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CONSTRUCTIVE COUNTERPARTS OF A
QUASIORDER

MARIAN ALEXANDRU BARONI

Abstract. Co-quasiorder relations, the constructive counterpart of
classical quasiorder relations are examined within the framework of
Bishop’s constructive mathematics. Two classically equivalent, but
constructively inequivalent, notions of co-quasorder are investigated.
It turns out that a weak co-quasorder is a co-quasiorder if and only if
it is quasi-detachable. As a consequence, the incomparability relation
associated to a co-quasiorder is quasi-detachable.

1. INTRODUCTION

A quasiorder (or a preorder) relation is a binary relation which is re-
flexive and transitive. From a constructive point of view, the concepts
of order and quasiorder are negative concepts, so it is appropriate
to define them as complements of binary relations which can be de-
fined in an affirmative way. Therefore an irreflexive and cotransitive
relation (a co-quasiorder [15]) should be considered first in order to
obtain a quasiorder by negation. Noticeable efforts to a constructive
theory of quasiorders have been done recently by Romano and others
[7, 10, 12, 13, 14, 15]. Their notion of co-quasiorder is based on a
stronger version of irreflexivity which could lead to relevant results.
However, one can define various notions of irreflexivity (and also of
cotransitivity) which are classically equivalent but constructively in-
equivalent. These notions lead to different definitions of co-quasiorder.

Keywords and phrases: constructive mathematics, co-quasiorder,
weak co-quasiorder, quasi-detachability, order incomparability.
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While cotransitivity is a key concept of constructive mathematics
and it would be questionable to replace it by weaker versions, the
classical (constructively weaker) irreflexivity could be used for a con-
structive study of quasiorders. Actually, preference relations, which
are nothing else than asymmetric co-quasiorders, are examined in con-
structive mathematics [1, 2, 5] without assuming a stronger variant of
irreflexivity or asymmetry.

The main goal of this work is to examine the relationship between
co-quasiorder (a strongly irreflexive and cotransitive relation) and
weak co-quasiorder (an irreflexive and cotransitive relation). A cer-
tain notion of detachability is used in order to obtain a characteriza-
tion of a co-quasiorder as a weak co-quasiorder satisfying that kind
of detachability. Several notions of irreflexivity, cotransitivity, order
comparability and their mutual relationships are also investigated.

The framework of this paper is Bishop’s constructive mathematics
(BISH), as developed in [3, 4], a mathematics carried out with intu-
itionstic logic. Every theorem of BISH is valid in classical mathematics
and also in other varieties of constructive mathematics. The strict use
of intuitionistic logic requires a careful reinterpretation of the logical
connectives and quantifiers and major restrictions in order to avoid
non-constructive logical principles such as the law of excluded middle
PV =P, the main source of non-constructivism, or the double negation
principle =——P = P. To show that a certain proposition P is non-
constructive, we can use a Brouwertan example, that is, we prove that
P implies some non-constructive principle. The so-called omniscience
principles, are frequently used to produce Brouwerian examples.

e The limited principle of omniscience (LPQO): for every binary
sequence (a,) either a,, = 0 for all n, or else there exists n such
that a, = 1.

e The weak limited principle of omniscience (WLPO): for every
binary sequence (a,) either a,, = 0 for all n, or it is contradic-
tory that a,, = 0 for all n.

e The lesser limited principle of omniscience (LLPO): if (a,) is
a binary sequence containing at most one term equal to 1, then
either ay, = 0 for all n, or else as,+1 = 0 for all n.
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Moreover, the following two logical principles are not accepted in

BISH.
e Markov’s principle (MP): if (a,) is a binary sequence and
=Vn (a, = 0), then there exists n such that a, = 1.
o The weak Markov’s principle (WMP): every pseudopositive
number a is strictly positive.

A real number a is called pseudopositive if
Ve e R (—=(0 < z)V-=(z <a)).

More details on non-constructive principles can be found in [9].

We will illustrate a main feature of constructive mathematics, the
possibility of revealing distinctions between classically equivalent no-
tions and propositions. Thus, a major task is to obtain definitions
which should be classically equivalent to the classical ones. Appro-
priate constructive definitions could lead to one or more constructive
counterparts of a classical theorem.

2. BASIC DEFINITIONS AND NOTATIONS

Each set S will be endowed with an equivalence relation, the equality
on S, and also with an apartness relation #, that is, an irreflexive,
symmetric, and cotransitive relation:

Voz,y € S (z#y= ~(z=y));
Vr,y € S (xz#y=y# )
Vo,y,2€S(x#y= (v #2Vy#2)).
The apartness # is said to be tight if
Yo,y € S (=(z #y) =z =y).

Contrary to the classical case, the implication =(z = y) = x # y does
not hold in BISH. For example, one might consider the real number
set R as constructed in [3, 4] or presented axiomatically in [6]. Then

Vz,y e R (—(z =y) =z #y)) = MP.

The Cartesian product of the sets (A, =1, #1) and (B, =g, #2) is the
set (A x B,=,#) with A x B ={(a,b) :a € A, b€ B},

(a1,b1) = (az,b2) < (a1 =1 by A ag =2 by);

(a1,01) # (az,b2) < (a1 #1 b1 A az #2 ba).
A binary relation on S is a subset of S x S.
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In order to construct a function, we start with (A;,=;,7#;1) and
(Ag,=2,7#5). The construction of the function f : A; — A, requires
an algorithm which, applied to an element z € A, produces a unique
element f(x) € Ay. Each function f: A; — Ay is extensional:

Vl’l,l‘g € Al («Tl =1 Tg = f(‘rl) -2 f(l’g))

The function f is said to be strongly extensional if
Vi, xo € A (f(21) #2 f22) = 31 #1 22).
3. CONSTRUCTIVE IRREFLEXIVITY

A main feature of constructive mathematics is the presence of clas-
sically equivalent notions which are constructively inequivalent. We
will illustrate this by examining irreflexive relations.

Definition 3.1. Let (S, =, #) be a set with apartness and p a binary
relation on S. The relation p is said to be:

e strongly irreflexive if

Vo,y €S (xzpy = v #y);

e pseudo-strongly irreflexive if

Vae,y € S (zpy = Vz (——(x # 2) V(2 #9)));

e almost strongly irreflexive if

Vo,y € S (zpy = —(z #y));
o irreflexive if

Ve € S (—(zpx)).

Proposition 3.2. Let (S, =,#) be a set with apartness and p a binary
relation on S. Then the following implications hold.

(1) If the relation p is strongly irreflezive, then it is pseudo-strongly
wrreflezive.

(ii) If p is pseudo-strongly irreflexive, then p is almost strongly ir-
reflezive.

(iii) If p is almost strongly irreflexive, then p is irreflexive.

Proof. (i) If x and y are apart, then Vz (z # 2 V z # y), hence = and
y are pseudo-apart, that is, Vz (-=(z # 2) V ==(z # y)).

(ii) If xpy then, since x and y are pseudo-apart, it follows that
—=(x # ) or = (x # y). The former is contradictory to —(x # z), so
the latter holds.
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(iii) If zpx then, from the almost strong irreflexivity of p, we obtain
——(z # x), a contradiction. O
If the apartness is not tight then irreflexivity does not necessarily
imply almost strong irreflexivity, as proved in the following example.

Example 3.3. Let S = {a,b,c} with a,b,c mutually nonequal and
the apartness #= {(a, ), (c,a), (b,c), (c,b)}. If p = {(a,b)}, then p is

wrreflexive but not almost strongly irreflexive.

When the apartness is tight, the above implication holds as we can
see in the following proposition.

Proposition 3.4. Let (S,=,+#) be a set with a tight apartness and p
a binary relation on S. Then p is irreflexive if and only if it is almost
strongly irreflexive.

Proof. We need only prove that irreflexivity entails almost strong
irreflexivity. To this end, assume that p is irreflexive and xzpy. Then,
—(z = y) which is equivalent to —=—(z # y). O

Classically, for a tight apartness, all these notions of irreflexivity
are equivalent. However, we cannot expect to prove within BISH the
converse implications of Proposition 3.2 (i) and (ii). More precisely,
we can prove the following results.

Proposition 3.5. (i) If each irreflexive relation on a set with tight
apartness were pseudo-strongly irreflexive, then every real number a
with =(a < 0) would be pseudopositive.

(i) If every pseudo-irreflexive relation on a set with tight apartness
were strongly irreflexive, then WMP would hold.

(iii) If every irreflexive relation on a set with tight apartness were
strongly irreflexive, then MP would hold.

Proof. Let a be a real number with =(a = 0) and consider the relation
p on R defined by p = {(a,0)}. Clearly, p is irreflexive and (i) follows
immediately. If p were strongly irreflexive then a > 0, so MP would
hold and, consequently, we obtain (iii).
To prove (ii), it suffices to consider a pseudopositive number a and
the relation p on R defined by p = {(a,0)}. O
For an irreflexive relation p the logical complement

—p =A{(z,y) : ~(zpy)}
is obviously a Reflexive relation. Conversely, if p is a reflexive relation
on S, then for all z € S zpz, hence ——(xpx), that is, =((z, x) € —p).
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Therefore the relation

—=p={(z,y) : == ((z,y) € p)}

is also reflexive and —p is irreflexive. Consequently, for any irreflexive
relation p, the relation ——p is an irreflexive relation too. We will prove
the converse implication and then obtain a similar result for almost
strongly irreflexive relations.

Proposition 3.6. Let (S, =,#) be a set with apartness and p a binary
relation on S.

(i) The relation p is irreflexive if and only if =—p is irreflezive.

(ii) The relation p is almost strongly irreflexive if and only if ——p
18 almost strongly irreflexive.

Proof. (i) We have already seen that ——p is irreflexive whenever p is
irreflexive. To prove the converse implication we need only observe
that
——=(zpz) & —(xpz).

Alternatively, we can write the irreflexivity of a binary relation r as
follows:

Vae,y € S (zry = —(z =v)).
Since p C ——p, if =—p satisfies the above condition, then p does.

(ii) As above, if =—p is almost strongly irreflexive then, taking into
account that p C ——p, it follows that p is almost strongly irreflex-
ive too. Conversely, assuming that p is almost strongly irreflexive,
consider x,y € S with (z,y) € ——p and assume that —(z # y). If
zpy, then =—(x # y), contradictory to —=(x # y). Therefore —(xpy),
in contradiction to == (xpy). Consequently, the condition —(z # y) is
impossible hence == (z # y). O]

Corollary 3.7. If ——p is pseudo-strongly irrefleive, respectively
strongly irreflexive, then p satisfes the same property.

Proof. We can use, as above, the property p C —=—p. O
Similar results can be obtained for strongly irreflexive relations by
using the apartness complement

~p=A{(z,y) : Y(a,b) € p ((z,y) # (a,)))}.

Lemma 3.8. If p is strongly irreflexive and inhabited, then ~ p is
reflexive.
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Proof. We need only prove that for all elements x of S, (z,z) €~ S.
The relation p is inhabited, so we can find elements of it. For an
arbitrary (a,b) € p, since p is strongly irreflexive, a # b hence a # x
or x # b. As a consequence, (z,z) # (a,b) and (z,z) €~ p. O

Conversely, if ~ p is reflexive, it follows that (x,y) # (z, ) when-
ever (z,y) € p. Consequently, x # y hence p is strongly irreflexive.
Similarly, if p is reflexive, then ~ p is strongly irreflexive.

Corollary 3.9. Let (S,=,#) a set with apartness and p an inhabited
subset of S x S.

(i) The relation p is strongly irreflexive if and only if ~~ p is
strongly irreflezive.

(ii) If p is strongly irreflexive, then for all (z,y) € Sx S and (a,b) €
p, either (x,y) # (a,b) or else x # y.

Proof. (i) If p is strongly irreflexive and inhabited then ~ p is reflexive
and therefore ~~ p is strongly reflexive. Conversely, we take into
account that p C~n~ p.

(ii) If (z,y) € S x S and (a,b) € p, then the strong reflexivity of p
entails a # b hence a # x or x # b. By applying cotransitivity again,
we obtain a # x or x # y or y # b. it follows that (z,y) # (a,b) or
T F#y. O

Clearly, if p is reflexive, then ——p is reflexive but we cannot expect
to prove the converse implication within BISH.

Example 3.10. Let a be a real number with —a = 0 and define the
set S = {0,a}. Define the binary relation p on S by p = {(0,0)} U
{(a,a) if a # 0}. Then the relation =—p is reflexive but the reflexivity
of p entails MP.

Proof. We have to prove that for all x € S —=—(zpx). Assume that
z € S and —(zpz). If x # 0 then 2 = a and (a,a) € S, contradictory
to =(zpx). Therefore =(x # 0) hence z = 0 and (x,x) € S, a contra-
diction. Consequently, the condition —(xpx) is contradictory, that is,
(x,z) € =—p. If p is reflexive, then (a,a) € p, condition which implies
a # 0 and this, in turn, entails the Markov principle. O

4. COTRANSITIVITY

The notion of cotransitivity plays a crucial role in constructive
mathematics. For example, the cotransitivity of the real number set:

a<b=Vr(a<zVz<b)
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is an appropriate substitute of the trichotomy law:
Ve,y e R(z <0Vzx=0Vz>D0),

equivalent to LPO hence unacceptable in constructive mathematics.
As in the case of irreflexivity, we may consider several definitions of
cotransitivity. However, the strongest, the usual constructive cotran-
sitivity, is the most appropriate for developing a constructive theory
of order and quasiorder.

Definition 4.1. Let (S, =, #) be a set with apartness and p a binary
relation on S. The relation p is said to be:

e cotransitive if
Vr,y,z € S (zpy = (zpz V zpy));

e pseudo-cotransitive if

Va,y,z € S (wpy = (m(xpz) V 7=(zpy)));
e almost cotransitive if

Va,y,z € S (zpy = (= (xpz V 2py)));
e nearly cotransitive if
Va,y,z € S ((wpy A —(zpy)) V (m(zpy) A 2py)) = 3p2;

e weakly cotransitive if

Va,y,z € S ((=(zpy) A —(ypz)) = —(xp2)).

Proposition 4.2. Let (S,=,#) a set with apartness and p a binary
relation on S. Then the following implications hold.
(i) Cotransitivity of p implies pseudo-cotransitivity. The latter en-
tails almost cotransitivity which, in turn, implies weak cotransitivity.
(ii) Cotransitivity implies near cotransitivity and the latter implies
weak cotransitivity.

Proof. (i) Since p = ——p, the first implication is straightforward. If
p is pseudo-cotransitive, since

it follows that p is almost cotransitive.

For the last implication, we assume that p is almost cotransitive
and consider the elements x,y,z € S with —(zpy) A =(ypz), which is
equivalent to =(xpy V ypz). Assuming that xpz, we obtain from the
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almost cotransitivity of p the condition =—(zpyVypz), a contradiction.
As a consequence, we obtain —(zpz).

(ii) Assume that p is cotransitive and let z, y, z be elements of S such
that zpy and = (zpy). Then zpz or zpy and the latter is contradictory
to the hypothesis. In a similar manner, we can easily observe that xpz
whenever —(xpy) A zpy.

To prove that near cotransitivity implies weak cotransitivity, con-
sider z,y,z € S with (=(zpy) A (=(ypz)) and assume that zpz. If
zpz and —(ypz), the near cotransitivity of p entails zpy, which is con-
tradictory. Therefore —(zpz) and, as a consequence, the relation p is
weakly cotransitive. O

The binary relation p is obviously weakly cotransitive if and only if
—p is transitive.

5. CONSTRUCTIVE QUASIORDER RELATIONS

Classically, a binary relation = is said to be a quasiorder whenever
it is reflexive and transitive. As in the case of the constructive study
of partial order [11], it would be more appropriate to start with an
irreflexive and cotransitive relation £ in order to obtain a quasiorder
<=

We might consider a relation A which satisfies one of the five con-
ditions of cotransitivity from Definition 4.1 and also one of the con-
ditions of irreflexivity from Definition 3.1. Then the relation <= — ﬁ
is a quasiorder relation. We will define in this way two notions of
co-order. Thus, £ is called weak co-quasiorder if it is irreflexive and
cotransitive. Following Romano [15], we say that £ is a co-quasiorder
if it is strongly irreflexive and cotransitive. Since every strongly ir-
reflexive relation is irreflexive, any co-quasiorder is necessarily a weak
co-quasiorder. If the apartness is not tight, the converse does not hold
classically, let alone constructively. We illustrate this situation by the
following counterexample.

Example 5.1. Let S = {a,b, c} with a,b, c mutually nonequal and the
apartness 4= {(a,0), (¢,a), (0,0, (e:0)}. IF £= {(a,0), (a,)}, then

£ is a weak co-quasiorder but not a co-quasiorder.

Clearly, the two notions of quasiorder are classically equivalent pro-
vided the apartness is tight. However, we cannot expect to prove this
equivalence in BISH.
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Proposition 5.2. If each weak co-quasiorder on a set with tight apart-
ness is also a co-quasiorder, then MP holds.

Proof. For a Brouwerian example, consider a € R with —(a = 0),
S ={a,0} and p = {(a,0)}, as in the proof of Proposition 3.5 (iii). O
In order to examine the relationship between these variants of co-
quasiorder, we need a certain notion of detachability. Given a set with
apartness (S, =, #), a subset A of S is called quasi-detachable if

Vee SVye A(x € AV #y).

One can easily prove that any co-quasiorder on the set S is a detach-
able subset of S x S [10]. Moreover, if £ is a co-quasiorder on S, then
for all a € S the subsets

af={zreS:afz}, Aa={reS:z£a}
are quasi-detachable [7]. (Quasi-detachable subsets are called SE-
subsets in [10].)

Theorem 5.3. Let (S,=,#) be a set with apartness and £ a binary
relation on S. Then the following statements are equivalent.

(1) The relation £ is a co-quasiorder.

(2) The relation £ is a quasi-detachable weak co-quasiorder.

(3) The relation £ is a weak co-quasiorder which satisfies the con-
dition — A=~2A.

Proof. Since every strongly irreflexive relation is irreflexive, every
co-quasiorder is a weak co-quasiorder. Each co-quasiorder is quasi-
detachable, so (1) entails (2). If £ is quasi-detachable, then = A=~4
[10] and, as a consequence, (2) implies (3). To prove (3) = (1),
assume that £ satisfies (3) and we need only prove that £ is strongly
irreflexive. To this end, consider z,y € S with # £ y. Since £ is
irreflexive, (z,x) € = A=~ZA. Therefore (x,y) # (x,z) hence z # y.
It follows that £ is strongly irreflexive. O
Weak co-quasiorders satisfy a weaker condition of detachability.

Proposition 5.4. If £ is a coquasiorder on S, then
V(z,y) € S x S¥(a,b) €2 ((z,y) €2 V=((z,y) = (a,]))).

Proof. Consider (z,y) € S x S and (a,b) €A. Thena Az orz Ay
ory Ab.Ifa £ xory £ b then =(a = x) or =(y = b) hence
—((z,y) = (a,b)). m
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In the last part of this section, we turn our attention to weak
co-quasiorder relations on a metric space. Each metric space X is
equipped with the standard tight apartness

r#y<dzy) >0.

Example 5.5. Let f : X — Y be a function between the metric spaces
X and Y. Define the relation £ on X by

rRys fx)# fy)

Then £ is a weak co-quasiorder which is co-quasiorder if and only if
f s strongly extensional.

Proof. Obviously, the relation is a weak co-quasiorder. It is a co-
quasiorder if and only if it is strongly irreflexive. To end the proof we
need only observe that the strong irreflexivity of £ is equivalent to
the strong extensionality of f. O

We will use Ishihara’s methods from Lemma 3 of [8] to extend that
result to a more general case.

Theorem 5.6. Let A be a weak co-quasiorder on the metric space X
and let x,y be elements of X with x A y. Then the subset {x,y} is
closed.

Proof. Let (z,) be a sequence of elements of {z,y}, convergent to a
limit z in X. The cotransitivity of £ entails z £ z or z A y. In the
former case, suppose that z # y. Since (z,) converges to z, it follows
that z, # y, hence z, = x, for all sufficiently large n. Therefore z = z,
contradictory to A z. It follows that —(z # y), that is, z = .
In a similar way, we prove that z = z in the latter case. Thus, (z,)
converges to an element of {z,y}. O

As a consequence, we can obtain Isihara’s result for functions

(Lemma 3 of [8]).

Corollary 5.7. Let f : X — Y be a function between metric spaces
and let x,y be elements of X such that f(x) # f(y). Then the set
{z,y} is closed.

Proof. We apply Theorem 5.6 for the quasiorder relation defined in
Example 5.5. 0]
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6. COMPARABILITY AND INCOMPARABILITY

Classically, for a quasiorder <, the elements x and y are comparable
if r <yory < x, that is (z,y) €X U <71 . For a constructive study, it
would be more convenient to define first the notion of incomparability.

Definition 6.1. Let (S,=,#) be a set with apartness and £ a weak
co-quasiorder on S. We define the relation }f of incomparability on S
by

If x }f y, we say that = and y are incomparable.

We denote by =< the quasiorder relation on S defined by
2y (zAy)
and by || the relation defined on S by
vllye (@2yVy ).

Definition 6.2. Let (S, =, #) be a set with apartness, A a weak co-
quasiorder on S, and Jf the corresponding incomparability relation.
The elements z and y of S are said to be:

e comparable if
z [l y;
e quasicomparable if
(z,y) e~if;

e weakly comparable if

(z,y) € ~ k-

Clearly, the relations of incomparability, comparability, quasicom-
parability, and weak comparability are symmetric and the relation
< N ="!is an equivalence.

Lemma 6.3. If two elements are either comparable or quasicompara-
ble, then they are weakly comparable.

Proof. If x || y, then —(z £ y) or =(y £ z) hence ~(z Ay Ay £ ),
that is, =(z Jf y). Since ~}fC — J, it follows that quasicomparability
implies comparability. [
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Example 6.4. Consider the relation £ on R* defined by

(21, 22) 2 (y1,92) & (l2a] > |ga| V |z2] > [y2]).

Then £ is a co-quasiorder, the corresponding quasiorder < is given by

(21, 22) 2 (41, 92) & (lz1] < [yal A o] <),

the incomparability is obtained by

oy < (2] > Jyaf Alwa] <y2l) V (Joa] < lyal Al2a| > [u2]),

and

((z1,22), (41, 92)) €2 N A7 (lza] = || A || = [2]).

Although for a tight apartness, two elements are either classically
comparable or incomparabile, we cannot expect to prove this con-
structively. Similarly, we cannot prove constructively that any two
weakly comparable elements are comparable. We prove this by using
the following Brouwerian example.

Example 6.5. Consider the co-quasiorder £ from Ezample 6.4.
(i) If for any real number a, we have

(a,0) < (0,a) V(0,a) < (a,0) V (a,0) } (0,a),

then LPO holds.
(ii) If for alla € R,

((0,0) = (a,a)) V (a,a) = (0,0),
then LLPO holds.

Proof. (i) It follows that @ = 0 or @ > 0 or a < 0 which is equivalent
to LPO.

(ii) If (a,a) K (0,0), then @ > 0 and a < 0, a contradiction. There-
fore (a,a) and (0,0) are weakly comparable. If (a,a) || (0,0), then
a<0ora>0hence LLPO holds. O

Lemma 6.6. If A and B are quasi-detachable subsets of the set S,
then AN B is qasi-detachable.

Proof. Let x,y be elements of S with y € AN B. On the one hand,
x € Aor x # y. On the other hand x € B or x # y. It follows that
x#yorelsex € AN B. O
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Proposition 6.7. Let (S, =,#) be a set with apartness, 2 a weak co-
quasiorder, and }f its corresponding relation of incomparability. Then
each of the conditions (1) — (3) entails the next one.

(1) The relation £ is a co-quasiorder.
(2) The relation }f is quasi-detachable.
(3) Any two weakly comparable elements are quasicomparable.
(4) The relation }f is strongly irreflexive.

Proof. 1If £ is a co-quasiorder, then the relation A7! is also a co-
quasiorder and, according to Lemma 6.6, the relation Jf=2 N A~ is
quasi-detachable. Therefore (1) = (2).

If Jt is quasi-detachable, then = J=~}[10], so (2) = (3).

We now assume (3) and let x,y be elements of S with z }f y. Then
z || « hence (z,x) € = J=~}. It follows that (z,y) # (z,z) hence
x # y. Therefore (3) = (4). O

We now consider weak co-quasiorders without incomparable ele-
ments. In this case, the weak co-quasiorder should be asymmetric. A
binary relation p on the set S is called asymmetric if for all x,y € S
zpy = —(ypx). We introduce a stronger notion of asymmetry. We
say that p is strongly asymmetric if

Va,y € S(zpy = (y,x) €~ p).

A binary relation is said to be a preference if it is asymmetric and
cotransitive. Therefore each preference on S is a weak co-quasiorder
and for all z,y € S, x and y are weakly comparable.

Definition 6.8. A binary relation is said to be a strong preference if
it is strongly symmetric and cotransitive.

It follows that each strong preference > is both a preference and
a co-quasiorder. To prove that > is a co-quasiorder we need only
prove that > is strongly irreflexive. If z > y then (y,z) €~> hence
(y,x) # (x,y). Therefore x # y and, as a consequence, > is strongly
irreflexive.
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