V of h(z,) in Y such that
V < (),

(ii) A=Y (fgy*cl(B)) < cl(hY(B)), for all B € IV,

Proof (i). Let x, be a fuzzy point in X and U be any fuzzy open ¢g-nbd
of 2, in X. Then z,qU = intU = h(z,)qh(intU) < fgy*int(h(U))
(by Theorem 4.10 (i)=-(ii)) implies that there exists at least one fgvy*-
open ¢g-nbd V of h(z,) in Y with V' < h(U).

(ii) Let z, be any fuzzy point in X such that z, & cl(h~'(B)) for any
B € IY. Then there exists a fuzzy open ¢-nbd U of x, in X such that
U 4h '(B). Now

h(za)gh(U)...(1)
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where h(U) is fgy*-open set in Y. Now h™'(B) < 1y \ U which
is a fuzzy closed set in X = B < h(lx \ U) (as h is injective) <
Iy \ h(U) = B qh(U). Let V. = 1y \ h(U). Then B < V which
is fgvy*-closed set in Y. We claim that h(z,) ¢ V. If possible, let
h(zo) € V =1y \ h(U). Then 1 — [R(U)](h(z)) > a = h(U) gh(z.),
contradicting (1). So h(z,) € V = h(z,) & fgy*c(B) = x, &
h='(fgv cl(B)) = h™'(fgv*cl(B)) < cl(h'(B)).

Theorem 4.12. An injective function A : X — Y is fgy*-open if
and only if for each B € IY and F, a fuzzy closed set in X with
h=Y(B) < F, there exists an fgy*-closed set V in Y such that B <V
and h~1(V) < F.

Proof. Let B € IV and F, a fuzzy closed set in X with h=*(B) < F.
Then 1x \ h™Y(B) > 1x \ F where 1x \ F is a fuzzy open set in
X = h(lx \F) <h(lx \ h7'(B)) < 1y \ B (as h is injective) where
h(lx \ F)is an fgy*open set in Y. Let V = 1y \ h(lx \ F'). Then
V is fgy*-closed set in Y such that B < V. Now h™}(V) = h'(1y \
h(Ix \ F)) = 1x \h ™ (h(lx \ F)) < F.

Conversely, let F' be a fuzzy open set in X. Then 1x \ F'is a fuzzy
closed set in X. We have to show that h(F) is an fgy*-open set in
Y. Now h='(1y \ h(F)) < 1x \ F (as h is injective). By assumption,
there exists an fgv*-closed set V' in Y such that

Iy \ h(F) < V..(1)
and h=1(V) < 1x \ F. Therefore, F < 1x \ h=}(V) implies that
h(F) < h(lx \ A1 (V)) <1y \ V...(2)

(as h is injective). Combining (1) and (2), h(F') = 1y \ V which is an
fgvy*-open set in Y. Hence h is fgy*-open function.

Definition 4.13. A function h : X — Y is called fuzzy generalized
~v*-closed (fgy*-closed, for short) function if h(A) is fgy*-closed set
in Y for each fuzzy closed set A in X.

Remark 4.14. It is obvious that every fuzzy closed function is fgy*-
closed function, but the converse may not be true as it follows from
Example 4.9. Here 1x \ A € 7{, but i(1x \ A) = Ix \A & 75 = i
is not a fuzzy closed function. But since every fuzzy set in (X, 73) is
fgv*-closed set in (X, 1), clearly i is fgy*-closed function.
Theorem 4.15. A bijective function h : X — Y is fgvy*-closed if and
only if fgv*cl(h(A)) < h(clA), for all A € I*.

Proof. Let us suppose that h : X — Y be an fgv*-closed function and
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A € I*. Then h(cl(A)) is fgy*-closed set in Y. Since h(A) < h(clA)
and fgy*cl(h(A)) is the intersection of all fgy*-closed sets in Y con-
taining h(A), we have fgv*cl(h(A)) < h(clA).

Conversely, let for any A € I, fgy*cl(h(A)) < h(clA). Let U be
any fuzzy closed set in X. Then h(U) = h(clU) > fgv*cl(h(U)) =
h(U) is an fgvy*-closed set in Y = h is an fgvy*-closed function.
Theorem 4.16. If h : X — Y is an fgy*-closed bijective function,
then the following statements hold:

(i) for each fuzzy point z, in X and each fuzzy closed set U in X with
To AU, there exists an fgvy*-closed set V in Y with h(z,) 4V such
that V' > h(U),

(ii) h=1(fgy*int(B)) > int(h~1(B)), for all B € I".

Proof (i). Let z, be a fuzzy point in X and U be any fuzzy closed
set in X with z, AU = clU = h(z,) gh(clU) > fgy*cl(h(U)) (by
Theorem 4.15) = h(z,) 4V for some fgvy*-closed set V in Y with
V > h(U).

(ii). Let B € IY and z, be any fuzzy point in X such that
z, € int(h~'(B)). Then there exists a fuzzy open set U in X with
U < h™!(B) such that z, € U. Then 1x \U > 1x \ "' (B) =
h(1x \U) > h(1x \ h~'(B)) where h(1x \ U) is an fgy*-closed set in
Y. Let V.= 1y \ h(lx \ U). Then V is an fgvy*-open set in Y and
V =1y \h(1x \U) < 1y \ (1x \ h"'(B)) < 1y \ (1y \ B) = B (as
h is injective). Now U(z) > a = z, 4(1x \U) = h(z,) 4h(1x \ U)
= h(zy) < Iy \h(lx \U) =V = h(z,) € V = fgytint(V) <
fgvtint(B) = x4 € h™'(fgy*int(B)). Since z, is taken arbitrarily,
int(h=*(B)) < h=Y(fgvy*int(B)), for all B € IY.

Remark 4.17. Composition of two fgy*-closed (resp., fgy*-open)
functions need not be so, as it seen from the following example.
Example 4.18. Let X = {a,b}, 7 = {Ox,1x, A}, » = {0x,1x},
73 = {0x,1x,B,C,D} where A(a) = 0.6,A(b) = 0.5, B(a) =
B(b) = 0.4, C(a) = 0.4,C(b) = 0.6, D(a) = 0.5, D(b) = 0.6. Then
(X, 1), (X,72) and (X, 73) are fts’s. Consider two identity functions
i1 (X,1) = (X, 72) and i : (X, 72) — (X, 73). Clearly i, and iy are
fgv*-closed functions. Let i3 =iy 04y : (X, 71) = (X,73). We claim
that i3 is not fgy*-closed function. Indeed, 1x \ A € 7{, i3(1x \ A) =
Ix\A< C e FSO(X,r3). But vel;(1x \A) =D £ C = 1x \ Ais
not fgy*-closed set in (X, 73) = i3 is not fgvy*-closed function.

Similarly we can show that i3 is not fgvy*-open function though i,
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and iy are fgvy*-open functions.
Theorem 4.19. If h; : X — Y is fuzzy closed (resp., fuzzy open)
function and hy : Y — Z is fgy*-closed (resp., fgy*-open) function,
then hy o hy : X — Z is fgy*-closed (resp., fgvy*-open) function.
Proof. Obvious.

We now recall the following definitions from [3, 5, 6, 7] for ready
references.
Definition 4.20. Let (X, 1) — (Y, 72) be a function. Then h is called
an
(i) fg-closed function [3] if h(A) is fg-closed set in Y for every A € 7,
(ii) fsg-closed function [3] if h(A) is fsg-closed set in Y for every
Aerf,
(iii) fgpP-closed function [6] if h(A) is fgpB-closed set in Y for every

A e Tf,
(iv) fgs*-closed function [5] if h(A) is fgs*-closed set in Y for every
A e 1],
(v) fgr-closed function [7] if h(A) is fgy-closed set in Y for every
Aerf.

Remark 4.21. It is obvious that

(i) fgy*-closed function is fgB-closed function as well as fgy-closed
function,

(i) fsg-closed function is fgvy*-closed function,

(iii) fgs*-closed function is fgvy*-closed function.

But the converses are not true, in general, follow from the following
examples.

Also (iv) fg-closed function and fgy*-closed function are independent
concepts follow from the following examples.

Example 4.22. None of fg-closed function, fgf-closed function,
fgvy-closed function implies fgv*-closed function

Let X = {a}, n = {0x,1x,C}, 7 = {0x,1x, A, B} where A(a) =
0.45, B(a) = 0.6,C(a) = 0.3. Then (X, 7) and (X, 75) are fts’s. Con-
sider the identity function i : (X, 71) — (X, 7). Now 1x \ C € 7¢y,
i(Ix \C) =1x \ C € FSO(X, 1) as FSO(X, 1) = {0x,1x,U,V}
where A < U < 1x\ A,V > Band FyO(X,3) = {0x, 1x, W} where
W >1x\ Band FyC(X,7) = {0x, 1x,1x \ W} where 1x \ W < B.
So vel,(1x \C) = 1x £ 1x \ C = 1x \ C is not fgvy*-closed set in
(X, ) = iis not fgy*-closed function. Now 1y \ C' < 1x € 7 only
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and so cl,,(1x\C) < 1x = 1x\C'is fg-closed set in (X, ) = iis fg-
closed function. Also vel,,(1x\C) = 1x = 1x\C is fgvy-closed set in
(X, 1) = iis fgy-closed function. Again Scl,,(1x\C) < 1x = 1x\C
is fgB-closed set in (X, 75) = i is fgf-closed function.

Example 4.23. None of fg-closed function, fsg-closed function,
fgs*-closed function is implied by fgy*-closed function

Let X = {a}, n = {0x,1x,C}, o = {Ox,1x,A, B} where
A(a) = 045,B(a) = 0.6,C(a) = 0.44. Then (X,7) and (X, )
are fts’s. Consider the identity function i : (X, 7) — (X, 7). Now
FSO(X,71) = {0x,1x,U,V} where A < U < 1x \ A, V > B.
Here 1x \ C € 7f, i(1x \C) = 1x \C <V € FSO(X, 7). Then
vel,(Ix\C) =1x\C <V = 1x\Cis fgy*-closed set in (X, ) =i
is fgy*-closed function. But scl,(1x \ C) = 1x €V = 1x\ C
is not fsg-closed set in (X,7) = 4 is not fsg-closed function.
Again cl,(1x \ C) = 1x £ V = 1x \ C is not fgs*-closed set in
(X, 72) = i is not fgs*-closed function.. Also 1x \ C' < B € 7, but
cn,(1x\C)=1x £ B=1x\Cis not fg-closed set in (X, 1) = i is
not fg-closed function.

5. fg7v*-REGULAR, fgy*-NORMAL AND fg7*-COMPACT SPACES

In this section two new types of separation axioms are introduced
and characterized by fgv*-closed set. Also, a new type of fuzzy com-
pactness is introduced.

Definition 5.1. An fts (X, 7) is said to be fgvy*-regular space if for
any fuzzy point x; in X and each fgy*-closed set F'in X with x; € F,
there exist U,V € FyO(X) such that z;, €e U, F <V and U 4V.
Theorem 5.2. In an fts (X, 7), the following statements are equiva-
lent:

(i) X is fgvy*-regular,

(ii) for each fuzzy point z; in X and any fgvy*-open ¢-nbd U of xy,
there exists V' € FyO(X) such that z; € V and yclV < U,

(iii) for each fuzzy point x; in X and each fgvy*-closed set A of X with
xy & A, there exists U € FyO(X) with x; € U such that vclU f4A.
Proof (i) = (ii). Let x; be a fuzzy point in X and U, any fgy*-open
g-nbd of z;. Then 2,qU = U(z) +t > 1= 2, ¢ 1x \ U which is an
fgy*-closed set in X. By (i), there exist V,W € F~yO(X) such that
rp € Viix \U < W and V. gW. Then V < Ix \ W = ~cV <
yel(Ix \W) =1x \ W < U.
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(ii) = (iii). Let z; be a fuzzy point in X and A, an fgvy*-closed set in
X with z; € A. Then A(z) < t = z4q(1x \ A) which being fgvy*-open
set in X is fgy*-open ¢g-nbd of ;. So by (ii), there exists V € FyO(X)
such that z; € V and 7elV < 1x \ A. Then vclV 4A.

(iii) = (i). Let x; be a fuzzy point in X and F be any fgy*-closed
set in X with x; ¢ F. Then by (iii), there exists U € FyO(X) such
that x; € U and vclU /gF. Then F < 1x \ vdU (=V, say). So
Ve FyO(X) and V. qU as U fg(1x \ vclU). Consequently, X is
fgy*-regular space.

Definition 5.3. An fts (X,7) is called fgy*-normal space if for
each pair of fgy*-closed sets A, B in X with A /¢B, there exist
U,V € FYO(X) such that A< U,B <V and U 4V.

Theorem 5.4. An fts (X, 7) is fgy*-normal space if and only if for
every fgvy*-closed set F' and fgy*-open set G in X with F' < G, there
exists H € FyO(X) such that F' < H < yclH < G.

Proof. Let X be fgv*-normal space and let F' be fgvy*-closed set and
G be fgy*-open set in X with F' < G. Then F' 4(1x\G) where 1x\G
is fgvy*-closed set in X. By hypothesis, there exist H,T € F~yO(X)
such that FF < H/1x \G < T and H 4T. Then H < 1x\T < G.
Therefore, FF < H < ~yclH <~cl(1x\T)=1x\T < G.

Conversely, let A, B be two fgy*-closed sets in X with A /B.
Then A < 1x \ B. By hypothesis, there exists H € FyO(X) such
that A< H <~clH <1x\B= A< H,B <1x\~cH (=V, say).
Then V € FyO(X) and so B < V. Also as H 4(1x \ vclH), H 4V.
Consequently, X is fgy*-normal space.

We first recall the following definitions from [1, 8, 12, 10, 3] for ready
references.

Definition 5.5. Let (X, 7) be an fts and A € I*. A collection U of
fuzzy sets in X is called a fuzzy cover of A if JU > A [12]. If each
member of U is fuzzy open (resp., fuzzy regular open, fuzzy ~y-open)
in X, then U is called a fuzzy open [12] (resp., fuzzy regular open [1],
fuzzy ~y-open [4]) cover of A. If, in particular, A = 1x, we get the
definition of fuzzy cover of X as | JU = 1x [8].

Definition 5.6. Let (X, 7) be an fts and A € I*. Then a fuzzy cover
U of A (resp., of X) is said to have a finite subcover U if U is a finite
subcollection of U such that |JUy > A [12]. If, in particular A = 1y,
we get [JUy = 1x [8].

Definition 5.7. Let (X,7) be an fts and A € I*X. Then A is called
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fuzzy compact [8] (resp., fuzzy almost compact [9], fuzzy nearly com-

pact [15], fuzzy ~y-compact [4]) set if every fuzzy open (resp., fuzzy

open, fuzzy regular open, fuzzy vy-open) cover U of A has a finite sub-

collection Uy such that |JUy > A (resp., U cdU > A, UUy > A,
Uely

UU > A). If, in particular, A = 1y, we get the definition of fuzzy

compact [8] (resp., fuzzy almost compact [9], fuzzy nearly compact

[10], fuzzy ~y-compact [4]) space as | JUy = 1x (resp., U cdU = 1k,

Uelly

UZ/{O - 1)(, UZ/{O - 1)()

Let us now introduce the following concept.
Definition 5.8. Let (X,7) be an fts and A € IX. Then A is called
fgv*-compact if every fuzzy cover U of A by fgy*-open sets of X has
a finite subcover. If, in particular, A = 1x, we get the definition of
fgv*-compact space X.
Theorem 5.9. Every fgvy*-closed set in an fgvy*-compact space X is
fgvy*-compact.
Proof. Let A(€ IX) be an fgvy*-closed set in an fgy*-compact space
X. Let U be a fuzzy cover of A by fgvy*-open sets of X. Then
V =U(1x \ A) is a fuzzy cover of X by fgy*-open sets of X. As
X is fgy*-compact space, V has a finite subcollection V, which also
covers X. If V, contains 1x \ A, we omit it and get a finite subcover
of A. Hence A is fgvy*-compact set.
Remark 5.10. It is clear from definitions that fgvy*-compact space
is fuzzy compact (resp., fuzzy almost compact, fuzzy nearly compact,
fuzzy ~y-compact) space.

6. fgv"-CONTINUOUS AND fgy*-IRRESOLUTE FUNCTIONS

After the introduction of fuzzy continuity [8] different types of gener-
alized version of fuzzy continuous-like functions have been introduced
and studied in [3, 5, 6, 7]. Here a new type of generalized version
of fuzzy continuous-like function is introduced which is more general
than the notion of fuzzy continuous function. Then it is proved that
fgv*-continuous image of an fgvy*-regular (resp., fgy*-normal, fgvy*-
compact) space is fuzzy regular [14] (resp., fuzzy normal [13], fuzzy
compact [8], fuzzy almost compact [9], fuzzy nearly compact [10])
space. Again a new type of generalized version of fuzzy irresolute func-
tion, viz., fgy*-irresolute function is introduced and studied which is
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strictly weaker than that of fgy-continuous function and independent
concept of fuzzy continuous function. But it is shown that under fgv*-
irresolute function fgvy*-regularity, fgy*-normality, fgy*-compactness
remain invariant.

Let us first recall the following definitions from [4, 8, 14, 13] for
ready references.
Definition 6.1 [8]. A function h: X — Y is said to be fuzzy contin-
uous function if A~1(V) is fuzzy open set in X for every fuzzy open
set Vin Y.
Definition 6.2 [4]. A function f: X — Y is said to be fuzzy vy-open
if f(U) is fuzzy ~y-open set in Y for every fuzzy y-open set U in X.
Definition 6.3 [4]. An fts (X, 7) is called fT-space if every fuzzy
~v-open set in X is fuzzy open set in X.
Definition 6.4 [14]. An fts (X, 7) is called fuzzy regular space if for
any fuzzy point z,, in X and any fuzzy closed set F' in X with z, € F,
there exist fuzzy open sets U,V in X such that z, € U, F <V and
U 4V.
Definition 6.5 [13]. An fts (X, 7) is called fuzzy normal space if for
each pair of fuzzy closed sets A, B in X with A 4B, there exist fuzzy
open sets U,V in X such that A< U, B <V and U 4V.

Now we introduce the following concept.
Definition 6.6. A function h: X — Y is said to be fgvy*-continuous
function if A=1 (V) is fgy*-closed set in X for every fuzzy closed set V'
inY.
Remark 6.7. Since every fuzzy closed set is fuzzy 7-closed set, it
is clear that fuzzy continuous function is fgvy*-continuous, but the
converse need not be true, in general, as it seen from the following
example.
Example 6.8. fgvy*-continuity does not imply fuzzy continuity.
Let X = {a,b}, 1 ={0x,1x}, 70 = {Ox, 1x, A} where A(a) = A(b) =
0.5. Then (X, 7) and (X, 79) are fts’s. Consider the identity function
i:(X,m) — (X, 7). Since every fuzzy set in (X, 1) is fgy*-closed
set in (X, 7), so clearly ¢ is fgy*-continuous function. But A € 7,
i'(A) = A& 1 = iis not a fuzzy continuous function.
Theorem 6.9. Let h: (X,7) — (Y,0) be a function. Then the fol-
lowing statements are equivalent:
(i) h is fgy*-continuous function,
(ii) for each fuzzy point z,, in X and each fuzzy open nbd V' of h(z,) in
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Y |, there exists an fgy*-open nbd U of z,, in X such that h(U) <V,
(iii) h(fgy*cl(A)) < cl(h(A)), for all A € I¥,

(iv) fgy*cl(h~Y(B)) < h=Y(cIB), for all B € IV.

Proof (i) = (ii). Let x, be a fuzzy point in X and V, any fuzzy open
nbd of h(x,) in Y. Then z, € h=*(V) which is fgy*-open in X (by
(i)). Let U = h=Y(V). Then h(U) = h(h=*(V)) < V.

(ii) = (i). Let A be any fuzzy open set in Y and z,, a fuzzy point in X
such that z, € h™'(A). Then h(z,) € A where A is a fuzzy open nbd
of h(z,)inY. By (ii), there exists an fgy*-open nbd U of z,, in X such
that h(U) < A. Then z, € U < h™1(A) = z, € U = fgy*int(U) <
fgyrint(h~1(A)). Since x, is taken arbitrarily and h~'(A) is the union
of all fuzzy points in h™*(A), h1(A) < fgv*int(h 1 (A)) = h™(A) is
an fgv*-open set in X = h is an fgvy*-continuous function.

(i) = (iii). Let A € IX. Then cl(h(A)) is a fuzzy closed
set in Y. By (i), h7Y(cl(h(A))) is fgy*-closed set in X.
Now A § h=t(h(A)) § h=t(cl(h(A))) and so fgy*cl(A) <
o (el (A)) = 1= EA(R(A)) = W gl (A) < el(h(A)).
(iii) = (i). Let V be a fuzzy closed set in Y. Put U = h~'(V). Then
U € I%. By (iii), h(fgycl(V)) < cl(h(U)) = cl(h(h~"(V))) < cIV =
V = fgyve(U) < h"' (V) =U = Uis fgy*-closed set in X = h is
fgvy*-continuous function.

(iii) = (iv). Let B € IY and A = h™'(B). Then A € I¥. By (iii),
h(fgv cl(A)) < c(h(A)) = h(fgycl(hH(B))) < c(h(h"}(B))) <
cB = fgy*c(h™*(B)) < h=!(cIB).

(iv) = (iii). Let A e IX. Then h(4) e IY. By
(), ford((h(A)) < hAMA) = ford(d) <
Farcl(h (h(4))) < A (cl(h(A))) = h(fgrcl(A)) < cl(h(A).
Remark 6.10. A composition of two fgy*-continuous functions need
not be so, as it seen from the following example.

Example 6.11. Let X = {a,b}, 7 = {Ox,1x, A}, » = {0x, 1x},
73 = {0x, lx, B} where A(a) = 0.4, A(b) = 0.7, B(a) = 0.6, B(b) =
0.3. Then (X, 7), (X,7) and (X, 13) are fts’s. Consider two iden-
tity functions i1 : (X, 7) — (X, 1) and iy : (X, 72) — (X, 73). Then
clearly 4; and iy are fgy*-continuous functions. Now 1x \ B € 75. So
(ia011) Y (1x\B)=1x \B< A€ FSO(X, 7). But vel,,(1x \ B) =
lxy £ A= 1x \ Bisnot fgy*-closed set in (X, 7;) = iy 04y is not an
fgvy*-continuous function.

Theorem 6.12. If Ay : X — Y is fgy*-continuous function and
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hy : Y — Z is fuzzy continuous function, then ho o hy : X — Z is
fgvy*-continuous function.

Proof. Obvious.

Theorem 6.13. If a bijective function h : X — Y is fgvy*-continuous,
fuzzy open function from an fgy*-regular, f7,-space X onto an fts Y,
then Y is fuzzy regular space.

Proof. Let y, be a fuzzy point in Y and F, a fuzzy closed set in Y
with y, € F. As h is bijective, there exists unique x € X such that
h(z) =y. So h(z,) & F = xo & h™'(F) where h™'(F) is fgy*-closed
set in X (as h is an fg7y*-continuous function). By hypothesis, there
exist U,V € FyO(X) such that z, € U h"'(F) < V and U /V.
Then h(z,) € h(U), F = h(h™Y(F)) (as h is bijective)< h(V) and
h(U) /qh(V). Since X is fT,-space, U,V are fuzzy open sets in
X. Now as h is a fuzzy open function, h(U), (V) are fuzzy open
sets in Y with y, € A(U),F < h(V) and h(U) /qh(V) (Indeed,
h(U)qh(V') = there exists z € Y such that [A(U)](z) + [h(V)](z) >
1= U (2))+V(h'(2)) > 1 as h is bijective = UqV/, a contradic-
tion). Hence Y is a fuzzy regular space.

In a similar manner we can prove the following theorems easily.
Theorem 6.14. If a bijective function h : X — Y is fgvy*-continuous,
fuzzy open function from an fgy*-normal, f7,-space X onto an fts Y,
then Y is fuzzy normal space.

Theorem 6.15. If a bijective function h : X — Y is fgvy*-continuous,
fuzzy ~-open function from an fgvy*-regular (resp., fgvy*-normal) space
X onto an fT,-space Y, then Y is fuzzy regular (resp., fuzzy normal)
space.

Definition 6.16. A function h : X — Y is called fuzzy generalized
y*-irresolute ( fgy*-irresolute, for short) function if A=1(U) is an fgvy*-
open set in X for every fgy*-open set U in Y.

Now we state the following two theorems for which the proofs are

very similar to that of Theorem 6.13.
Theorem 6.17. If a bijective function h : X — Y is fgy*-irresolute,
fuzzy ~-open function from an fgvy*-regular (resp., fgvy*-normal) space
X onto an fts Y, then Y is an fgvy*-regular (resp., fgy*-normal) space.
Theorem 6.18. If a bijective function h : X — Y is fgvy*-irresolute,
fuzzy open function from an fgvy*-regular (resp., fgy*-normal), fT,-
space X onto an fts Y, then Y is fgvy*-regular (resp., fgy*-normal)
space.
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Theorem 6.19. A function h: X — Y is fgvy*-irresolute function if
and only if for each fuzzy point x, in X and each fgy*-open nbd V
in Y of h(z,), there exists an fgvy*-open nbd U in X of z, such that
hU) < V.

Proof. Let h : X — Y be an fgvy*-irresolute function. Let z, be a
fuzzy point in X and V' be any fgvy*-open nbd of h(z,) in Y. Then
h(z,) € V = x, € ™1 (V) which being an fgy*-open set in X is an
fgvy*-open nbd of z, in X. Put U = h=%(V). Then U is an fgy*-open
nbd of z, in X and h(U) = h(h"}(V)) < V.

Conversely, let A be an fgy*-open set in Y and z, be any fuzzy
point in X such that x, € h™'(A). Then h(z,) € A. By hy-
pothesis, there exists an fgvy*-open nbd U of x, in X such that
h(U) < A=z, €U = fgy'int(U) < fgytint(h~*(A)). Since x, is
taken arbitrarily and h='(A) is the union of all fuzzy points in h=1(A),
h™H(A) < fgviint(h'(A)) = h™'(A) = fgy*int(h™'(A)) = h™'(4)
is fgy*-open set in X = h is an fgvy*-irresolute function.

Theorem 6.20. Let h: X — Y be an fgy*-continuous function from
X onto an fts Y and A(€ I*) be an fgy*-compact set in X. Then
h(A) is a fuzzy compact (resp., fuzzy almost compact, fuzzy nearly
compact) set in Y.

Proof. Let U = {U, : o € A} be a fuzzy cover of h(A) by
fuzzy open (resp., fuzzy open, fuzzy regular open) sets of Y. Then
hA) < (JUe = A < YU = (27" (). Then V =

acA a€el a€el

{h"1(U,) : @ € A} is a fuzzy cover of A by fgy*-open sets of X
as h is an fgvy*-continuous function. As A is fgy*-compact set in X,

there exists a finite subcollection Ay of A such that A < U h=Y(Uy)
aclNg
= h(A) < h( U h1(U,) < U U, = h(A) is fuzzy compact (resp.,
a€lp a€lg
fuzzy almost compact, fuzzy nearly compact) set in Y.

Since fuzzy open set fgy*-open, we can state the following theorems
easily the proofs of which are same as that of Theorem 6.20.
Theorem 6.21. Let h: X — Y be an fgvy*-irresolute function from
X onto an fts Y and A(€ IX) be an fgy*-compact set in X. Then
h(A) is fgv*-compact (resp., fuzzy compact, fuzzy almost compact,
fuzzy nearly compact) set in Y.

Theorem 6.22. Let h: X — Y be an fgvy*-continuous function from
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an fgvy*-compact space X onto an fts Y . Then Y is fuzzy compact
(resp., fuzzy almost compact, fuzzy nearly compact) space.
Theorem 6.23. Let h: X — Y be an fgvy*-irresolute function from
an fgy*-compact space X onto an fts Y . Then Y is fgvy*-compact
(resp., fuzzy compact, fuzzy almost compact, fuzzy nearly compact)
space.

Remark 6.24. It is clear from definitions that (i) fg7vy*-irresolute
function is fgy*-continuous, but the converse may not be true, as it
seen from the following example.

Also (ii) fuzzy continuity and fgvy*-irresoluteness are independent con-
cepts follow from the following examples.

Example 6.25. None of fuzzy continuous function, fgv*-continuous
function implies that of fgv*-irresolute function

Let X = {a}, n = {Ox,1x,A,B}, » = {0x,1x} where A(a) =
0.45,B(a) = 0.6. Then (X.r;) and (X, 7y) are fts’s. Consider the
identity function i : (X,71) — (X,7). Now every fuzzy set in
(X, 72) is fgvy*-closed set in (X, 7). Consider the fuzzy set C' de-
fined by C(a) = 0.7. Then C is fgvy*-closed set in (X,72). Now
iH(C)=C < C e FSO(X,r). But vcl,,C = 1x £ C = C is not
fgv*-closed set in (X, 7)) = i is not fgvy*-irresolute function. But
clearly 7 is fuzzy continuous as well as fgvy*-continuous function.
Example 6.26. There exists an fgvy*-irresolute function which is not
fuzzy continuous

Let X = {a,b}, m = {0x,1x}, m» = {0x,1x, A} where A(a) =
0.4,A(b) = 0.7. Then (X,7) and (X, 72) are fts’s. Consider the
identity function i : (X, 71) — (X, 7). Since every fuzzy set in (X, 71)
is fgy*-closed set in (X, 1), clearly i is fg7y*-irresolute function. But
i'(A) = A & 1 = i is not fuzzy continuous function.

Now to establish the mutual relationships of these newly defined
types of functions with the functions defined in [3, 5, 6, 7], we have to
recall the following functions from [3, 5, 6, 7] for ready references.
Definition 6.27. Let h: (X, 71) — (Y, 72) be a function. Then h is
called
(i) fg-continuous [3] if h=1(V) is fg-closed set in X for every V € 75,
(ii) fgB-continuous [6] if h='(V) is fgf-closed set in X for every
Ve s,

(iii) fsg-continuous [3] if A=1(V) is fsg-closed set in X closed set in
X for every V € 75,
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(iv) fgs*-continuous function [5] if h=*(V) is fgs*-closed set in X for
every V € 73,

(v) fgvy-continuous [7] if h=1(V) is fgy-closed set in X for every
Ve

Remark 6.28. It is clear from definitions that

(i) every fgy*-continuous function is fgy-continuous as well as fg[-
continuous,

(ii) fsg-continuous functions and fgs*-continuous functions are both
fgvy*-continuous functions.

But the converses are not true, in general, follow from the following
examples.

Also (iii) fg-continuity and fg7y*-continuity are independent concepts
as it seen from the following examples.

Example 6.29. None of fg-continuity, fg/S-continuity, fgvy-
continuity implies that of fg~v*-continuity

Let X = {a}, m = {0x,1x,A,B}, » = {0x,1x,C} where A(a) =
0.45, B(a) = 0.6,C(a) = 0.3. Then (X, 7) and (X, ) are fts’s. Con-
sider the identity function i : (X, 71) — (X, 7). Now 1y \ C € 75,
i(1x\C)=1x\C <1x\C € FSO(X, 7). But ycl,(1x \ C) =
Iy £ 1x\C = 1x \ C is not fgvy*-closed set in (X,7) = i is not
fgy*-continuous function. But as 1x is the only fuzzy open set in
(X, 71) containing 1x \ C, clearly i is fg-continuous, fgS-continuous
and fgvy-continuous function.

Example 6.30. None of fg-continuity, fsg-continuity, fgs*-
continuity is implied by fgvy*-continuity

Let X = {a}, m = {0x,1x,A,B}, » = {0x,1x,C} where A(a) =
0.45, B(a) = 0.6,C(a) = 0.44. Then (X, ) and (X, ) are fts’s. Con-
sider the identity function i : (X, 7) — (X, 7). Now 1x \ C € 73,
it(1x \C) = 1x \C < B € FSO(X, 7). Now vcl,(1x \ C) =
Ix \C < B = 1x \ C is fgy*-closed set in (X,7) = iis fgy*-
continuous function. But scl,(1x \ C) = 1x € B = 1x \ C is
not fsg-closed set in (X,7) = 4 is not fsg-continuous function.
Also cl;,(1x \ C) = 1x £ B = 1x \ C is not fgs*-closed set in
(X,7) = i is not fgs*-continuous function. Again 1x \ C' < B € 7y,
but cl,, (1x\C) =1x £ B = 1x\Cisnot fg-closed set in (X, ) = i
is not fg-continuous function.



40 ANJANA BHATTACHARYYA

7. fgy*-T5 SPACE

The notion of fuzzy Ty-space was introduced in [14]. Afterwards,
several types of fuzzy separation axioms have been introduced and
studied by many mathematicians. In this context here we introduce a
new type of generalized version of separation axiom in fuzzy topology.
Afterwards, a strong and weak form of the notion of fgv*-continuous
function are introduced and also some of their applications are shown.

We first recall the following definition and theorem from [14, 15] for
ready references.

Definition 7.1 [14]. An fts (X, 7) is called fuzzy T-space if for
any two distinct fuzzy points z, and yg; when z # vy, there exist
fuzzy open sets Uy, Uy, Vi, Vs, such that z, € Ui,ysqVi,Ur Vi and
2aqUs,ys € Vo,Us fgVa; when © = y and o < (3 (say), there exist
fuzzy open sets U and V in X such that z, € U,ygqV and U 4V'.
Theorem 7.2 [15]. An fts (X, 7) is fuzzy Ty-space if and only if for
any two distinct fuzzy points z, and ysz in X; when x # y, there exist
fuzzy open sets U,V in X such that z,qU, ygqV and U 4V; when
r =y and a < [ (say), x, has a fuzzy open nbd U and yz has a fuzzy
open g-nbd V such that U 4V.

Let us introduce the following concept.

Definition 7.3. An fts (X, 7) is called fgy*-T5 space, if for any two
distinct fuzzy points x, and yg in X; when x # y, there exist fgvy*-
open sets U,V in X such that z,qU, ygqV and U 4V; when z =y
and o < 3 (say), ¥, has an fgy*-open nbd U and yz has an fgy*-open
g-nbd V such that U 4V.

Theorem 7.4. If an injective function h : X — Y is fgvy*-continuous
function from an fts X onto a fuzzy T,-space Y, then X is fgv*-Ts
space.

Proof. Let z, and yg be two distinct fuzzy points in X. Then h(z,)
(= za, say) and h(ys)(= wg, say) are two distinct fuzzy points in Y.

Case I. Suppose x # y. Then z # w. Since Y is fuzzy Ts-space, there
exist fuzzy open sets U,V in Y such that z,qU,wgqV and U /V.
As h is fgy*-continuous function, h=*(U) and h=*(V) are fgy*-open
sets in X with z,qh ™ (U),ysqh ™' (V) and h=1(U) gh~ (V) [Indeed,
24U = U2)+a>1=U(h@@)+a>1= LUz +a>1=
Toqh 1 (U). Again, h™(U)gh™' (V) = there exists t € X such that
(LY T](t) + [P ()](t) > 1 = U(h(®)) + V(R(t)) > 1 = UqV, a
contradiction].
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Case II. Suppose z = y and a < [ (say). Then z = w and
a < B. Since Y is fuzzy Ts-space, there exist a fuzzy open nbd
U of z, and a fuzzy open g-nbd V of wg such that U V. Then
Ui) > a = [ O)(x) > a = z, € W U),ysqh (V) and
=Y U) 4~ (V) where h=}(U) and h='(V) are fgy*-open sets in X
as h is fgv*-continuous function. Consequently, X is fgv*-Ts-space.

In a similar manner, we can prove the following theorems.
Theorem 7.5. If a bijective function h : X — Y is fgy*-irresolute
function from an fts X onto an fgvy*-T space Y, then X is fgv*-Ts
space.
Theorem 7.6. If a bijective function h : X — Y is fgy*-open func-
tion from a fuzzy Th-space X onto an fts Y, then Y is fgy*-Ts-space.
Definition 7.7. A function h: X — Y is called

(i) strongly fgvy*-continuous if h=1(V) is fuzzy closed set in X for
every fgy*-closed set V in Y,

(i) weakly fgvy*-continuous if h=1(V) € FyC(X) for every fgv*-
closed set V in Y.
Remark 7.8. It is clear from above discussion that every strongly
fgvy*-continuous function is weakly fgvy*-continuous, fg~v*-continuous
and fgvy*-irresolute functions. But the converses are not true, in gen-
eral, as it follow from the following example.
Example 7.9. None of weakly fgv*-continuity, fgv*-continuity and
fgv*-irresoluteness implies strongly fg~v*-continuity
Let X = {a,b}, m = {0x,1x}, m» = {0x,1x, A} where A(a) =
0.4,A(b) = 0.7. Then (X,7) and (X, ) are fts’s. Consider the
identity function ¢ : (X,7) — (X, 7). Since every fuzzy set in
(X, ) is fuzzy v-closed as well as fgy*-closed set in (X, 1), clearly
¢ is weakly fgvy*-continuous function, fgy*-continuous function and
fgv*-irresolute function. Now consider the fuzzy set B defined by
B(a) = B(b) = 0.5. Since B is fuzzy 7-closed set in (X, 72), B is
clearly fgy*-closed set in (X, 7). But i7'(B) = B € 7{ = i is not
strongly fgv*-continuous function.
Remark 7.10. Every weakly fgvy*-continuous function is fgv*-
continuous function as well as fgvy*-irresolute, but the converses are
not true, in general, follow from the following examples.
Example 7.11.  fgy*-continuity does not imply weakly fgv*-
continuity
Let X = {a,b}, m = {0x,1x,A}, » = {O0x,1x} where A(a) =
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0.5,A(b) = 0.6. Then (X,7) and (X,7) are fts’s. Consider the
identity function i : (X, 7)) — (X, 7). Clearly i is fg~v*-continuous
function. Since every fuzzy set in (X, 1) is fgvy*-closed set in (X, 73),
Ais also fgy*-closed set in (X, 7). Now i 1(A) = A & FyC(X, 1)) as
(cl(intA)) N(int(clA)) = 1x £ A = i is not weakly fgv*-continuous
function.

Example 7.12. fgvy*-irresoluteness does not imply weakly fgv*-
continuity

Let X = {a,b}, m = {0x,1x,A}, » = {0x,1x, B} where A(a) =
0.5,A(b) = 04,B(a) = 0.5,B(b) = 0.6. Then (X, 7) and (X, )
are fts’s. Consider the identity function i : (X, 7)) — (X, 7). Now
FSO(X,n) = {0x,1x,T} where A < T < 1x \ A, FvC(X, 1) =
{0x,1x, M} where M < 1x\A, FSO(X,75) ={0x,1x,U} where U >
B, the collection of all fgvy*-closed sets in (X, 75) = FyC(X, 1) =
{0x,1x,V} where V' 2 B. Now consider the fuzzy set C' such that
C < B. Then clearly C € FyC(X, 7). Now i '(C) = C = C'is
fgv*-closed set in (X, 7). But if C' 2 B, then 1x is the only fuzzy
semiopen set in (X, 7) containing C' and so vcl,C < 1x = C'is
fgv*-closed set in (X, 7)) = i is fgy*-irresolute function. Next con-
sider the fuzzy set D defined by D(a) = 0.6, D(b) = 0.5. Then as
D # B, D is fgy*-closed set in (X,7). Now i~}(D) = D. But
(clintD) N(intclD) = 1x \ A £ D = D ¢ FyC(X,7) = i is not
weakly fgv*-continuous function.

Remark 7.13. It is clear from definitions that

(i) strongly fgv*-continuity implies fuzzy continuity, but not con-
versely as follows from the next example,

(ii) weakly fgvy*-continuity and fuzzy continuity are independent con-
cepts, see the following examples.

Example 7.14. Fuzzy continuity does not imply strongly fgv*-
continuity as well as weakly fgy*-continuity

Consider Example 7.11. Here ¢ is not weakly fgvy*-continuous function
and so by Remark 7.8, 7 is not also strongly fgv*-continuous function.
Obviously ¢ is fuzzy continuous function.

Example 7.15. Weakly fgvy*-continuous function does not imply
fuzzy continuous function

Consider Example 7.9. Here 7 is weakly fgv*-continuous function.
But clearly 4 is not fuzzy continuous function as A € 7, but i~ }(A4) =

Ad Ty
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Since fuzzy open set is fuzzy y-open and hence fgy*-open, we can
prove the following theorems easily.
Theorem 7.16. If a bijective function h : X — Y is strongly fgv*-
continuous, fuzzy open function from a fuzzy regular (resp., fuzzy
normal) space X onto an fts Y, then Y is fgy*-regular (resp., fgvy*-
normal) space.
Theorem 7.17. If a bijective function A : X — Y is weakly fgv*-
continuous, fuzzy v-open function from an fgy*-regular (resp., fgv*-
normal) space X onto an fts Y, then Y is fgy*-regular (resp., fgv*-
normal) space.
Theorem 7.18. If a bijective function h : X — Y is strongly fgv*-
continuous, fuzzy v-open function from an fgy*-regular (resp., fgv*-
normal) space X onto an fts Y, then Y is fgy*-regular (resp., fgv*-
normal) space.
Theorem 7.19. If a bijective function h : X — Y is weakly fgv*-
continuous, fuzzy open function from a fuzzy regular (resp., fuzzy
normal), fT.-space X onto an fts Y, then Y is fgy*-regular (resp.,
fgv*-normal) space.
Theorem 7.20. If a bijective function h : X — Y is strongly fgv*-
continuous (resp., weakly fgy*-continuous) function from an fts X
onto an fgy*-Ty space Y, then X is fuzzy T, space (resp., fgv*-Th
space).
Theorem 7.21. If a bijective function h : X — Y is strongly fgv*-
continuous (resp., weakly fgvy*-continuous) function from a fuzzy com-
pact (resp., fuzzy ~-compact) space X onto an fts Y, then Y is fgvy*-
compact space.
Note 7.22. It is clear from definitions that composition of two
strongly fgy*-continuous (resp., weakly fgvy*-continuous) functions
is also so.
Theorem 7.23. (i) If hy : X — Y is strongly fgy*-continuous and
he Y — Z is weakly fg~v*-continuous functions, then hoohy : X — Z
is strongly fgv*-continuous function.
(ii) If by : X — Y is weakly fgy*-continuous and hy : Y — Z is
strongly fgvy*-continuous functions, then hy o hy : X — Z is weakly
fgvy*-continuous function.
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