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A GENERAL FIXED POINT THEOREM FOR TWO
PAIRS OF MAPPINGS SATISFYING A MIXED
IMPLICIT RELATION IN G - METRIC SPACES

VALERIU POPA AND ALINA-MIHAELA PATRICIU

Abstract. In this paper we extend Theorem 3.2 [32] to G - metric
space. As applications, we obtain new results for mappings satisfying
contractive conditions of integral type and for mappings satisfying ¢
- contractive conditions.

1. INTRODUCTION

Let (X,d) be a metric space and S, T be two self map-
pings of X. Jungck [13] defined S and T to be compatible if
lim,, o d(STx,, TSxz,) = 0 whenever {z,} is a sequence in X such
that lim,, o Sz, = lim, oo Tx, =t for some ¢t € X.

This concept was frequently used to prove the existence theorems
in fixed point theory.

A point z € X is a coincidence point of S and T if w = Sx = Tx
and w is said to be a point of coincidence for S and 7. The set of
coincidence points of S and T is denoted by C (S, T).

In [14], Jungck introduced the notion of weakly compatible map-

pings.

Definition 1.1 ([14]). Let f, g be self mappings of a nonempty set
X. fand g are weakly compatible if fgu = gfu for all u € C (f, g).
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The study of common fixed points for noncompatible mappings is
also interesting. The work in this regard has been initiated by Pant
21), [22].

Aamri and El - Moutawakil [1] introduced a generalization of non-
compatible mappings.

Definition 1.2 ([1]). Let S and T be two self mappings of a metric
space (X, d). We say that S and T satisfy (E.A) - property if there
exists a sequence {x,} in X such that lim,_,, Sz, = lim, ., Tz, = t,
for some t € X.

Remark 1.3. Two self mappings S and T of a metric space (X,d)
are noncompatible if there exists {x,} in X such that lim, o Sz, =
lim, oo Tz, =t for somet € X butlim, o d(STx,, T'Sx,) is nonzero
or nonexistent. Therefore, two noncompatible self mappings of a met-
ric space (X, d) satisfy property (E.A).

Definition 1.4 ([16]). Two pairs (A, S) and (B, T) of self mappings
of a metric space (X, d) satisfy property (E.A) if there exist two se-
quences {z,} and {y,} in X such that lim,_,., Az, = lim, .., Sz, =
lim,, oo By, = lim,,_.o, Ty, =t, for some t € X.

In 2011, Sintunavarat and Kumam [36] introduced the notion of
common limit range property.

Definition 1.5 ([36]). A pair (A, S) of self mappings of a metric space
(X, d) is said to satisfy the common limit range property with respect
to S (denoted CLR(g) - property) if there exists a sequence {z,} in
X such that lim,,_, Az, = lim,_,, Sz, =t, for some t & S(X).

Thus we can infer that a pair (A,S) satisfying (E.A) - property,
along with the closedness of the subspace S (X) always have CLRg)
- property with respect to S.

Recently, Imdad et al. [10] extended the notion of common limit
range property to two pairs of self mappings.

Definition 1.6 ([10]). Two pairs (A, S) and (B, T) of self mappings of
a metric space (X, d) are said to satisfy common limit range property
with respect to (S, 7) (denoted CLRs 1) - property) if there exist two
sequences {x, } and {y, } in X such that lim,_,. Az, = lim, . Sz, =
limy,, 00 BYy = limy, 00 Ty, = t, for some t € S(X) NT (X).

Some results for pairs of mappings satisfying CLR(s) - and CLR s )
- property are obtained in [11], [12] and in other papers.
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Quite recently [25], the first present author introduced a new type
of common limit range property.

Definition 1.7 ([25]). Let (A, S) and T be self mappings of a metric
space (X,d). The pair (A4,S) is said to satisfy a common limit range
property with respect to 7' (denoted C' LR syr - property) if there
exists a sequence {x,} in X such that lim,,_,o, Az, = lim, ,,, Sz, =1,
for some t € S(X)NT (X).

Example 1.8. Let (R, d) be the metric space endowed with the usual

metric d and Ax = I22+1, Se =2 Ter=x+1 Then

S(X) = Boo) T (X) = {Z,oo), S(X)NT(X) = Boo)

Let {x,} be a sequence in X such that lim,, . x, = 0. Then

lim Az, = lim an=%€S(X)ﬂT(X).

n—o0 n—oo
Hence (A, S) and T satisfy CLRasyr - property.

Remark 1.9. Let A, B, S and T be self mappings of a metric space.
As in Ezample 1.8, (A,S) and T satisfy CLR,syr - property and
Bx =1 + 1.

Let {y,} be a sequence in X such that lim, .y, = 0. Then
. . 1 1
lim By, = lim Ty, = - # =.

n—oo

Hence, (A, S) and (B,T) do not satisfy CLRsr) - property.

In 1997, Alber and Guerre - Delabriere [3] defined the concept of
weak contraction as a generalization of contraction and established the
existence of fixed points for self mappings in Hilbert spaces. Rhoades
[33] extended this concept in metric spaces. In [5], the authors studied
the existence of fixed points for pairs of (i, ) - weak contractive
mappings. New results are obtained in [9] and in other papers. Also,
some fixed point theorems for mappings with common limit range
property satisfying (¢, ¢) - weak contractive conditions are proved in
[11] and [12].

Quite recently, a generalization of (¢, ¢) - weak contractive condi-
tions is determined in [32].
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Definition 1.10 ([15]). A function ¢ : [0,00) — [0, 00) is an altering
distance if:

(11) : 1 is increasing and continuous,
(1) = (t) = 0 if and only if t = 0.

Some fixed point theorems involving altering distance have been

studied in [27] and [35].

Definition 1.11 ([30]). A function ¢ : [0,00) — [0,00) is an almost
altering distance if:

(11) : ¢ is continuous,

(19) : 9 (t) = 0 if and only if t = 0.

Remark 1.12. Every altering distance is an almost altering distance,
t,t €0,1]

1t € (1,00)

an almost altering distance, which is not an altering distance.

but the converse is not true. For example, ¢ (t) = {

2. PRELIMINARIES

In [7], [8], Dhage introduced a new class of generalized metric spaces,
named D - metric space.

Mustafa and Sims [18], [19] proved that most of the claims concern-
ing the fundamental topological structures on D - metric spaces are
incorrect and introduced the appropriate notion of generalized metric
space, named G - metric space. In fact, Mustafa and Sims and other
authors studied many fixed point results for self mappings under cer-
tain conditions in [18] - [20] and in other papers.

Definition 2.1 ([19]). Let X be a nonempty set and G : X* — R,
be a function satisfying the following properties:
(G1) : G(z,y,2) =0if z =y = 2,
(Gy) : 0 < G(x,z,y) for all x,y € X with z # y,
(G3) : G(z,y,y) < G(z,y, 2) for all z,y,z € X with z # v,
(G4) : G(z,y,2) = G(y,z,x) = ... (symmetry in all three variables),
(Gs) : G(z,y,2) < G(x,a,a)+G(a,y, z) forall z,y, z,a € X (rectangle
inequality).

The function G is called a G - metric on X and (X, G) is called a
G - metric space.

Remark 2.2. Let (X,G) be a G - metric space. If y = z, then
G (x,y,y) is a quasi - metric on X. Hence, Q (z,y) = G (z,y,y) is
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a quast - metric and since every metric space is a particular case of
quasi - metric space, it follows that the notion of G' - metric space is
a generalization of a metric space.

Lemma 2.3 ([19]). Let (X,G) be a G - metric space. The function
G(z,y, z) is jointly continuous in all three of its variables.

Definition 2.4 ([19]). Let (X, G) be a G - metric space. A sequence
{z,} in X is said to be G - convergent if for € > 0, there exists z € X
and k € N such that for all m,n € N, m,n >k, G(z,x,, ) < €.

Lemma 2.5 ([19]). Let (X,G) be a G - metric space. The following
properties are equivalent:

1) {z,} is G - convergent to x;

2) G(xp, Tn,x) = 0 as n — oo;

3) G(xp,x,x) = 0 as n — oo;

4) G(xp, T, ) — 0 as n,m — 00.

The notion of new limit range property in GG - metric spaces is
similar to the notion from metric space (Definition 1.7).

3. IMPLICIT RELATIONS

Several fixed point theorems and common fixed point theorems have
been unified considering a general condition by an implicit function
[23], [24] and other papers.

The study of fixed points for mappings satisfying implicit relations
in G - metric spaces is initiated in [28], [29].

The study of fixed points for a pair of mappings with common limit
range property in metric spaces satisfying an implicit relation is ini-
tiated in [11]. The study of fixed points for pairs of mappings with
common limit range property in G - metric spaces is initiated in [30]
and [31].

In 2008, Ali and Imdad [4] introduced a new type of implicit relation.

Let F be the family of lower semi - continuous functions F' : RY — R
satisfying the following conditions:

(Fy): F(t,0,t,0,0,t) >0, Vt > 0.
(Fy) : F(t,0,0,t,¢,0) >0, Vi > 0,
(F3) : F(t,t,0,0,t,t) >0, Vt > 0.

In [32] the present authors introduced two new types of implicit

relations.
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Let F* be the set of all lower semi - continuous functions F' : Ri —
R satisfying the following conditions:
(Fy): F(t,0,t,0,0,t) > 0, Vt > 0.
(Fy): F(t,0,0,t,¢,0) >0, Vt > 0,
(F¥) : F(t,t,0,0,t,t) > 0, Vt > 0.

Example 3.1. F(ty,...,t5) = t1 — kmax {to, t3,t4,t5,t6}, k € [0,1].
Example 3.2. F(t4, .. ,tﬁ) =t; — kmax {tg,tg,tél,éﬂ} k € [0,1].
Example 3.3. F(tq,...,t5) =

) =

Example 3.4. F(tq,...,1¢
a, bc>0anda+b+c§1

Example 3.5. F(t1,...,tg) = t;—amax {ta, t3, 4} — (1—) (ats + btg),
€(0,1),a,6>0anda+b< 1.

Example 3.6. F(tl,...,t(;) = {1 — aty — b(tg +t4) — cmin {t5,t6},
a,b,c>0anda+b+c< 1.

— kmax {t,, 8t s} ke [0,1].

(t1,
(
(
(

t1 — aty — bmax{ts, t4} — cmax{ts,ts},

Example 3.7. F(ty,...,ts) = t1—ats —1(+ti+ﬁ ,a,b>0anda+2b<1.

Example 3.8. F(tl,...,t(;) = 1t — max{ctg, cts, cty, ats + bt(;},
a,b,c>0anda+b+c< 1.

Other examples will be presented in section Applications.

Let H* be the set of all lower semi - continuous functions H : Ri —
R such that G(s1, sg, ..., s5) > 0 if one of sq, $9, ..., 55 > 0.
Example 3.9. H(sy,...,S5) = max {si, ..., S5 }.
Example 3.10. H(sy, ..., s5) = max { sy, 255 sibssl

Example 3.11. H(sy, ..., 85) = amax {s1, sa, s3}+(1 — ) (asy + bt5),
a€(0,1),a,b>0anda+b<1.

Example 3.12. H(sy,...,S5) = s + 55 + s3 + s7 + sZ.

Example 3.13. H(sy, ..., s5) = + T O T

S1
1+s2

Example 3.14. H(sy,...,s5) = W

Example 3.15. H(sy,...,s;5) = m

Definition 3.16. A function ¢ (¢4, ...,ts, S1,...,85) = F (t1,....ts) +
H (s1, ..., 85) is called a mixed implicit function.
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The following theorem is proved in [32].

Theorem 3.17 (Theorem 3.2 [32]). Let X be a metric space and
A, B, S and T be self mappings of X satisfying the inequality

F( ¢ (d(Ax, By)),v (d(Sz,Ty)) ;4 (d (Sz, Ax)), >+

Y (d(Ty, By)), ¢ (d(Sz, By)), ¢ (d (Az, Ty))

H < VY (d(Sz, Ty)) 1 (d(Sz, Ax)), ¢ (d (Ty, By)), > <0
Y (d (S, By)), v (d(Ax, Ty)) -

for all x,y € X, some F € F* and some H € H* and v (t) is an
almost altering distance.

If (A,S) and T satisfy CLRa.syr - property, then C (A, S) # 0 and
C(B,T) # 0. Moreover, if (A,S) and (B,T) are weakly compatible,

then A, B,S and T have a unique common fized point.

The purpose of this paper is to extend Theorem 3.17 to G - metric
spaces. As applications we obtain new results for mappings satisfying
contractive conditions of integral type and for mappings satisfying ¢
- contractive conditions.

4. MAIN RESULTS

Lemma 4.1 ([2]). Let f and g be weakly compatible mappings of a
nonempty set X. If f and g have a unique point of coincidence w =

fx = gx for some x € X, then w is the unique common fixed point of
f and g.

Theorem 4.2. Let (X,G) be a G - metric space and A, B, S and T
be self mappings of X satisfying the inequality

Y (G(Az, By, By)) v (G(Sz, Ty, Ty)) ,
F | v (G(Ax,Sz,Sx)),¢ (G(Ty, By, By)), |+
(4.1) Y (G(Sz, By, By)) ¢ (G(Az, Ty, Ty))
' Y (G(Sz, Ty, Ty)) ¢ (G(Az, Sz, Sx)),
H | v (G(Ty, By, By)),v (G(Sz, By, By)), | <0,
Y (G(Az, Ty, Ty))

for all z,y € X, some ' € F*, some H € H* and ¢ an almost
altering distance. If there exist u,v € X such that Av = Sv and
Tu = Bu, then there exists t € X such that t is the unique point of

coincidence of A and S, as well t is the unique point of coincidence of
B andT.
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Proof. First we prove that Sv = T'u. Suppose that Sv # Tu. By (4.1)
for x = v and y = u we get

I ¥ (G(Av, Bu, Bu)) , ¢ (G(Sv, Tu,Tu)) , v (G(Av, Sv, Sv)), > n
Y (G(Tw, Bu, Bu)) , v (G(Sv, Bu, Bu)) , ¢ (G(Av, Tu, T’;L))

I < YV (G(Sv,Tu,Tu)) v (G(Av, Sv, Sv)) , ¢ (G(Tu, Bu, Bu) ) 0
¥ (G(Sv, Bu, Bu)) , ¢ (G(Av, Tu, Tu)) -
Y (G(Sv,Tu,Tu)), v (G(Sv,Tu,Tu)),0,
F( 0,9 (G (S(U {u ,Tu)) v (G( Sv Tu Tu) >+
Y (G(Sv, Tu,Tu))
H( Y (G(Sv,Tu,Tu)), w( S’v Tu Tu)) > <0

Since
H (¢ (G(Sv,Tu,Tu)),0,0,v (G(Sv, Tu, Tu)) , ¢ (G(Sv,Tu, Tu)) ) >0
because H € H*, then
I Y (G(Sv, Tu,Tu)), v (G(Sv, Tu, Tu)),0, <0
0,9 (G(Sv, Tu, Tu)) , ¢ (G(Sv, Tu, Tu)) ’
a contradiction of (Fy). Hence, ¢ (G(Sv,Tw,Tu)) = 0 which implies
Sv =Tu. Hence, Sv = Av =Tu = Bu =1 for some t € X.
Suppose that there exists w with Sw = Aw # Av. Then by (4.1)
for x = w and y = v we obtain
o (¥ (ClAw, Bu, Bu)) o (G(Sw, Tu, Tu)) v (G(Aw, Sw, Su) ,
¥ (G(Tu, Bu, Bu)) 1 (G(Sw, Bu, Bu)) , ) (G(Aw, Tu, Tu)
g (¥ (G(Sw, Tu, Tw)) ¢ (G(Aw, Sw, Sw)) ;¢ (G(Tu, Bu, Bu)), | _
¥ (G(Sw, Bu, Bu)) , ¥ (G(Aw, Tu, Tu)) =

I 1/1( (Sw, Tu,Tu)), ¥ (G(Sw, Tu,Tu)),0,

Y (G(Sw, Tu,Tu)), v (G(Sw, Tu, Tu))
H( w(G(Sw,Tu Tu)) 0,0,% (G(Sw,Tu,Tu)),v (G(Sw, Tu, Tu)) ) <0.

Since
H ( Y (G(Sw, Tu,Tu)),0,0,v (G(Sw, Tu, Tu)) , ¥ (G(Sw, Tu, Tu)) ) >0
because H € H*, then
o ©(G(Sw, Tu, Tw) 6 (G(Sw, Tu, Tu)) 0, _
0,9 (G(Sw,Tu, Tu)) ¢ (G(Sw, Tu, Tu)) ’
a contradiction of (Fy). Hence, Sw = Aw = Sv=Av=Tu=Bu=t1
and ¢ is the unique point of coincidence of A and S. Similarly, ¢ is the
unique point of coincidence of B and T. [
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Theorem 4.3. Let (X,G) be a G - metric space and A, B, S and T
be self mappings of X satisfying the inequality (4.1) for all x,y € X,
some F' € F*, some H € H* and ¢ is an almost altering distance.
If (A, S) and T satisfy CLRa s - property, then C (A, S) # 0 and
C(B,T) # 0. Moreover, if (A,S) and (B,T) are weakly compatible,
then A, B, S and T have a unique common fixed point.

Proof. Since (A, S) and T satisfy C LR s)r - property, there exists a
sequence {z,} in X such that lim, ., Az, = lim, . Sz, = z, with
z € S(X)NT(X). Since z € T(X), there exists u € X such that
z =Tu. By (4.1) for z = z,, and y = u we obtain

r < Y (G(Axy,, Bu, Bu)) , % (G(Sxp, Tu, Tu)) , ¥ (G(Axy, Stp, Sty)) , ) "
Y (G(Tu, Bu, Bu)) , ¢ (G(Sxp, Bu, Bu)) , ¥ (G(Azy, Tu, Tu))

I < U (G(Szy, Tu,Tu)) , ¢ (G(Azy, Stp, Sxy)) , ¥ (G(Tu, Bu, Bu)) ) <0
Y (G(Szy, Bu, Bu)) , ¥ (G(Azy, Tu, T'u)) -

Letting n tend to infinity we obtain

F ( ¢ (G(z, Bu, Bu)) 0,0, (G(z, Bu, Bu)) , % (G(z, Bu, Bu)) ,0 ) +
H (0,0, (G(z, Bu, Bu)),¢ (G(z, Bu, Bu)),0 ) <0.

If G (z, Bu, Bu) > 0, then
H(0,0,v (G(z, Bu, Bu)) ,¢ (G(z, Bu, Bu)) ,0) > 0
which implies

¥ (G(z, Bu, Bu)) ,0 ’
a contradiction of (Fy). Hence, ¢ (G(z, Bu, Bu)) = 0 which implies
z=Bu=Tuand C(B,T) # 0.
On the other hand, z € S (X). Hence, there exists v € X such that
z = Sv. By (4.1) for x = v and y = u we obtain

r < Y (G(Av, Bu, Bu)) , % (G(Sv, Tu,Tu)) , v (G(Av, Sv, Sv)), > +
Y (G(Tu, Bu, Bu)) , % (G(Sv, Bu, Bu)) , ¢ (G(Av, Tu, Tu))
I < Y (G(Sv, Tu,Tu)), (G(Av, Sv, Sv)) ,¢ (G(T'w, Bu, Bu)) , )
Y (G(Sv, Bu, Bu)) , ¥ (G(Av, Tu, Tw))

2))) +

<0,

F(i/J(G(Av,z,z)),O,w(G(A, 2,2)),0,0,% (G(Av, z,
H (0,v (G(Av, z,2)),0,0,¢ (G(Av, z,2))) < 0.

If v (G(Av, z,2)) > 0, then
H(0,v (G(Av, z,2)),0,0,¢ (G(Av, z,2))) >0
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which implies that
F(¥ (G(Av,z,2)),0,9 (G(Av, 2, 2)) , 0,0, (G(Av, 2, 2))) <0,

a contradiction of (F}). Hence, ¢ (G(Av,z,2)) = 0 which implies
z=Av = Sv and C(A,S) # (). Therefore z = Sv = Av = Bu = Tu.
By Theorem 4.2, z is the unique point of coincidence of A and S, and
of Band T.

Moreover, if (A,S) and (B,T) are weakly compatible, by Lemma
4.1, z is the unique common fixed point for A and S and for B and
T. 0

If v (t) =t we obtain

Theorem 4.4. Let (X,G) be a G - metric space and A, B,S and T
be self mappings of X such that for all x,y € X
' i ( G(Sz, Ty, Ty), G(Ax, Sz, Sx), G(Ty, By, By), ) <0
G(Sz, By, By), G(Az, Ty, Ty) -

for some F' € F* and some H € H*. If (A, S) and T satisfy CLR 4 s)r
- property, then C(A,S) # 0 and C (B, T) # 0. Moreover, if (A,S)
and (B, T) are weakly compatible, then A, B, S and T have a unique
common fized point.

5. APPLICATIONS

5.1. Fixed points for mappings satisfying contractive condi-
tions of integral type in G - metric spaces. In [6], Branciari
established the following theorem which opened the way to the study
of fixed points for mappings satisfying contractive conditions of inte-

gral type.

Theorem 5.1 ([6]). Let (X,d) be a complete metric space, ¢ € (0,1)
and f: X — X such that for all x,y € X

d(fx,fy) d(z,y)
/ h(t)dt < / h(t)dt
0 0

where h : [0,00) — [0,00) is a Lebesgue measurable mapping which is
summable (i.e., with finite integral) on each compact subset of [0, 00),
such that fOE h(t)dt > 0, for all e > 0. Then, f has a unique fized
point z such that for all x € X, z = lim,,_,o, f"x.
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Some fixed point results for mappings satisfying contractive con-
ditions of integral type are obtained in [26], [27], [33] and in other
papers.

Lemma 5.2. Let h : [0,00) — [0,00) be as in Theorem 5.1. Then
fo x)dx is an almost altering distance.
Pmof. The proof it follows by Lemma 2.5 [27]. O

Theorem 5.3. Let A, B,S and T be self mappings of a G - metric
space (X, G) such that for all x,y € X

G(Az,By,By) G(Sz,Ty,Ty) G(Az,Sz,Sx)
h(t)dt, Ik h(t)dt, i h(t)dt,
F 0 0 0 +
G(Ty,By,By) G(Sz,By,By) G(Az,Ty,Ty)
i h(t)dt, i h(t)dt, i h(t)dt
0 0 0
G(Sz,Ty,Ty) G(Az,Sz,Sz)
(5.1) i h(t)dt, S h(t)dt,
0 0
G(Ty,By,By) G(S=z,By,By)
H i h(t)dt, J h(t)dt, | <0,
0 0
G(Az,Ty,Ty)
h(t)dt

0

for some F € F*, some H € H* and h(t) is as in Theorem 5.1.

If (A,S) and T satisfy CLRa,s)r - property, then C (A, S) # 0 and
C(B,T) # 0. Moreover, if (A,S) and (B,T) are weakly compatible,
then A, B, S and T have a unique common fixed point.

Proof. By Lemma 5.2, ¥(t) fo x)dx is an almost altering distance.
Hence,

G(Az,By,By) G(Sz,Ty,Ty)
h(t)dt = ¢ (G(Az, By, By)), [ h(t)dt = (G(Sz, Ty, Ty)),

G(A.85,50) G(Ty.By.By)
h(t)dt = (G(Ax, Sx,S2)), [ h(t)dt = (G(Ty, By, By)).,

G(Sr?By,By) G(Az?Ty,Ty)
J h(t)dt = ¢ (G(Sx, By, By)), ({ h(t)dt = ¢ (G(Az, Ty, Ty)).

By (5.1) we obtain

F( ¢ (G(Az, By, By)) , v (G(Sz, Ty, Ty)) ,¢ (G(Az, Sz, Sx)), >

Y (G(Ty, By, By)) ,¢ (G(Sx, By, By)) , ¥ (G(Az, Ty, Ty))

H( Y (G(Sxz, Ty, Ty)) v (G(Az, Sz, Sx)) (G(Ty,By,By)), >
Y (G(Sz, By, By)) , 1 (G(A:L', Ty))

+

<0

— )
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which is inequality (4.2). Hence, the conditions of Theorem 4.3 are
satisfied and Theorem 5.3 follows by Theorem 4.3. 0

For example, by Examples 3.1, 3.9 and Theorem 5.3 we obtain

Theorem 5.4. Let A, B,S and T be self mappings of a G - metric
space (X, G) such that for all x,y € X

G(Az,By,By)
(5.2) h(t)dt < kM, — My

0
where h(t) is as in Theorem 5.1, k € [0,1] and

G(Sz,Ty,Ty) G(Ax,Sz,Sx) G(Ty,By,By)
| h(t)dt, 1l h(t)dt, f h(t)dt,
M; = max G(Sz,By,By) G(Az,Ty,Ty)
[ hdt, [ h(t)dt)
0 0
G(Sz,Ty,Ty) G(Ax,Sz,Sx) G(Ty,By,By)
[ h®dt, [ htdt, [ b,
My = max G(Sz,By,By) G(Az,Ty,Ty)
[ h(t)dt, [ h(t)dt
0 0

If (A,S) and T satisfy CLRa syr - property, then C (A, S) # 0 and
C(B,T) # 0. Moreover, if (A,S) and (B,T) are weakly compatible,
then A, B, S and T have a unique common fized point.

Remark 5.5. 1)  Theorem 5.3 is a generalization for G - metric
space of Theorem 4.3 [32].
2)  Theorem 5.4 is a generalization for G - metric space of Theorem

4.4 132].

5.2. Fixed points for mappings satisfying ¢ - contractive con-
ditions in G - metric spaces. Asin [17], let ® be the set of all real
nondecreasing continuous functions ¢ : [0,00) — [0, 00) with

i) @(t) <tforallt>D0,

i) ¢ (0)=0.

The following functions are from F*.

Example 5.6. F (tl, ...,tﬁ) = tl — @ (maX {tz,tg,t4,t5,t6}).
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Example 5.7. F (t1,...,t5) = (max {tg,tg,t4, 5‘2”6}),
Example 5.8. F (ty,...,t5) ¢ (max {t,, 8t Bttel)

Example 5.9. F (i1, ..., ts) ¢ (max {t2, \/T3ts, Vals, VI5l6 } ).

Example 5.10. F(tl,... ) = 1, — p(aty + btz + cty + dts + etg),
a,b,c,d,e>0anda+b+c+d+e <1.

Example 5.11. F (ty,...,t5) = (at2 +b1ﬁ4>, a,b >0 and
a+b<1.

Example 5.12. F (t1,...,ts) = t;1 — p(aty + dbmax{ts, t4} +
cmax{t BEHY) g b c>0anda+b+c <1

Example 5.13. F (t1,...,tg) = tv — plata  +

bmax{ZLts 2hitls Latlatls}) ¢ h >0 and a+b < 1.

For example, from Theorem 4.4 and Example 5.6 we obtain

Theorem 5.14. Let (X,G) be a G - metric space and A, B, S and T
be self mappings of X such that for all x,y € X

G(Sz,Ty,Ty),G(Ax, Sz, Sx),
G(Az, By, By) < ¢ | max{ G(Ty, By, By), G(Sz, By, By), —
G(Az, Ty, Ty)
H( G(Sz,Ty,Ty),G(Ax, Sz, Sz), G(Ty, By, By), )
G(Sz, By, By),G(Az, Ty, Ty) ’

for p € ® and H € H*.

If (A,S) and T satisfy CLRa syr - property, then C (A, S) # 0 and
C(B,T) # 0. Moreover, if (A,S) and (B,T) are weakly compatible,
then A, B, S and T have a unique common fized point.
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