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ON RADICAL AND ZERO DIVISORS IN
SUPERTOPOLOGICAL RINGS

BHASKAR VASHISHTH, DAVINDER SINGH

Abstract. The concept of supertopological rings is introduced and
results related to the structure of their radical are proved. Further, we
have defined D-compactness and total D-disconnectedness and proved
their extension from the set of right zero divisors to the whole ring.

1. Introduction

The study of topological groups and topological rings in mathemat-
ics is of much importance which interconnects the aspects of algebra
and topology. Topological groups and topological rings have been
studied extensively by several mathematicians such as L.S. Pontrya-
gin [9], Irving Kaplansky [4, 5] , S. Warner [12] , V. Arnautov [1]
etc. Since then many authors have found usefulness of the proper-
ties of these spaces in other branches of mathematics like mathemat-
ical analysis, complex analysis and functional analysis. As a result,
many generalizations of these spaces such as semi-topological groups
[2], semi-topological rings [11], irresolute topological rings [10] etc have
appeared in literature and became an interesting topic for exploration.

In [4], Kaplansky studied how compactness affects the structure of
radical in a topological ring and also determined the structure of com-
pact semisimple topological rings to be isomorphic and homeomorphic
to a Cartesian direct product of finite simple rings. Kohli and Singh
[7], defined D-supercontinuity and studied their properties.
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We have used D-supercontinuity to introduce the notion of super-
topological rings. Every supertopological ring is a topological ring but
not conversely.

In [4], Kaplansky studied how compactness affects the structure
of radical in a topological ring and also determined the structure of
compact semisimple topological rings to be isomorphic and homeo-
morphic to a Cartesian direct product of finite simple rings. Kohli
and Singh [7], defined D-supercontinuity and studied their properties.
We have used D-supercontinuity to introduce the notion of supertopo-
logical rings. Every supertopological ring is a topological ring but not
conversely.

In section 2, we define Dr-rings (a particular type of supertopologi-
cal rings) and in theorem 29 it is proved that the radical of a Dr-ring
is always d-closed and hence closed. Further, theorem 38 shows that,
in a supertopological ring that may not be a Dr-ring, imposing d-
compactness implies d-closedness of the radical.

For both topological and supertopological rings, it is an interest-
ing problem to check which properties can be extended from the
set of zero divisors to the whole ring under various conditions. In
last section of the article, we have introduced D-compact spaces, D-
connectedness and total D-disconnectedness. In theorem 42 we have
proved the extension of D-compactness from the set of right zero di-
visors in supertopological rings to the whole ring. In theorem 54 total
D-disconnectedness is extended from the set of right zero divisors to
the topological ring.

Throughout this paper, a ring will mean an assosiative topological
ring which is also a Hausdorff space and may not contain unity, unless
otherwise mentioned and will be denoted by A. Rings without any
topological structure, will be mentioned as algebraic rings.

We begin with definitions and remarks which will be used through-
out the article.

Definition 1. [7] A function f : X → Y from topological space X to
topological space Y is said to be D-supercontinuous if for each x ∈ X
and each open set U ⊂ Y containing f(x) there exists an open Fσ-set
V ⊂ X containing x such that f(V ) ⊂ U .

Remark 2. A D-supercontinuous function is also continuous but the
converse need not be true. A counterexample is given in [7].
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Remark 3. In metric spaces, every open set is an Fσ-set and hence
D-supercontinuity and continuity are equivalent in metrizable spaces.

For more theory and equivalent definitions of D-supercontinuous
functions, see [7].

Definition 4. A topological space G that is also a group, where G×G
carries product topology, is a supertopological group if the mappings

g1 : G×G→ G such that (x, y)→ xy

and
g2 : G→ G such that x→ x−1

are D-supercontinuous.

Example 5. Obviously every metric group is supertopological, but for
non-metrizable example of a supertopological group, consider R∞ with
weak topology (which is not even first countable) where R∞ is the set
of finite-support sequences of real numbers, with the topology that a
set is open if and only if its intersection with Rn is open for each n.
This is a topological group with respect to coordinate-wise addition in
which every open subset is also Fσ because an open set is the union of
its intersections with Rn for each n, and the intersection with Rn is
an open subset of Rn and thus a countable union of closed subsets of
Rn, which are then also closed in R∞.

Remark 6. Every supertopological group is a topological group but the
converse need not be true.

Example 7. Let H = {0, 1} be discrete topological group. Consider
the uncountable product of copies of H under product topology, i.e.
G = HI where I is an uncountable index set. Then G is also a topo-
logical group and the function g2 : G → G which takes g → g−1 is
a homeomorphism which is not D-supercontinuous. Hence G is an
example of a topological group which is not supertopological.

Remark 8. Any topological group G that is not perfectly normal i.e.
there is some open set U that is not an Fσ-set will serve as an example
of topological group which is not supertopological as g2 : G→ G being
a homeomorphism, g−12 (U) is also not an Fσ-set.

Definition 9. A topological space A that is also a ring with operations
’+’ and ’.’ where A×A carries product topology, is a supertopological
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ring if the mappings

a1 : A× A→ A such that (x, y)→ x+ y

,

a2 : A→ A such that x→ −x
and

a3 : A→ A such that (x, y)→ x.y

are D-supercontinuous.

Example 10. Any metric ring is a supertopological ring, but for non-
metrizable supertopological ring we again consider the group R∞ with
weak topology and coordinate-wise addition along with trivial multipli-
cation. This ring lacks unity element.

Remark 11. Every supertopological ring is a topological ring but the
converse need not be true.

Example 12. Consider the discrete topological ring S = {0, 1} and
the uncountable product of copies of S under product topology, i.e.
A = SI where I is an uncountable index set. Then A is an example
of a topological ring which is not supertopological.

Definition 13. [7] A set U in a topological space X is said to be
d-open if for each x ∈ U , there exists an open Fσ-set H such that
x ∈ H ⊂ U . Complement of a d-open set is called d-closed.

Remark 14. Every d-open set is an open set but the converse need
not be true in general topological spaces. Although in metric spaces,
every open set is d-open.

Example 15. For X = {1, 2, 3, 4} with topology τ = {φ,X, {4},
{1, 2}, {1, 2, 4}}, then {1, 2, 4} is an open set that is not d-open.

Throughout this paper a d-neighborhood of a point x will mean an
open Fσ-set containing x.

Definition 16. [8] A topological space X is said to be a d-compact
space if every cover of X by open Fσ-sets has a finite subcover.

Remark 17. [8] Compactness implies d-compactness but not con-
versely, as the set X = Z+ with particular point topology is d-compact
but not compact.
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2. D-Rings and Structure of Radical

In his paper [4], Kaplansky used right quasiregular elements and
r.q.r. ideal to study the structure of radical in topological rings. In
this section we will study how d-compactness helps us to determine
the structure of the radical in a supertopological ring. An element x
of an algebraic ring S is said to be right quasiregular if there exists
another element y ∈ S such that x ◦ y = x + y + xy = 0. A right
ideal of S is said to be an r.q.r. ideal if all of its elements are right
quasiregular.

We mention a lemma proved by Kaplansky in [4] without proof,
that will be useful to us in proving some results.

Lemma 18. If a is an element of an r.q.r. ideal and x is an r.q.r.
element, then a+ x is a right quasiregular element.

Radical of an algebraic ring S, denoted by Rad(S) or R, is defined to
be the sum of all r.q.r. ideals in S. It can be shown that Rad(S) itself
is an ideal. In [4], Kaplansky defined a Qr-ring to be a topological
ring where its r.q.r. elements form an open set and showed that the
radical of a Qr-ring is always closed.

Definition 19. A supertopological ring is said to be a Dr-ring if its
right quasiregular elements form a d-open set. Dl-ring is defined simi-
larly by taking left quasiregular elements. A supertopological ring that
is both Dr-ring and Dl-ring is called a D-ring

Example 20. Rationals under usual topology is a D-ring.

Theorem 21. A supertopological ring A which has a d-neighborhood
U0 of 0 consisting of right qausiregular elements is a Dr-ring.

Proof. Let x be any r.q.r. element in the ring A such that x ◦ y = 0.
Choose a sufficiently small element a such that it lies inside the d-
neighborhood U0 which consists of right quasiregular elements and ay
lies in the right ideal generated by a, which is an r.q.r. ideal. By
lemma 2.1, a + ay is right quasiregular and there exists a z ∈ A
such that (a + ay) ◦ z = 0. Hence a + x is also right quasiregular as
(a+ x) ◦ y ◦ z = (a+ ay) ◦ z+ (x ◦ y)(1 + z) = 0. Therefore x+U0 is a
d-neighborhood around x which consists entirely of right quasiregular
elements and thus A is a Dr-ring.

�
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Remark 22. For a Dr-ring, there always exists a d-neighborhood
around 0 that consists of right quasiregular elements.

Before we proceed further into the structure of radical, we mention
a lemma on idempotents which will be useful in proving that maximal
ideals of a unital supertopological ring are d-closed.

Lemma 23. If e is an idempotent in a unital Dr-ring A and I is
a right ideal dense in eA, then B = eA, where eA is the right ideal
generated by e.

Proof. Follows by lemma 7 of [4]. �

Definition 24. For a set M ⊂ X, the intersection of all the d-closed
sets in X containing M is called the d-closure of M which is denoted
by [M ]d.

Remark 25. M is d-closed if and only if M = [M ]d.

Lemma 26. In a supertopological ring, d-closure of an ideal is also
an ideal.

Theorem 27. In a Dr-ring with unity element, the maximal right
ideals are d-closed.

Proof. Let M be the maximal right ideal in a unital Dr-ring A. Then,
by definition, M is dense in the d-closure [M ]d. As M is maximal and
M ⊂ [M ]d, implies that [M ]d = M or [M ]d = A. But if [M ]d = 1.A,
and 1 being idempotent, by lemma 23, M = A and hence M = [M ]d.
Thus, M is d-closed. �

The above theorem is also true for maximal left ideals.

Lemma 28. If X is a topological space and M ⊂ X, then x ∈ [M ]d
if and only if every d-open set U containing x intersects X.

Theorem 29. In a Dr-ring, the radical R is d-closed.

Proof. Let y ∈ [R]d. Then any d-neighborhood of y must contain an
element of R. As the set of all right quasiregular elements form a d-
open set in a Dr-ring and 0 itself is right quasiregular, there exists an
open Fσ-set around 0, say U0, consisting of r.q.r. elements. Consider
the d-neighborhood y − U0 of y, which must contain some a ∈ R.
Therefore, a = y − x for some right quasiregular element x, i.e. y =
a + x, where a ∈ R and x is right quasiregular. By lemma 18, y is
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right quasiregular, thus, all elements of [Rd] are right quasiregular.
Therefore, [R]d is an ideal consisting of r.q.r. elements. Hence [R]d ⊂
R and R = [R]d. �

Definition 30. A subset S of a supertopological ring A is right d-
bounded if for any neighborhood U of 0, there exists a d-neighborhood
V such that V.S ⊂ U, where V.S is the set of all products of elements
in V and S.

Left d-bounded is defined similarly and a ring that is both left and
right d-bounded, is called a d-bounded ring.

Lemma 31. In a supertopological group, if there exists a fundamental
system of d-neighborhoods of e, then there exists a fundamental system
of symmetric d-neighborhoods of e.

Proof. Let {V } be a fundamental system of d-neighborhoods of e.
Since e = e−1, by translation homeomorphism, for each V ∈ {V },
V −1 is a d-neighborhood of e. But U = V ∩ V −1 is a symmetric d-
neighborhood of identity. Therefore, each V contains some symmetric
d-neighborhood U. Hence, {U} is a fundamental system of symmetric
d-neighborhoods of e. �

Theorem 32. For each d-neighborhood W of e in a supertopological
group (whenever it exists), there exists a symmetric d-neighborhood U
of e such that

∏n
i=1 U

δi ⊂ W , where each δi = ±1.

Proof. Follows from the repeated use of D-supercontinuity of the map
(x, y)→ xy−1. �

Lemma 33. In a right d-bounded supertopological ring, if there exists
a fundamental system of d-neighborhoods of 0, then it has a system of
right ideal d-neighborhoods of 0.

Proof. Suppose that A is right d-bounded with U a d-neighborhood of
0. By lemma 31, there exists a system of symmetric d-neighborhoods
of 0. Let V be a symmetric d-neighborhood with V +V ⊂ U and W be
a symmetric d-neighborhood with W ⊂ V , WA ⊂ V. Then W +WA
is d-open right ideal contained in U and thus makes a system of right
ideal d-neighborhoods of 0. �

Theorem 34. Any d-compact set in a supertopological ring is d-
bounded.
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Proof. Given a d-neighborhood U of 0 and a point x in a d-compact set
D, by D-supercontinuity of (x, 0) → 0, we may find d-neighborhoods
Vx and W0 of x and 0 respectively such that Vx.W0 ⊂ U . Because of
d-compactness of D, {Vx} has a finite subcover. Let T = ∩W0i , where
each W0i corresponds to an element of finite subcover of {Vx}, and T
being open Fσ, we get D.T ⊂ U , which proves D to be left d-bounded.
Similarly it can be proved right d-bounded by using D-supercontinuity
of (0, x)→ 0. �

Theorem 35. In a right d-bounded Dr-ring A, if there exists a funda-
mental system of d-neighborhoods of 0, then its radical is d-open and
hence open.

Proof. As the ring is Dr, there exists a d-neighborhood around 0 con-
sisting of right quasiregular elements and by right d-boundedness,
there exists a d-neighborhood V ′ such that V ′.A ⊂ U . By lemma 33,
there exists a fundamental system of right ideal d-neighborhoods {V }
of 0 such that V ⊂ V ′. Then V.A ⊂ U and for any v ∈ V and a ∈ A,
va ∈ U and is an r.q.r. element. Hence every element of V is right
quasiregular. Thus V is contained in the radical of A, and the radical
can be realized as union of r.q.r. ideals, which are d-neighborhoods
and thus the radical of A is d-open. �

Theorem 36. In a d-compact supertopological ring, the set of right
quasiregular elements is d-closed.

Proof. Ler Q be the set of all right quasiregular elements. Let x /∈ Q,
i.e. there is no y ∈ A such that x ◦ y = 0. Using D-supercontinuity of
x ◦ y = 0, we can find two d-neighborhoods around x and y, say Ux
and Uy such that Ux ◦ Uy does not contain 0, for all y ∈ A. As the
set {Uy} is a cover of d-neighborhoods, there exists a finite subcover,
say Uy1 , . . . , Uyn . If we take the corresponding U ′xs and take their
intersection, then it is a d-neighborhood around x, which contains
no right quasiregular elements and the set of non right quasiregular
elements is d-open. Therefore, Q is d-closed. �

Theorem 37. In a supertopological ring, if the set of all r.q.r elements
Q is d-closed, then the radical R is d-closed.

Proof. Let y ∈ [R]d be arbitrary, whereas [R]d is the intersection of all
d-closed sets containing the radical R including Q. Thus y ∈ [R]d ⊂ Q.
As [R]d is also an ideal, [R]d ⊂ R and thus R = [R]d is d-closed. �
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Theorem 38. The radical of a d-compact supertopological ring is d-
closed.

Proof. Follows from theorem 36 and theorem 37. �

3. Zero Divisors and Total D-disconnectedness

Definition 39. A topological space X is said to be a D-compact if
every cover of X by d-open sets has a finite subcover.

Each compact set is D-compact but converse need not be true.

Example 40. The cocountable topology or countable complement
topology on X = R is an example of D-compact space that is not
compact.

Lemma 41. A d-closed subset of a D-compact topological space is
D-compact.

Proof. Let Y be a d-closed subspace of the D-compact space X. Given
a covering C of Y by d-open sets in X, we form a covering D of X by
adjoining to C the single d-open set X − Y, i.e.

D = C ∪ {X − Y }.
Some finite subcollection of D covers X. If this subcollection contains
the set X − Y , discard X − Y . The resulting collection is a finite
subcollection of C that covers Y. �

Before we proceed towards our next result, it is worth noting that
a similar result, for topological rings, was proved by Kwangil Koh in
his paper [6]. We prove a version for supertopological rings in which
D-compactness of the set of zero divisors extends to the whole ring.

Theorem 42. Let A be a Hausdorff supertopological ring in which xA
is a d-closed subset of A for any x ∈ A. If there exists non-trivial zero
divisors in the ring and the set of all right zero divisors is D-compact,
then A is a D-compact ring.

Proof. Let Z be the non-empty set of all non-trivial right zero divi-
sors i.e. Z = {0 6= a ∈ A | ba = 0 for some b 6= 0} in A. Then
for any a ∈ Z, aA ⊂ Z ∪ {0}. As Z ∪ {0} is D-compact and aA is
a d-closed subset of Z ∪ {0}, by lemma 41, aA is D-compact. Let
Ba = {b ∈ A | ab = 0}. As {0} is closed and left multiplication by a is
D-supercontinuous, its inverse image Ba is d-closed. As Ba ⊂ Z ∪{0}
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and it is d-closed, Ba is D-compact.
Since aA is homeomorphic to A/Ba , the quotient space A/Ba is also
D-compact. D-compactness implies d-compactness which further im-
plies qusicompactness (see [8]) and for Hausdorff spaces quasicompact-
ness is equivalent to compactness. As the subgroup Ba and quotient
group A/Ba both are compact, A is also compact by 5.25 in [3]. Hence,
A is D-compact. �

Remark 43. The above theorem is also true if Ax is a d-closed subset
of A for any x ∈ A instead of xA. But the Hausdorff condition cannot
be dropped.

Definition 44. A topological space X is D-disconnected if it can be
expressed as a union of two disjoint non-empty open Fσ-sets. Other-
wise, X is said to be D-connected.

Example 45. The set X = R∞ with weak topology is D-connected as
every open set in R∞ is also Fσ.

Example 46. The set X = {0, 1, 2, 3, 4} with discrete topology is D-
disconnected.

Remark 47. D-disconnectedness implies disconnectedness and con-
nectedness implies D-connectedness.

Definition 48. A topological space X is totally D-disconnected or
Hereditarily D-disconnected if Dx = {x} for each x ∈ X, where Dx is
the maximal D-connected set containing x, also known as D-component
of x.

Example 49. Any countable or finite set with discrete topology is
totally D-disconnected.

Example 50. R in the lower limit topology, i.e. Sorgenfrey line
(which has the basis of all half-open intervals [a, b), a < b and a, b are
real numbers) is a non-metrizable example of totally D-disconnected
as well as D-disconnected space.

Remark 51. Total D-disconnectedness implies total disconnectedness.

Next we prove a theorem that will later on help us to extend total
D-disconnectedness from set of zero divisors in topological ring to the
whole ring.
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Theorem 52. If G is a topological group of order greater than 2 and
G\{e} is totally D-disconnected, then G is totally D-disconnected.

Proof. Let G be such that G\{e} is totally D-disconnected but not G
itself. Any proper subset S of G has a translate g−1S with e /∈ g−1S,
where g−1S being a subset of G\{e} is also totally D-disconnected.
As inversion map is a homeomorphism in topological groups, S is also
totally D-disconnected. If G is not D-connected, this applies to the
D-connected component of {e}. Thus, we may assume that G is D-
connected.
As |G| ≥ 3, the cardinality of totally D-disconnected set G\{e} is ≥ 2
and can be partitioned into two open Fσ-subsets A and B. Since B is
d-open, its complement Bc = A∪{e} is d-closed. It is easily seen that
both Ac and Bc are D-connected. As Ac and Bc are proper subsets of
G, they are totally D-disconnected too, hence they must be singletons,
which is a contradiction to the order of the group. Hence G must be
totally D-disconnected.

�

Lemma 53. Let G be a topological group and N be a normal subgroup,
then if N and G/N are both totally D-disconnected then so is G.

Proof. Let B is a D-connected set of G. Consider the projection map-
ping p : G → G/N , which being continuous takes B to a singleton
D-connected set p(B). Hence p(B) is contained in some coset gN .
Since N is totally D-disconnected, so is gN . As B ⊂ gN , B is also
singleton. �

Theorem 54. Let A be a topological ring of order greater than 2, for
which set Z of all non-zero right zero divisors is non-empty and Z
is totally D-disconnected, then A is totally D-disconnected and hence
totally disconnected.

Proof. Let z ∈ Z and consider the left translation Lz : A→ A. Clearly
zA ⊂ Z∪{0} and zA\{0} ⊂ Z, thus zA\{0} is totally D-disconnected
and by theorem 52, so is zA. Since subgroup KerLz is a subset of
Z∪{0} implies KerLz is totally D-disconnected. There exists a home-
omorphism from A/KerLz onto zA which implies that A/KerLz is
totally D-disconnected. By lemma 53, total D-disconnectedness of
KerLz and A/KerLz implies that A is totally D-disconnected and
hence totally disconnected as well. �



174 B. VASHISHTH, D. SINGH

References

[1] V. Arnautov, S. Glavatsky and Al. A. Mikhalev, Introduction to the The-
ory of Topological Rings and Modules, (Shtiinca, Kishinev, 1981) (in
Russian).

[2] E. Bohn and J. Lee, Semi-topological groups, Am. Math. Mon. 72 (1965),
996-998.

[3] E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I, second edi-
tion, Grundlehren der Mathematischen Wissenschaften, 115, Springer-Verlag,
Berlin, 1979.

[4] I. Kaplansky, Topological rings, Am. J. Math. 69 (1947), 153-183.
[5] I. Kaplansky, Topological rings, Bull. Am. Math. Soc. 54 (1948), 809-826.
[6] K. Koh, On the set of zero divisors of a topological ring, Can. Math.

Bull. 10 (1967), 595-596.
[7] J. K. Kohli and D. Singh, D-supercontinuous functions, Indian J. Pure

Appl. Math. 32 (2) (2001), 227-235.
[8] J. K. Kohli and D. Singh, Between compactness and quasicompactness,

Acta Math. Hung. 106 (4) (2005), 317-329.
[9] L.S. Pontryagin, Topological groups, Gordan and Breach Science Publish-

ers, 1986.
[10] H.M.M. Salih, On irresolute topological rings, J. Adv. Stud. Topol. 9 (2)

(2018), 130-134.
[11] S. Sharma, M. Ram, S. Billawaria and T. Landol, On semi-topological

rings, Malaya J. Mat. 7 (4) 2019, 808-812.
[12] S. Warner, Topological rings, North Holland, (1993).

BHASKAR VASHISHTH
University of Delhi,
Deparment of Mathematics,
110007 New Delhi, INDIA
e-mail: abelianbhaskar@gmail.com

DAVINDER SINGH
Sri Aurobindo College
Department of Mathematics, University of Delhi
110007 New Delhi, INDIA
e-mail: dstopology@gmail.com


