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fmg-CLOSED SETS IN FUZZY TOPOLOGICAL
SPACES

ANJANA BHATTACHARYYA

Abstract. After the introduction of a fuzzy generalized version
of closed set in [2, 3], different types of generalized versions of fuzzy
closed sets have been introduced and studied. In this context, we have
to mention [3, 5, 6, 7, 8, 9, 10, 11]. In this paper we study the notion
of fmg-closed set, which was introduced in [9].

1. Introduction

This paper deals with the notion of fmg-closed set in fuzzy topolog-
ical spaces, which was introduced in [9]. Using this concept as a basic
tool, we introduce here the nption of fmg-closure operator, which is
an idempotent operator. Then we establish some properties of this
set operator and afterwards, the mutual relationships of this operator
with the operators defined in [3, 5, 6, 7, 8, 9, 11, 12] are established.
Next we introduce and characterize the notions of fmg-open function
and fmg-closed function using the fmg-closure operator and we es-
tablish the mutual relationships of these two new types of functions
with the functions defined in [3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].
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Furthermore, we introduce the notions of fmg-continuous function
and fmg-irresolute function, then we characterize these two types
of functions via fmg-closure operator and we establish the mutual
relationships of fmg-continuous functions with the functions defined
in [3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Next we introduce the
notions of fmg-regular space, fmg-normal space and fmg-compact
space, that are fuzzy regular space [24], fuzzy normal space [23] and
fuzzy compact space [18] respectively, but the converses are not true,
in general. Next we introduce the class of fmTg-spaces in which fuzzy
regularity and fuzzy normality remain invariant under fmg-continuous
function and fuzzy regular space and fuzzy normal space become fmg-
regular space and fmg-normal space under strongly fmg-continuous
function. In the last section we introduce and study the notion of fmg-
T2 space, then some applications of the notions of fmg-open function,
fmg-continuous function, fmg-irresolute function and strongly fmg-
continuous function on the spaces defined above are established.

2. Preliminaries

Throughout this paper (X, τ) or simply by X we shall mean a fuzzy
topological space (fts, for short) in the sense of Chang [18]. In [30],
L.A. Zadeh introduced fuzzy set as follows: A fuzzy set A is a function
from a non-empty set X into the closed interval I = [0, 1], i.e., A ∈ IX .
The support [30] of a fuzzy set A, denoted by suppA and is defined by
suppA = {x ∈ X : A(x) 6= 0}. The fuzzy set with the singleton sup-
port {x} ⊆ X and the value t (0 < t ≤ 1) will be denoted by xt. 0X
and 1X are the constant fuzzy sets taking values 0 and 1 respectively
in X. The complement of a fuzzy set A in X is denoted by 1X \A and
is defined by (1X \ A)(x) = 1 − A(x), for each x ∈ X [30]. For any
two fuzzy sets A,B in X, A ≤ B means A(x) ≤ B(x), for all x ∈ X
[30] while AqB means A is quasi-coincident (q-coincident, for short)
with B, if there exists x ∈ X such that A(x) + B(x) > 1 [28]. The
negation of these two statements will be denoted by A 6≤ B and A 6 qB
respectively. For a fuzzy point xt and a fuzzy set A, xt ∈ A means
A(x) ≥ t, i.e., xt ≤ A. For a fuzzy set A, clA and intA will stand for
fuzzy closure [18] and fuzzy interior [18] respectively. A fuzzy set A is
called a fuzzy neighbourhood (fuzzy nbd, for short) of a fuzzy point xα
if there exists a fuzzy open set U in X such that xα ∈ U ≤ A [28]. If,
in addition, A is fuzzy open, then A is called fuzzy open nbd of xα [28].
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A fuzzy set A is called a fuzzy quasi neighbourhood (fuzzy q-nbd, for
short) [28] of a fuzzy point xα in an fts X if there is a fuzzy open set U
in X such that xαqU ≤ A. If, in addition, A is fuzzy open, then A is
called fuzzy open q-nbd [28] of xα. A fuzzy set A in X is called fuzzy
regular open [1] (resp., fuzzy semiopen [1], fuzzy preopen [27], fuzzy α-
open [17], fuzzy β-open [21], fuzzy γ-open [4]) if A = int(clA) (resp.,
A ≤ cl(intA), A ≤ int(clA), A ≤ int(cl(intA)), A ≤ cl(int(clA)),
A ≤ cl(intA)

∨
int(clA)). A fuzzy set A is called fuzzy π-open if A is

the union of finite number of fuzzy regular open sets [8]. The comple-
ment of a fuzzy regular open (resp., fuzzy semiopen, fuzzy preopen,
fuzzy α-open, fuzzy β-open, fuzzy γ-open) set is called fuzzy regular
closed [1] (resp., fuzzy semiclosed [1], fuzzy preclosed [27], fuzzy α-
closed [17], fuzzy β-closed [21], fuzzy γ-closed [4]). The intersection
of all fuzzy semiclosed (resp., fuzzy preclosed, fuzzy α-closed, fuzzy
β-closed, fuzzy γ-closed) sets containing a fuzzy set A is called fuzzy
semiclosure [1] (resp., fuzzy preclosure [27], fuzzy α-closure [17], fuzzy
β-closure [21], fuzzy γ-closure [4]) of A, to be denoted by sclA (resp.,
pclA, αclA, βclA, γclA). The collection of all fuzzy open (resp., fuzzy
regular open, fuzzy semiopen, fuzzy preopen, fuzzy α-open, fuzzy β-
open, fuzzy γ-open, fuzzy π-open) sets in an fts (X, τ) is denoted by τ
(resp., FRO(X, τ), FSO(X, τ), FPO(X, τ), FαO(X, τ), FβO(X, τ),
FγO(X, τ), FπO(X, τ)). The collection of all fuzzy closed (resp.,
fuzzy regular closed, fuzzy semiclosed, fuzzy preclosed, fuzzy α-closed,
fuzzy β-closed, fuzzy γ-closed, fuzzy π-closed) sets in an fts X is de-
noted by τ c (resp., FRC(X, τ), FSC(X, τ), FPC(X, τ), FαC(X, τ),
FβC(X, τ), FγC(X, τ), FπC(X, τ)).

3. fmg-Closed Set: Some Properties

The notion of fmg-closed set is introduced in [9]. Here we prove
some important properties of this set and the mutual relationship of
this class of sets with the classes of sets defined in [2, 3, 5, 6, 7, 9, 10, 11]
are established.

First we recall the following definition from [2, 3, 9] for ready refer-
ences.
Definition 3.1 [2, 3]. Let (X, τ) be an fts and A ∈ IX . Then A is
called fg-closed set if clA ≤ U whenever A ≤ U ∈ τ . The complement
of an fg-closed set in an fts X is called fg-open set.
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Definition 3.2 [9]. Let (X, τ) be an fts and A ∈ IX . Then A is called
fmg-closed set in X if clintA ≤ U whenever A ≤ U and U is fg-open
set in X. The complement of fmg-closed set is called fmg-open set
in X.
Remark 3.3. Union and intersection of two fmg-closed sets may not
be so, as it seen from the following examples.
Example 3.4. Let X = {a, b}, τ = {0X , 1X , A} where A(a) =
0.5, A(b) = 0.6. Then (X, τ) is an fts. Now the collection of all
fg-open sets in (X, τ) is {0X , 1X , U, V } where U ≥ A, V 6≥ 1X \ A.
Consider two fuzzy sets B and C defined by B(a) = 0.4, B(b) =
0.6, C(a) = 0.7, C(b) = 0.3. As clintB = clintC = 0X , clearly
B and C are fmg-closed sets in (X, τ). Let D = B

∨
C. Then

D(a) = 0.7, D(b) = 0.6. Then D ≤ D where D is fg-open set in X.
But clintD = 1X 6≤ D ⇒ D is not an fmg-closed set in (X, τ).
Example 3.5. Let X = {a, b}, τ = {0X , 1X , A,B,C} where A(a) =
0.3, A(b) = 0.4, B(a) = B(b) = 0.4, C(a) = 0.6, C(b) = 0.5. Then
(X, τ) is an fts. Here the collection of all fg-open sets in (X, τ) is
{0X , 1X , U, V } where U(a) ≥ 0.6, 0.5 ≤ U(b) < 0.6, V 6≥ 1X \ C.
Now consider the fuzzy sets S and T defined by S(a) = 0.6, S(b) =
0.4, T (a) = 0.4, T (b) = 0.6. Now S ≤ U where U is fg-open set in X
and clintS = 1X \ C ≤ U ⇒ S is fmg-closed set in (X, τ). Again as
1X is the only fg-open set in X containing T , clearly T is fmg-closed
set in (X, τ). Let M = S

∧
T . Then M(a) = M(b) = 0.4. Now M is

fg-open set in X. So M ≤ M , but clintM = 1X \ C 6≤ M ⇒ M is
not an fmg-closed set in (X, τ).

So we can conclude that the set of all fmg-open sets in an fts (X, τ)
do not form a fuzzy topology.
Remark 3.6. Fuzzy closed set, fuzzy regular closed set, fuzzy pre-
closed set, fuzzy α-closed set in an fts (X, τ) are fmg-closed sets in
X. But the converses are not necessarily true, in general, as we can
see from the following example.
Example 3.7. There exists an fmg-closed set which is none of fuzzy
closed, fuzzy regular closed, fuzzy preclosed, fuzzy α-closed

Let X = {a, b}, τ = {0X , 1X , A} where A(a) = 0.4, A(b) = 0.6.
Then (X, τ) is an fts. Consider the fuzzy set B defined by B(a) =
B(b) = 0.6. Then 1X is the only fg-open set in (X, τ) containing B
and so B is fmg-closed set in (X, τ). But as clintB = 1X 6≤ B ⇒
B 6∈ FPC(X, τ). Also B 6∈ τ c, B 6∈ FRC(X), B 6∈ FαC(X).
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Theorem 3.8. Let (X, τ) be an fts and A,B ∈ IX . If A ≤ B ≤ clintA
and A is fmg-closed set in X, then B is also fmg-closed set in X.
Proof. Let U be an fg-open set in (X, τ) such that B ≤ U . Then by
hypothesis, A ≤ B ≤ U . As A is fmg-closed set in X, clintA ≤ U .
As B ≤ clintA, so clintB ≤ clint(clintA) ≤ clintA ≤ U ⇒ B is
fmg-closed set in X.
Theorem 3.9. Let (X, τ) be an fts and A,B ∈ IX . If intclA ≤ B ≤ A
and A is fmg-open set in X, then B is also fmg-open set in X.
Proof. intclA ≤ B ≤ A ⇒ 1X \ A ≤ 1X \ B ≤ 1X \ intclA =
clint(1X \ A) where 1X \ A is fmg-closed set in X. By Theorem 3.8,
1X \B is fmg-closed set in X ⇒ B is fmg-open set in X.
Theorem 3.10. Let (X, τ) be an fts and A ∈ IX . Then A is fmg-
open set in X if and only if K ≤ intclA whenever K ≤ A and K is
fg-closed set in (X, τ).
Proof. Let A(∈ IX) be fmg-open set in X and K ≤ A where K is
fg-closed set in (X, τ). Then 1X \ A ≤ 1X \K where 1X \ A is fmg-
closed set in X and 1X \K is fg-open set in (X, τ). By hypothesis,
clint(1X \ A) ≤ 1X \ K ⇒ 1X \ intclA ≤ 1X \ K ⇒ K ≤ intclA.

Conversely, let K ≤ intclA whenever K ≤ A, K be fg-closed set in
(X, τ). Then 1X \A ≤ 1X \K where 1X \K is fg-open set in (X, τ).
Now 1X \ intclA ≤ 1X \K ⇒ clint(1X \A) ≤ 1X \K (by hypothesis)
⇒ 1X \ A is fmg-closed set in X ⇒ A is fmg-open set in X.
Theorem 3.11. Let (X, τ) be an fts and A,B ∈ IX . If A is fmg-
closed set in X and B is fg-closed set in (X, τ) with A 6 qB. Then
clintA 6 qB.
Proof. By hypothesis, A 6 qB ⇒ A ≤ 1X \ B which is fg-open set in
(X, τ)⇒ clintA ≤ 1X \B ⇒ clintA 6 qB.
Remark 3.12. The converse of Theorem 3.11 may not be true, in
general, as it seen from the following example.
Example 3.13. Let X = {a, b}, τ = {0X , 1X , A,B,C} where
A(a) = 0.4, A(b) = 0.6, B(a) = 0.3, B(b) = 0.5, C(a) = 0.8, C(b) = 1.
Then (X, τ) is an fts. Consider the fuzzy set D defined by D(a) =
0.4, D(b) = 0.5. Then D < A which is fg-open set in X. But
clintD = 1X \ B 6≤ A ⇒ D is not fmg-closed set in X. Again
D 6 q(1X \ C) which is fg-closed set in X and clintD 6 q(1X \ C) also.

Let us now recall the following definitions from [3, 5, 6, 7, 9, 11, 12]
for ready references.



26 ANJANA BHATTACHARYYA

Definition 3.14. Let (X, τ) be an fts and A ∈ IX . Then A is called
(i) fgp-closed set [3] if pclA ≤ U whenever A ≤ U ∈ τ ,

(ii) fpg-closed set [3] if pclA ≤ U whenever A ≤ U ∈ FPO(X, τ),
(iii) fgα-closed set [3] if αclA ≤ U whenever A ≤ U ∈ τ , (iv) fαg-
closed set [3] if αclA ≤ U whenever A ≤ U ∈ FαO(X, τ), (v) fgβ-
closed set [7] if βclA ≤ U whenever A ≤ U ∈ τ , (vi) fβg-closed set [7]
if βclA ≤ U whenever A ≤ U ∈ FβO(X, τ), (vii) fgs-closed set [3] if
sclA ≤ U whenever A ≤ U ∈ τ ,

(viii) fsg-closed set [3] if sclA ≤ U whenever A ≤ U ∈ FSO(X, τ),
(ix) fgs∗-closed set [5] if clA ≤ U whenever A ≤ U ∈ FSO(X, τ),
(x) fs∗g-closed set [6] if clA ≤ U whenever A ≤ U and U is fg-open
set in X, (xi) fswg-closed set [9] if cl(intA) ≤ U whenever A ≤ U ∈
FSO(X, τ), (xii) frwg-closed set [9] if cl(intA) ≤ U whenever A ≤
U ∈ FRO(X, τ), (xiii) fπg-closed set [9] if clA ≤ U whenever A ≤ U
where U ∈ FπO(X), (xiv) fwg-closed set [9] if cl(intA) ≤ U whenever
A ≤ U ∈ τ , (xv) fgγ-closed set [10] if γclA ≤ U whenever A ≤ U ∈ τ ,
(xvi) fgγ∗-closed set [11] if γclA ≤ U whenever A ≤ U ∈ FSO(X, τ),
(xvii) fgpr-closed set [9] if pclA ≤ U whenever A ≤ U ∈ FRO(X).
Remark 3.15. From above discussion we can conclude that

(i) every fmg-closed set is fgp-closed, fgpr-closed, fgα-closed,
fgβ-closed, fgγ-closed, fgγ∗-closed, fwg-closed, frwg-closed, (ii) ev-
ery fs∗g-closed set is fmg-closed, (iii) the concept of fg-closed set,
fπg-closed set, fpg-closed set, fαg-closed set, fβg-closed set, fgs-
closed set, fsg-closed set, fgs∗-closed set, fswg-closed set are inde-
pendent of the concept of fmg-closed set.
Example 3.16. There exists an fmg-closed set which is not fg-
closed, fgs-closed, fsg-closed, fgs∗-closed, fs∗g-closed

Consider Example 3.4. Here B is fmg-closed set in X. Now B ≤
A ∈ τ (also A is fg-open set in X,A ∈ FSO(X)). But clB = sclB =
1X 6≤ A ⇒ B is not fg-closed set, fgs∗-closed set, fs∗g-closed set,
fgs-closed set, fsg-closed set.
Example 3.17. There exists an fmg-closed set which is not fπg-
closed set Consider Example 3.5 and the fuzzy set S. Here S is fmg-
closed set in X. Now S < C ∈ FπO(X), but clS = 1X \ B 6≤ C ⇒ S
is not fπg-closed set in X.
Example 3.18. There exists an fmg-closed set which is none of
fβg-closed, fswg-closed, fpg-closed, fαg-closed
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Let X = {a, b}, τ = {0X , 1X , A} where A(a) = 0.4, A(b) = 0.7.
Then (X, τ) is an fts. Consider the fuzzy set B defined by B(a) =
0.6, B(b) = 0.7. Then B ∈ FβO(X), B ∈ FSO(X), B ≤ B. But
B 6∈ FβC(X) and so βclB 6≤ B ⇒ B is not fβg-closed set in X.
Again clintB = 1X 6≤ B ⇒ B is not fswg-closed set in X. Now fg-
open sets in X is {0X , 1X , U} where U 6≥ 1X \A. Here B ≥ 1X \A and
so 1X is the only fg-open set in X containing B which implies that B
is fmg-closed set in X. Again as intclB = 1X ≥ B ⇒ B ∈ FPO(X)
and so B ≤ B ∈ FPO(X). But as B 6∈ FPC(X), pclB 6≤ B ⇒ B is
not fpg-closed set inX. AlsoB ∈ FαO(X) and soB ≤ B ∈ FαO(X).
But as B 6∈ FαC(X), αclB 6≤ B ⇒ B is not an fαg-closed set in X.
Example 3.19. There exists a set which is fg-closed, fπg-closed,
fgpr-closed, fwg-closed, frwg-closed, fgγ-closed but it is not an
fmg-closed set Consider Example 3.4 and the fuzzy set D. Here D
is not fmg-closed set in X. As 1X ∈ τ (resp., 1X ∈ FRO(X), 1X ∈
FπO(X)) only containing D, D is fg-closed, fgpr-closed, fπg-closed,
fwg-closed, frwg-closed and fgγ-closed.
Example 3.20. There exists a set which is fgβ-closed, fβg-closed,
fgp-closed, fgα-closed, fαg-closed, fgs-closed, fsg-closed, fgγ∗-
closed but it is not an fmg-closed set Let X = {a, b}, τ = {0X , 1X , A}
where A(a) = 0.5, A(b) = 0.4. Then (X, τ) is an fts. Here fg-open
sets in X is {0X , 1X , U} where U 6≥ 1X \A. Consider the fuzzy set B
defined by B(a) = B(b) = 0.5. Then B ≤ B which is fg-open set in
X. But clintB = 1X \ A 6≤ B ⇒ B is not fmg-closed set in X. Now
B ∈ FγC(X), B ∈ FβC(X), B ∈ FSC(X) and so B is fgγ∗-closed
set, fgβ-closed set, fβg-closed set, fsg-closed set, fgs-closed set in X.
Again 1X ∈ τ (resp., 1X ∈ FαO(X), 1X ∈ FPO(X)) only containing
B and so B is fgα-closed set, fαg-closed set, fgp-closed set.
Example 3.21. There exists a set which is fswg-closed as well as
fgs∗-closed but it is not an fmg-closed set Consider Example 3.5 and
the fuzzy set U defined by U(a) = 0.35, U(b) = 0.6. Then U ≤ U
which is fg-open set in X. But clintU = 1X \ C 6≤ U ⇒ U is not
fmg-closed set in X. But FSO(X) = {0X , 1X , V,W} where A ≤
V ≤ 1X \ C, C ≤ W ≤ 1X \ B. Then U < 1X \ B ∈ FSO(X)
and clU = 1X \ B ≤ 1X \ B ⇒ U is fgs∗-closed set in X. Again
clintU = 1X \ C < 1X \B ⇒ U is fswg-closed set in X.
Example 3.22. There exists a set which is fpg-closed but it is not
an fmg-closed set Let X = {a}, τ = {0X , 1X , B, C} where B(a) =
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0.4, C(a) = 0.45. Then (X, τ) is an fts. Consider the fuzzy set A
defined by A(a) = 0.5. Then A ≤ A which is fg-open set in X. But
clintA = 1X \ C 6≤ A ⇒ A is not an fmg-closed set in X. But
A < U ∈ FPO(X) where U(a) > 0.6. Then pclA = 1X \ C < U ⇒ A
is fpg-closed set in X.
Definition 3.23. An fts (X, τ) is called fmTg-space if every fmg-
closed set in X is fuzzy closed set in X.

Now we recall the definitions of some spaces from [3, 5, 6, 8, 10, 11,
12, 13, 14, 15, 16] in which the reverse implications in Remark 3.16
hold.
Definition 3.24. An fts (X, τ) is said to be (i) fβTb-space [8] if
every fβg-closed set in X is fuzzy closed set in X, (ii) fTβ-space [8] if
every fgβ-closed set in X is fuzzy closed set in X, (iii) fTα-space [3] if
every fgα-closed set in X is fuzzy closed set in X, (iv) fαTb-space [3]
if every fαg-closed set in X is fuzzy closed set in X, (v) fTb-space [3]
if every fgs-closed set in X is fuzzy closed set in X, (vi) fTsg-space
[3] if every fsg-closed set in X is fuzzy closed set in X, (vii) fTγ-space
[11] if every fgγ-closed set in X is fuzzy closed set in X, (viii) fTγ∗-
space [12] if every fgγ∗-closed set in X is fuzzy closed set in X, (ix)
frTg-space [16] if every frwg-closed set in X is fuzzy closed set in X,
(x) fsTg-space [15] if every fswg-closed set in X is fuzzy closed set in
X, (xi) fTp-space [3] if every fgp-closed set in X is fuzzy closed set
in X, (xii) fpTb-space [3] if every fpg-closed set in X is fuzzy closed
set in X, (xiii) fTpr-space [10] if every fgpr-closed set in X is fuzzy
closed set in X, (xiv) fTw-space [14] if every fwg-closed set in X is
fuzzy closed set in X, (xv) fTπ-space [13] if every fπg-closed set in X
is fuzzy closed set in X, (xvi) fgTs∗-space [5] if every fgs∗-closed set
in X is fuzzy closed set in X, (xvii) fTg-space [3] if every fg-closed
set in X is fuzzy closed set in X.
Note 3.25. (i) In fmTg-space, fmg-closed set is fg-closed set,
fπg-closed set, fpg-closed set, fαg-closed set, fβg-closed set, fsg-
closed set, fgs∗-closed set, fswg-closed set, fs∗g-closed set, (ii) In
fTg-space (resp., fTβ-space, fβTb-space, fTα-space, fαTb-space, fTb-
space, fTsg-space, fgTs∗-space, fTp-space, fpTb-space, fTγ, fTγ∗-
space, frTg-space, fsTg-space, fTw-space, fTπ-space, fTpr-space), fg-
closed set (resp., fgβ-closed set, fβg-closed set, fgα-closed set, fαg-
closed set, fgs-closed set, fsg-closed set, fgs∗-closed set, fgp-closed
set, fpg-closed set, fgγ-closed set, fgγ∗-closed set, frwg-closed set,
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fswg-closed set, fwg-closed set, fπg-closed set, fgpr-closed set) is
fmg-closed set.

Now we introduce a new type of generalized version of neighbour-
hood system in an fts.
Definition 3.26. Let (X, τ) be an fts and xα, a fuzzy point in X. A
fuzzy set A is called fmg-neighbourhood (fmg-nbd, for short) of xα,
if there exists an fmg-open set U in X such that xα ≤ U ≤ A. If, in
addition, A is fmg-open set in X, then A is called an fmg-open nbd
of xα.
Definition 3.27. Let (X, τ) be an fts and xα, a fuzzy point in X. A
fuzzy set A is called fmg-quasi neighbourhood (fmg-q-nbd, for short)
of xα if there is an fmg-open set U in X such that xαqU ≤ A. If,
in addition, A is fmg-open set in X, then A is called an fmg-open
q-nbd of xα.
Note 3.28. (i) It is clear from definitions that every fmg-open set is
an fmg-open nbd of each of its points. But it is possible to have an
fmg-nbd of xα that is not an fmg-open set containing xα , as follows
from the next example. (ii) Also every fuzzy open nbd (resp., fuzzy
open q-nbd) of a fuzzy point xα is an fmg-open nbd (resp., fmg-open
q-nbd) of xα. But the converses are not necessarily true, in general,
as it seen from the following example.
Example 3.29. Consider Example 3.5 and the fuzzy set 1X \M and
the fuzzy point a0.4. Then a0.4 ∈ 1X \ S ≤ 1X \ M where 1X \ S
is an fmg-open set in X. So 1X \M is an fmg-nbd of a0.4, but as
1X \ M is not an fmg-open set in X, 1X \ M is not an fmg-open
nbd of a0.4. Again consider the fuzzy point b0.5. Then b0.5q(1X \ S) ≤
1X \M ⇒ 1X \M is an fmg-q-nbd of b0.5, though 1X \M is not an
fmg-open q-nbd of b0.5. Again b0.5 6 qU ≤ 1X \ M where U is any
fuzzy open set in X, therefore 1X \M is not a fuzzy q-nbd and hence
fuzzy open q-nbd of b0.5. Again consider the fuzzy point b0.6. Then
b0.6 ∈ 1X \ S ≤ 1X \M ⇒ 1X \M is an fmg-nbd of b0.6. But there
does not exist any fuzzy open set U in X such that b0.6 ∈ U ≤ 1X \M .
Hence 1X \M is not a fuzzy nbd of b0.6.
Theorem 3.30. Let (X, τ) be an fts and xα, a fuzzy point in X. If
F (∈ IX) is an fmg-closed set in X with xα ∈ 1X \F , then there exists
an fmg-open nbd G of xα in X such that G 6 qF .
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Proof. By hypothesis, 1X \ F being an fmg-open set in X is an
fmg-open nbd of xα. So there exists an fmg-open set G in X such
that xα ∈ G ≤ 1X \ F ⇒ G 6 qF .

4. fmg-Closure Operator, fmg-open Function and
fmg-Closed Function

Using fmg-closed set as a basic tool, here we introduce and study
fmg-closure operator which is an idempotent operator. Afterwards,
fmg-open function and fmg-closed function are introduced and char-
acterized by fmg-closure operator.
Definition 4.1. Let (X, τ) be an fts and A ∈ IX . Then fmg-closure
and fmg-interior of A, denoted by fmgcl(A) and fmgint(A), are
defined as follows: fmgcl(A) =

∧
{F : A ≤ F, F is fmg-closed set

in X},
fmgint(A) =

∨
{G : G ≤ A,G is fmg-open set in X}.

Remark 4.2. It is clear from definition that for any A ∈ IX , A ≤
fmgcl(A) ≤ clA. If A is fmg-closed set in an fts X, then A =
fmgcl(A). Similarly, intA ≤ fmgint(A) ≤ A. If A is fmg-open set
in an fts X, then A = fmgint(A). It follows from Remark 3.3 that
fmgcl(A) (resp., fmgint(A)) may not be fmg-closed (resp., fmg-
open) set in an fts X.
Theorem 4.3. Let (X, τ) be an fts and A ∈ IX . Then for a fuzzy
point xt in X, xt ∈ fmgcl(A) for every fmg-open q-nbd U of xt, we
have UqA.
Proof. Let xt ∈ fmgcl(A) for any fuzzy set A in an fts X and F
be any fmg-open q-nbd of xt. Now xtqF implies xt 6∈ 1X \ F ,
and 1X \ F is fmg-closed set in X. Then by Definition 4.1, A 6≤
1X \F . Hence there exists y ∈ X such that A(y) > 1−F (y)⇒ AqF .

Conversely, let for every fmg-open q-nbd F of xt, FqA. If possible,
let xt 6∈ fmgcl(A). Then by Definition 4.1, there exists an fmg-
closed set U in X with A ≤ U , xt 6∈ U . Then xtq(1X \ U) which
being fmg-open set in X is fmg-open q-nbd of xt. By assumption,
(1X \ U)qA⇒ (1X \ A)qA, a contradiction.
Theorem 4.4. Let (X, τ) be an fts and A,B ∈ IX . Then the follow-
ing statements are true: (i) fmgcl(0X) = 0X , (ii) fmgcl(1X) = 1X ,
(iii) A ≤ B ⇒ fmgcl(A) ≤ fmgcl(B), (iv) fmgcl(A

∨
B) =

fmgcl(A)
∨
fmgcl(B), (v) fmgcl(A ∧ B) ≤ fmgcl(A) ∧ fmgcl(B)
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(equality does not hold, in general as follows from Example 3.5), (vi)
fmgcl(fmgcl(A)) = fmgcl(A).
Proof. (i), (ii) and (iii) are obvious. (iv) From (iii),
fmgcl(A)

∨
fmgcl(B) ≤ fmgcl(A

∨
B). To prove the converse,

let xα ∈ fmgcl(A
∨
B). Then by Theorem 4.3, for any fmg-open

set U in X with xαqU , Uq(A
∨
B) ⇒ there exists y ∈ X such

that U(y) + max{A(y), B(y)} > 1 ⇒ either U(y) + A(y) > 1 or
U(y) + B(y) > 1 ⇒ either UqA or UqB ⇒ either xα ∈ fmgcl(A) or
xα ∈ fmgcl(B)⇒ xα ∈ fmgcl(A)

∨
fmgcl(B).

(v) Follows from (iii). (vi) As A ≤ fmgcl(A), for any A ∈ IX ,
fmgcl(A) ≤ fmgcl(fmgcl(A)) (by (iii)). Conversely, let xα ∈
fmgcl(fmgcl(A)) = fmgcl(B) where B = fmgcl(A). Let U be any
fmg-open set in X with xαqU . Then UqB implies that there exists
y ∈ X such that U(y) +B(y) > 1. Let B(y) = t. Then ytqU and yt ∈
B = fmgcl(A) ⇒ UqA ⇒ xα ∈ fmgcl(A) ⇒ fmgcl(fmgcl(A)) ≤
fmgcl(A). Consequently, fmgcl(fmgcl(A)) = fmgcl(A).
Theorem 4.5. Let (X, τ) be an fts and A ∈ IX . Then the following
statements hold: (i) fmgcl(1X \A) = 1X \fmgint(A) (ii) fmgint(1X \
A) = 1X \ fmgcl(A).
Proof (i). Let xt ∈ fmgcl(1X \ A) for a fuzzy set A in an fts (X, τ).
If possible, let xt 6∈ 1X \ fmgint(A). Then 1 − (fmgint(A))(x) <
t⇒ [fmgint(A)](x) + t > 1⇒ fmgint(A)qxt ⇒ there exists at least
one fmg-open set F ≤ A with xtqF ⇒ xtqA. As xt ∈ fmgcl(1X \
A), F q(1X \ A)⇒ Aq(1X \ A), a contradiction. Hence

fmgcl(1X \ A) ≤ 1X \ fmgint(A)...(1)

Conversely, let xt ∈ 1X \ fmgint(A). Then 1− [(fmgint(A)](x) ≥
t⇒ xt 6 q (fmgint(A)), hence

xt 6 q F for every fmg -open set F contained in A...(2).

Let U be any fmg-closed set in X such that 1X \ A ≤ U . Then
1X \ U ≤ A. Now 1X \ U is fmg-open set in X contained in A. By
(2), xt 6 q (1X \ U)⇒ xt ∈ U ⇒ xt ∈ fmgcl(1X \ A) and so

1X \ fmgint(A) ≤ fmgcl(1X \ A)...(3).

Combining (1) and (3), (i) follows. (ii) Putting 1X \ A for A in
(i), we get fmgcl(A) = 1X \ fmgint(1X \ A) ⇒ fmgint(1X \ A) =
1X \ fmgcl(A).
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Let us now recall the following definition from [29] for ready refer-
ences.
Definition 4.6 [29]. A function f : X → Y is called fuzzy open
(resp., fuzzy closed) if f(U) is fuzzy open (resp., fuzzy closed) set in
Y for every fuzzy open (resp., fuzzy closed) set U in X.

Let us now introduce the following concept.
Definition 4.7. A function h : X → Y is called fmg-open function
if h(U) is fmg-open set in Y for every fuzzy open set U in X.
Remark 4.8. Since fuzzy open set is fmg-open set, we say that
fuzzy open function is fmg-open function. But the converse need not
be true, as it seen from the following example.
Example 4.9. There exists an fmg-open function which is not a
fuzzy open function Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X}
where A(a) = A(b) = 0.5. Then (X, τ1) and (X, τ2) are fts’s. Consider
the identity function i : (X, τ1) → (X, τ2). Since every fuzzy set in
(X, τ2) is fmg-open set in (X, τ2), clearly i is fmg-open function. But
A ∈ τ1, i(A) = A 6∈ τ2 ⇒ i is not a fuzzy open function.
Theorem 4.10. For a bijective function h : X → Y , the follow-
ing statements are equivalent: (i) h is fmg-open, (ii) h(intA) ≤
fmgint(h(A)), for all A ∈ IX , (iii) for each fuzzy point xα in X and
each fuzzy open set U in X containing xα, there exists an fmg-open
set V in Y containing h(xα) such that V ≤ h(U).
Proof (i) ⇒ (ii). Let A ∈ IX . Then intA is a fuzzy open set in
X. By (i), h(intA) is fmg-open set in Y . Since h(intA) ≤ h(A) and
fmgint(h(A)) is the union of all fmg-open sets contained in h(A),
we have h(intA) ≤ fmgint(h(A)). (ii) ⇒ (i). Let U be any fuzzy
open set in X. Then h(U) = h(intU) ≤ fmgint(h(U)) (by (ii))
⇒ h(U) is fmg-open set in Y ⇒ h is fmg-open function. (ii) ⇒
(iii). Let xα be a fuzzy point in X, and U , a fuzzy open set in X
such that xα ∈ U . Then h(xα) ∈ h(U) = h(intU) ≤ fmgint(h(U))
(by (ii)). Then h(U) is fmg-open set in Y . Let V = h(U). Then
h(xα) ∈ V and V ≤ h(U). (iii) ⇒ (i). Let U be any fuzzy open
set in X and yα, any fuzzy point in h(U), i.e., yα ∈ h(U). Then
there exists unique x ∈ X such that h(x) = y (as h is bijective).
Then [h(U)](y) ≥ α ⇒ U(h−1(y)) ≥ α ⇒ U(x) ≥ α ⇒ xα ∈ U .
By (iii), there exists fmg-open set V in Y such that h(xα) ∈ V and
V ≤ h(U). Then h(xα) ∈ V = fmgint(V ) ≤ fmgint(h(U)). Since
yα is taken arbitrarily and h(U) is the union of all fuzzy points in
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h(U), h(U) ≤ fmgint(f(U))⇒ h(U) is fmg-open set in Y ⇒ h is an
fmg-open function.
Theorem 4.11. If h : X → Y is fmg-open, bijective function, then
the following statements are true: (i) for each fuzzy point xα in X and
each fuzzy open q-nbd U of xα in X, there exists an fmg-open q-nbd V
of h(xα) in Y such that V ≤ h(U), (ii) h−1(fmgcl(B)) ≤ cl(h−1(B)),
for all B ∈ IY .
Proof (i). Let xα be a fuzzy point in X and U be any fuzzy open q-nbd
of xα in X. Then xαqU = intU ⇒ h(xα)qh(intU) ≤ fmgint(h(U))
(by Theorem 4.10 (i)⇒(ii)) implies that there exists at least one fmg-
open q-nbd V of h(xα) in Y with V ≤ h(U). (ii) Let xα be any fuzzy
point in X such that xα 6∈ cl(h−1(B)) for any B ∈ IY . Then there
exists a fuzzy open q-nbd U of xα in X such that U 6 qh−1(B). Now

h(xα)qh(U)...(1)

where h(U) is fmg-open set in Y . Now h−1(B) ≤ 1X \ U which
is a fuzzy closed set in X ⇒ B ≤ h(1X \ U) (as h is injective) ≤
1Y \ h(U) ⇒ B 6 qh(U). Let V = 1Y \ h(U). Then B ≤ V which
is fmg-closed set in Y . We claim that h(xα) 6∈ V . If possible, let
h(xα) ∈ V = 1Y \ h(U). Then 1− [h(U)](h(x)) ≥ α ⇒ h(U) 6 qh(xα),
contradicting (1). So h(xα) 6∈ V ⇒ h(xα) 6∈ fmgcl(B) ⇒ xα 6∈
h−1(fmgcl(B))⇒ h−1(fmgcl(B)) ≤ cl(h−1(B)).
Theorem 4.12. An injective function h : X → Y is fmg-open if
and only if for each B ∈ IY and F , a fuzzy closed set in X with
h−1(B) ≤ F , there exists an fmg-closed set V in Y such that B ≤ V
and h−1(V ) ≤ F .
Proof. Let B ∈ IY and F , a fuzzy closed set in X with h−1(B) ≤ F .
Then 1X \ h−1(B) ≥ 1X \ F where 1X \ F is a fuzzy open set in
X ⇒ h(1X \ F ) ≤ h(1X \ h−1(B)) ≤ 1Y \ B (as h is injective) where
h(1X \ F ) is an fmg-open set in Y . Let V = 1Y \ h(1X \ F ). Then
V is fmg-closed set in Y such that B ≤ V . Now h−1(V ) = h−1(1Y \
h(1X \ F )) = 1X \ h−1(h(1X \ F )) ≤ F .

Conversely, let F be a fuzzy open set in X. Then 1X \ F is a fuzzy
closed set in X. We have to show that h(F ) is an fmg-open set in
Y . Now h−1(1Y \ h(F )) ≤ 1X \ F (as h is injective). By assumption,
there exists an fmg-closed set V in Y such that

1Y \ h(F ) ≤ V...(1)
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and h−1(V ) ≤ 1X \ F . Therefore, F ≤ 1X \ h−1(V ) implies that

h(F ) ≤ h(1X \ h−1(V )) ≤ 1Y \ V...(2)

(as h is injective). Combining (1) and (2), h(F ) = 1Y \ V which is an
fmg-open set in Y . Hence h is fmg-open function.
Definition 4.13. A function h : X → Y is called fmg-closed function
if h(A) is fmg-closed set in Y for each fuzzy closed set A in X.
Remark 4.14. Since fuzzy closed set is fmg-closed set in an fts, we
can conclude that every fuzzy closed function is fmg-closed function,
but the converse may not be true as it follows from Example 4.9. Here
1X \ A ∈ τ c1 , but i(1X \ A) = 1X \ A 6∈ τ c2 ⇒ i is not a fuzzy closed
function. But since every fuzzy set in (X, τ2) is fmg-closed set in
(X, τ2), clearly i is fmg-closed function.
Theorem 4.15. A bijective function h : X → Y is fmg-closed
function if and only if fmgcl(h(A)) ≤ h(clA), for all A ∈ IX .
Proof. Let us suppose that h : X → Y be an fmg-closed function
and A ∈ IX . Then h(cl(A)) is fmg-closed set in Y . Since h(A) ≤
h(clA) and fmgcl(h(A)) is the intersection of all fmg-closed sets in
Y containing h(A), we have fmgcl(h(A)) ≤ h(clA).

Conversely, let for any A ∈ IX , fmgcl(h(A)) ≤ h(clA). Let U be
any fuzzy closed set in X. Then h(U) = h(clU) ≥ fmgcl(h(U)) ⇒
h(U) is an fmg-closed set in Y ⇒ h is an fmg-closed function.
Theorem 4.16. If h : X → Y is an fmg-closed bijective function,
then the following statements hold: (i) for each fuzzy point xα in
X and each fuzzy closed set U in X with xα 6 qU , there exists an
fmg-closed set V in Y with h(xα) 6 qV such that V ≥ h(U), (ii)
h−1(fmgint(B)) ≥ int(h−1(B)), for all B ∈ IY .
Proof (i). Let xα be a fuzzy point in X and U be any fuzzy closed
set in X with xα 6 qU = clU ⇒ h(xα) 6 qh(clU) ≥ fmgcl(h(U)) (by
Theorem 4.15) ⇒ h(xα) 6 qV for some fmg-closed set V in Y with
V ≥ h(U). (ii). Let B ∈ IY and xα be any fuzzy point in X such
that xα ∈ int(h−1(B)). Then there exists a fuzzy open set U in X
with U ≤ h−1(B) such that xα ∈ U . Then 1X \ U ≥ 1X \ h−1(B) ⇒
h(1X \ U) ≥ h(1X \ h−1(B)) where h(1X \ U) is an fmg-closed set in
Y . Let V = 1Y \ h(1X \ U). Then V is an fmg-open set in Y and
V = 1Y \ h(1X \ U) ≤ 1Y \ h(1X \ h−1(B)) ≤ 1Y \ (1Y \ B) = B (as
h is injective). Now U(x) ≥ α ⇒ xα 6 q(1X \ U) ⇒ h(xα) 6 qh(1X \ U)
⇒ h(xα) ≤ 1Y \ h(1X \ U) = V ⇒ h(xα) ∈ V = fmgint(V ) ≤
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fmgint(B) ⇒ xα ∈ h−1(fmgint(B)). Since xα is taken arbitrarily,
int(h−1(B)) ≤ h−1(fmgint(B)), for all B ∈ IY .
Remark 4.17. Composition of two fmg-closed (resp., fmg-open)
functions need not be so, as it seen from the following example.
Example 4.18. Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X},
τ3 = {0X , 1X , B} where A(a) = A(b) = 0.5, B(a) = 0.5, B(b) =
0.4. Then (X, τ1), (X, τ2) and (X, τ3) are fts’s. Consider two identity
functions i1 : (X, τ1) → (X, τ2) and i2 : (X, τ2) → (X, τ3). Clearly
i1 and i2 are fmg-closed functions. Let i3 = i2 ◦ i1 : (X, τ1) →
(X, τ3). We claim that i3 is not fmg-closed function. Now 1X \A ∈ τ c1 .
(i2 ◦ i1)(1X \ A) = 1X \ A ≤ A which is fg-open set in (X, τ3). But
clτ3intτ3(1X \ A) = 1X \ B 6≤ A ⇒ 1X \ A is not fmg-closed set in
(X, τ3)⇒ i2 ◦ i1 is not fmg-closed function.

Similarly we can show that i2 ◦ i1 is not fmg-open function though
i1 and i2 are so.
Theorem 4.19. If h1 : X → Y is fuzzy closed (resp., fuzzy open)
function and h2 : Y → Z is fmg-closed (resp., fmg-open) function,
then h2 ◦ h1 : X → Z is fmg-closed (resp., fmg-open) function.
Proof. Obvious.

Now to establish the mutual relationships of fmg-closed function
with the functions defined in [3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16], we
have to recall he following definitions first.
Definition 4.20. Let (X, τ1) → (Y, τ2) be a function. Then h is
called an (i) fg-closed function [3] if h(A) is fg-closed set in Y for
every A ∈ τ c1 , (ii) fgβ-closed function [7] if h(A) is fgβ-closed set in
Y for every A ∈ τ c1 , (iii) fβg-closed function [7] if h(A) is fβg-closed
set in Y for every A ∈ τ c1 , (iv) fgα-closed function [3] if h(A) is fgα-
closed set in Y for every A ∈ τ c1 , (v) fαg-closed function [3] if h(A)
is fαg-closed set in Y for every A ∈ τ c1 , (vi) fgp-closed function [3] if
h(A) is fgp-closed set in Y for every A ∈ τ c1 , (vii) fpg-closed function
[3] if h(A) is fpg-closed set in Y for every A ∈ τ c1 , (viii) fgs-closed
function [3] if h(A) is fgs-closed set in Y for every A ∈ τ c1 , (ix) fsg-
closed function [3] if h(A) is fsg-closed set in Y for every A ∈ τ c1 ,
(x) fgs∗-closed function [5] if h(A) is fgs∗-closed set in Y for every
A ∈ τ c1 , (xi) fs∗g-closed function [6] if h(A) is fs∗g-closed set in Y
for every A ∈ τ c1 , (xii) fgγ-closed function [11] if h(A) is fgγ-closed
set in Y for every A ∈ τ c1 , (xiii) fgγ∗-closed function [12] if h(A) is
fgγ∗-closed set in Y for every A ∈ τ c1 , (xiv) fswg-closed function [15]
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if h(A) is fswg-closed set in Y for every A ∈ τ c1 , (xv) frwg-closed
function [16] if h(A) is frwg-closed set in Y for every A ∈ τ c1 , (xvi)
fπg-closed function [13] if h(A) is fπg-closed set in Y for every A ∈ τ c1 ,
(xvii) fwg-closed function [14] if h(A) is fwg-closed set in Y for every
A ∈ τ c1 , (xviii) fgpr-closed function [10] if h(A) is fgpr-closed set in
Y for every A ∈ τ c1 .
Remark 4.21. (i) fs∗g-closed function is fmg-closed function. (ii)
fmg-closed function is fgp-closed function, fgpr-closed function, fgα-
closed function, fgβ-closed function, fgγ-closed function, fgγ∗-closed
function, fwg-closed function, frwg-closed function. (iii) fmg-closed
function is independent concept of fg-closed function, fπg-closed
function,, fpg-closed function,, fαg-closed function,, fβg-closed func-
tion,, fgs-closed function,, fsg-closed function,, fgs∗-closed function,
fswg-closed function.
Example 4.22. There exists a function which is fmg-closed but it
is not an fg-closed, fgs-closed, fsg-closed, fgs∗-closed, fs∗g-closed
Let X = {a, b}, τ1 = {0X , 1X , B}, τ2 = {0X , 1X , A} where A(a) =
0.5, A(b) = 0.6, B(a) = 0.6, B(b) = 0.4. Then (X, τ1) and (X, τ2)
are fts’s. Consider the identity function i : (X, τ1) → (X, τ2). Now
1X\B ∈ τ c1 , i(1X\B) = 1X\B. Then clτ2intτ2(1X\B) = 0X ⇒ 1X\B is
fmg-closed set in (X, τ2) and hence i is an fmg-closed function. Now
A ∈ τ2, A ∈ FSO(X, τ2) and also A is fg-open set in (X, τ2). Now
1X \ B < A. But clτ2(1X \ B) = sclτ2(1X \ B) = 1X 6≤ A and so
i is not fg-closed function, fgs-closed function, fsg-closed function,
fgs∗-closed function, fs∗g-closed function.
Example 4.23. There exists a function which is fmg-closed but
it is not an fπg-closed function Let X = {a, b}, τ1 = {0X , 1X , S},
τ2 = {0X , 1X , A,B,C} where A(a) = 0.3, A(b) = 0.4, B(a) = B(b) =
0.4, C(a) = 0.6, C(b) = 0.5, S(a) = 0.4, S(b) = 0.6. Then (X, τ1) and
(X, τ2) are fts’s. Consider the identity function i : (X, τ1) → (X, τ2).
Now 1X \ S ∈ τ c1 , i(1X \ S) = 1X \ S. Now fg-open sets in (X, τ2) is
{0X , 1X , U, V } where U(a) ≥ 0.6, 0.5 ≤ U(b) < 0.6, V 6≥ 1X \C. Then
1X \ S < U1 where U1(a) ≥ 0.6, 0.5 ≤ U1(b) < 0.6, is fg-open set in
(X, τ2). clτ2intτ2(1X \S) = 1X \C < U1 ⇒ 1X \S is fmg-closed set in
(X, τ2) ⇒ i is an fmg-closed function. Now 1X \ S < C ∈ FπO(X).
But clτ2(1X \ S) = 1X \ B 6≤ C ⇒ 1X \ S is not an fπg-closed set in
(X, τ2)⇒ i is not an fπg-closed function.
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Example 4.24. There exists a function which is fmg-closed but
it is not an fβg-closed, fαg-closed, fswg-closed, fpg-closed Let
X = {a, b}, τ1 = {0X , 1X , B}, τ2 = {0X , 1X , A} where A(a) =
0.4, A(b) = 0.7, B(a) = 0.4, B(b) = 0.3. Then (X, τ1) and (X, τ2)
are fts’s. Consider the identity function i : (X, τ1) → (X, τ2). Now
1X \ B ∈ τ c1 , i(1X \ B) = 1X \ B. Now fg-open sets in (X, τ2) is
{0X , 1X , U} where U 6≥ 1X \ A. Since 1X \ B ≥ 1X \ A, 1X is
the only fg-open set in (X, τ2) containing 1X \ B and so 1X \ B
is fmg-closed set in (X, τ2) ⇒ i is an fmg-closed function. Now
(1X \ B) ∈ FβO(X, τ2) as well as (1X \ B) ∈ FSO(X, τ2) and so
1X \ B ≤ 1X \ B, but βcl(1X \ B) 6= 1X \ B ⇒ βcl(1X \ B) 6≤
1X \ B ⇒ 1X \ B is not fβg-closed set in (X, τ2) ⇒ i is not an fβg-
closed function. Again clτ2intτ2(1X \ B) = 1X 6≤ 1X \ B ⇒ 1X \ B
is not fswg-closed set in (X, τ2) ⇒ i is not an fswg-closed func-
tion. Again 1X \ B ∈ FPO(X, τ2), but 1X \ B 6∈ FPC(X, τ2) and so
1X \B ≤ 1X \B ∈ FPO(X, τ2), but pclτ2(1X \B) 6≤ 1X \B ⇒ 1X \B
is not an fpg-closed set in (X, τ2) ⇒ i is not an fpg-closed function.
Again (1X \ B) ∈ FαO(X, τ2), but (1X \ B) 6∈ FαC(X, τ2) and so
1X \ B ≤ 1X \ B ∈ FαO(X, τ2), but αcl(1X \ B) 6≤ 1X \ B ⇒ 1X \ B
is not fαg-closed set in (X, τ2)⇒ i is not an fαg-closed function.
Example 4.25. The notion fg-closed function, fπg-closed function,
fgpr-closed function, fwg-closed function, frwg-closed function, fgγ-
closed function do not imply fmg-closed function

Let X = {a, b}, τ1 = {0X , 1X , D}, τ2 = {0X , 1X , A} where A(a) =
0.5, A(b) = 0.6, D(a) = 0.3, D(b) = 0.4. Then X, τ1) and (X, τ2) are
fts’s. Consider the identity function i : (X, τ1) → (X, τ2). Now1X \
D ∈ τ c1 , i(1X \D) = 1X \D. Now 1X \D ≤ 1X \D which is fg-open
set in (X, τ2). But clτ2intτ2(1X \D) = 1X 6≤ 1X \D ⇒ 1X \D is not
fmg-closed set in (X, τ2) ⇒ i is not an fmg-closed function. Now
1X ∈ τ2 (resp., 1X ∈ FπO(X, τ2), 1X ∈ FRO(X, τ2) ) only containing
1X \ D, so 1X \ D is fg-closed set, fπg-closed set, fgpr-closed set,
fwg-closed set, frwg-closed set, fgγ-closed set in (X, τ2) ⇒ i is fg-
closed function, fπg-closed function, fgpr-closed function, fwg-closed
function, frwg-closed function, fgγ-closed function.
Example 4.26. There exists a function which is fpg-closed but
it is not an fmg-closed function Let X = {a}, τ1 = {0X , 1X , A},
τ2 = {0X , 1X , B, C} where A(a) = 0.5, B(a) = 0.4, C(a) = 0.45.
Then (X, τ1) and (X, τ2) are fts’s. Consider the identity function
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i : (X, τ1)→ (X, τ2). Now 1X \A ∈ τ c1 , i(1X \A) = 1X \A) =≤ 1X \A
which is fg-open set in (X, τ2). But clτ2intτ2(1X \ A) = 1X \ C 6≤
1X \A⇒ 1X \A is not an fmg-closed set in (X, τ2)⇒ i is not an fmg-
closed function. Now 1X \A < U ∈ FPO(X, τ2) where U > 1X \B. So
pclτ2(1X \A) = 1X \ C < U ⇒ 1X \A is fpg-closed set in (X, τ2)⇒ i
is an fpg-closed function.
Example 4.27. There exists a function which is not an fmg-closed
function but it is an fgβ-closed, fβg-closed, fgp-closed, fgα-closed,
fαg-closed, fgs-closed, fsg-closed, fgγ∗-closed Let X = {a, b}, τ1 =
{0X , 1X , B}, τ2 = {0X , 1X , A} where A(a) = 0.5, A(b) = 0.4, B(a) =
B(b) = 0.5. Then (X, τ1) and (X, τ2) are fts’s. Consider the identity
function i : (X, τ1) → (X, τ2). Now 1X \ B ∈ τ c1 , i(1X \ B) = 1X \
B ≤ 1X \ B which is fg-open set in (X, τ2). But clτ2intτ2(1X \ B) =
1X \ A 6≤ 1X \ B ⇒ 1X \ B is not an fmg-closed set in (X, τ2) ⇒ i
is not an fmg-closed function. Now 1X \ B ∈ FSC(X, τ2), 1X \ B ∈
FβC(X, τ2), 1X \B ∈ FγC(X, τ2) and 1X \B ≤ 1X \B. Consequently,
1X \ B is fgs-closed set, fsg-closed set, fgβ-closed set, fβg-closed
set, fgγ∗-closed set in (X, τ2) ⇒ i is an fgs-closed function, fsg-
closed function, fgβ-closed function, fβg-closed function, fgγ∗-closed
function. Again 1X is the only fuzzy open set as well as fuzzy α-open
set in (X, τ2) containing 1X \B ⇒ 1X \B is fgp-closed set, fgα-closed
set, fαg-closed set in (X, τ2)⇒ i is an fgp-closed function, fgα-closed
function, fαg-closed function.
Example 4.28. There exists a function which is not an fmg-closed
function but it is an fswg-closed, fgs∗-closed. Let X = {a, b}, τ1 =
{0X , 1X , D}, τ2 = {0X , 1X , A,B,C} where A(a) = 0.3, A(b) = 0.4,
B(a) = B(b) = 0.4, C(a) = 0.6, C(b) = 0.5, D(a) = 0.65, D(b) = 0.4.
Then (X, τ1) and (X, τ2) are fts’s. Consider the identity function i :
(X, τ1) → (X, τ2). Now 1X \ D ∈ τ c1 , i(1X \ D) = 1X \ D ≤ 1X \ D
which is an fg-open set in (X, τ2). But clτ2intτ2(1X \D) = 1X \ C 6≤
1X \ D ⇒ 1X \ D is not an fmg-closed set in (X, τ2) ⇒ i is not
an fmg-closed function. Now FSO(X, τ2) = {0X , 1X , U, V } where
A ≤ U ≤ 1X\C,C ≤ V ≤ 1X\B. Then 1X\D < 1X\B ∈ FSO(Xτ2).
Then clτ2(1X \ D) = 1X \ B ≤ 1X \ B ⇒ 1X \ D is fgs∗-closed set
in (X, τ2) ⇒ i is an fgs∗-closed function. Again clτ2intτ2(1X \ D) =
1X \ C < 1X \ B ⇒ 1X \D is an fswg-closed set in (X, τ2)⇒ i is an
fswg-closed function.
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Remark 4.29. (i) Let h : X → Y be a function where Y is
an fTg-space (resp., fTβ-space, fβTb-space, fTα-space, fαTb-space,
fTb-space, fTsg-space, fgTs∗-space, fTp-space, fpTb-space, fTγ-space,
fTγ∗-space, frTg-space, fsTg-space, fTw-space, fTπ-space, fTpr-
space). If h is an fg-closed function (resp., fgβ-closed function,
fβg-closed function, fgα-closed function, fαg-closed function, fgs-
closed function, fsg-closed function, fgs∗-closed function, fgp-closed
function, fpg-closed function, fgγ-closed function, fgγ∗-closed func-
tion, frwg-closed function, fswg-closed function, fwg-closed func-
tion, fπg-closed function, fgpr-closed function), then h is an fmg-
closed function. (ii) Let h : X → Y be a function where Y is an fmTg-
space. If h is an fmg-closed function, then h is an fg-closed function,
fgs∗-closed function, fs∗g-closed function, fswg-closed function, fsg-
closed function, fβg-closed function, fαg-closed function, fπg-closed
function, fpg-closed function.

5. fmg-Regular, fmg-Normal and fmg-Compact Spaces

In this section new types of generalized versions of fuzzy regularity,
fuzzy normality and fuzzy compactness are introduced and studied.
It is also shown that these three concepts are weak concepts of fuzzy
regularity [24], fuzzy normality [23] and fuzzy compactness [18] re-
spectively.
Definition 5.1. An fts (X, τ) is said to be fmg-regular space if for
any fuzzy point xt in X and each fmg-closed set F in X with xt 6∈ F ,
there exist U, V ∈ τ such that xt ∈ U, F ≤ V and U 6 qV .
Theorem 5.2. In an fts (X, τ), the following statements are equiva-
lent: (i) X is fmg-regular, (ii) for each fuzzy point xt in X and any
fmg-open q-nbd U of xt, there exists V ∈ τ such that xt ∈ V and
clV ≤ U ,

(iii) for each fuzzy point xt in X and each fmg-closed set A of X
with xt 6∈ A, there exists U ∈ τ with xt ∈ U such that clU 6 qA.
Proof (i) ⇒ (ii). Let xt be a fuzzy point in X and U , any fmg-
open q-nbd of xt. Then xtqU ⇒ U(x) + t > 1 ⇒ xt 6∈ 1X \ U
which is an fmg-closed set in X. By (i), there exist V,W ∈ τ such
that xt ∈ V, 1X \ U ≤ W and V 6 qW . Then V ≤ 1X \W ⇒ clV ≤
cl(1X\W ) = 1X\W ≤ U . (ii)⇒ (iii). Let xt be a fuzzy point in X and
A, an fmg-closed set in X with xt 6∈ A. Then A(x) < t⇒ xtq(1X \A)
which being fmg-open set in X is fmg-open q-nbd of xt. So by (ii),
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there exists V ∈ τ such that xt ∈ V and clV ≤ 1X \A. Then clV 6 qA.
(iii)⇒ (i). Let xt be a fuzzy point in X and F be any fmg-closed set
in X with xt 6∈ F . Then by (iii), there exists U ∈ τ such that xt ∈ U
and clU 6 qF . Then F ≤ 1X \ clU (=V , say). So V ∈ τ and V 6 qU as
U 6 q(1X \ clU). Consequently, X is fmg-regular space.
Definition 5.3. An fts (X, τ) is called fmg-normal space if for each
pair of fmg-closed sets A,B in X with A 6 qB, there exist U, V ∈ τ
such that A ≤ U,B ≤ V and U 6 qV .
Theorem 5.4. An fts (X, τ) is fmg-normal space if and only if for
every fmg-closed set F and fmg-open set G in X with F ≤ G, there
exists H ∈ τ such that F ≤ H ≤ clH ≤ G.
Proof. Let X be fmg-normal space and let F be fmg-closed set and
G be fmg-open set in X with F ≤ G. Then F 6 q(1X \G) where 1X \G
is fmg-closed set in X. By hypothesis, there exist H,T ∈ τ such that
F ≤ H, 1X \ G ≤ T and H 6 qT . Then H ≤ 1X \ T ≤ G. Therefore,
F ≤ H ≤ clH ≤ cl(1X \ T ) = 1X \ T ≤ G. Conversely, let A,B
be two fmg-closed sets in X with A 6 qB. Then A ≤ 1X \ B. By
hypothesis, there exists H ∈ τ such that A ≤ H ≤ clH ≤ 1X \ B ⇒
A ≤ H,B ≤ 1X \ clH (=V , say). Then V ∈ τ and so B ≤ V . Also as
H 6 q(1X \ clH), H 6 qV . Consequently, X is fmg-normal space.

Let us now recall the following definitions from [18, 22] for ready
references.
Definition 5.5. Let (X, τ) be an fts and A ∈ IX . A collection U of
fuzzy sets in X is called a fuzzy cover of A if

⋃
U ≥ A [22]. If each

member of U is fuzzy open (resp., fuzzy regular open, fmg-open) in
X, then U is called a fuzzy open [22] (resp., fuzzy regular open [1],
fmg-open) cover of A. If, in particular, A = 1X , we get the definition
of fuzzy cover of X as

⋃
U = 1X [18].

Definition 5.6. Let (X, τ) be an fts and A ∈ IX . Then a fuzzy cover
U of A (resp., of X) is said to have a finite subcover U0 if U0 is a finite
subcollection of U such that

⋃
U0 ≥ A [22]. If, in particular A = 1X ,

we get
⋃
U0 = 1X [18].

Definition 5.7. Let (X, τ) be an fts and A ∈ IX . Then A is called
fuzzy compact [18] (resp., fuzzy almost compact [19], fuzzy nearly
compact [25]) set if every fuzzy open (resp., fuzzy open, fuzzy regular
open) cover U of A has a finite subcollection U0 such that

⋃
U0 ≥ A

(resp.,
⋃
U∈U0

clU ≥ A,
⋃
U0 ≥ A). If, in particular, A = 1X , we get
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the definition of fuzzy compact [18] (resp., fuzzy almost compact [19],

fuzzy nearly compact [20]) space as
⋃
U0 = 1X (resp.,

⋃
U∈U0

clU = 1X ,⋃
U0 = 1X).
Let us now introduce the following concept.

Definition 5.8. Let (X, τ) be an fts and A ∈ IX . Then A is called
fmg-compact if every fuzzy cover U of A by fmg-open sets of X has
a finite subcover. If, in particular, A = 1X , we get the definition of
fmg-compact space X.
Theorem 5.9. Every fmg-closed set in an fmg-compact space X is
fmg-compact.
Proof. Let A(∈ IX) be an fmg-closed set in an fmg-compact space
X. Let U be a fuzzy cover of A by fmg-open sets of X. Then V =
U
⋃

(1X \ A) is a fuzzy cover of X by fmg-open sets of X. As X is
fmg-compact space, V has a finite subcollection V0 which also covers
X. If V0 contains 1X \ A, we omit it and get a finite subcover of A.
Hence A is fmg-compact set.

Next we recall the following two definitions from [24, 23] for ready
references.
Definition 5.10 [24]. An fts (X, τ) is called fuzzy regular space if
for each fuzzy point xt in X and each fuzzy closed set F in X with
xt 6∈ F , there exist U, V ∈ τ such that xt ∈ U , F ≤ V and U 6 qV .
Definition 5.11 [23]. An fts (X, τ) is called fuzzy normal space if
for each pair of fuzzy closed sets A,B of X with A 6 qB, there exist
U, V ∈ τ such that A ≤ U,B ≤ V and U 6 qV .
Remark 5.10. It is clear from above discussion that (i) fmg-regular
(resp., fmg-normal) space is fuzzy regular (resp., fuzzy normal) space,
but the converses are not true, in general, follow from the follow-
ing example. (ii) fmg-compact space is fuzzy compact, fuzzy almost
compact, fuzzy nearly compact space, but the converses are not true,
in general, follow from the following example. (iii) In fmTg-space,
fuzzy regularity, fuzzy normality and fuzzy compactness imply fmg-
regularity, fmg-normality and fmg-compactness.
Example 5.13. Let X = {a}, τ = {0X , 1X}. Then (X, τ) is an fts.
Clearly (X, τ) is fuzzy regular space, fuzzy normal space and fuzzy
compact space. Here every fuzzy set is fmg-open as well as fmg-
closed set in X. Consider the fuzzy set F defined by F (a) = 0.4
and the fuzzy point a0.6. Then a0.6 6∈ F . But there does not exist
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fuzzy open sets U, V in X such that a0.6 ≤ U, F ≤ V and U 6 qV . So
(X, τ) is not an fmg-regular space. Again consider two fmg-closed
sets A,B defined by A(a) = 0.4, B(a) = 0.5. Then A,B are fmg-
closed sets in X with A 6 qB. But there does not exist U, V ∈ τ such
that A ≤ U,B ≤ V and U 6 qV . Hence (X, τ) is not an fmg-normal
space. Now considering fmg-open covering U = {Un : n ∈ N} where
Un(a) = n

n+1
, for all n ∈ N of X. But U has no finite subcovering of

X. Hence (X, τ) is not an fmg-compact space.

6. fmg-Continuous and fmg-Irresolute Functions

With the help of fmg-closed set as a basic tool, here we intro-
duce and characterize fmg-continuous function the class of which is
strictly larger than the class of fuzzy continuous function [18] and then
introduce and characterize fmg-irresolute function. It is shown that
that the fmg-continuous image of an fmg-regular (resp., fmg-normal,
fmg-compact) space is fuzzy regular (resp., fuzzy normal, fuzzy com-
pact, fuzzy almost compact, fuzzy nearly compact) space. Also under
fmg-irresolute function, fmg-regularity (resp., fmg-normality and
fmg-compactness) remains invariant. Afterwards, the mutual rela-
tionship of fmg-continuous function with the functions defined in
[3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16] are established.

Now we first introduce the following concept.
Definition 6.1. A function h : X → Y is said to be fmg-continuous
function if h−1(V ) is fmg-closed set in X for every fuzzy closed set V
in Y .
Theorem 6.2. Let h : (X, τ) → (Y, σ) be a function. Then the
following statements are equivalent: (i) h is fmg-continuous function,
(ii) for each fuzzy point xα in X and each fuzzy open nbd V of h(xα)
in Y , there exists an fmg-open nbd U of xα in X such that h(U) ≤ V ,
(iii) h(fmgcl(A)) ≤ cl(h(A)), for all A ∈ IX , (iv) fmgcl(h−1(B)) ≤
h−1(clB), for all B ∈ IY .
Proof (i) ⇒ (ii). Let xα be a fuzzy point in X and V , any fuzzy
open nbd of h(xα) in Y . Then xα ∈ h−1(V ) which is fmg-open set
in X (by (i)). Let U = h−1(V ). Then h(U) = h(h−1(V )) ≤ V .
(ii) ⇒ (i). Let A be any fuzzy open set in Y and xα, a fuzzy
point in X such that xα ∈ h−1(A). Then h(xα) ∈ A where A
is a fuzzy open nbd of h(xα) in Y . By (ii), there exists an fmg-
open nbd U of xα in X such that h(U) ≤ A. Then xα ∈ U ≤
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h−1(A) ⇒ xα ∈ U = fmgint(U) ≤ fmgint(h−1(A)). Since xα
is taken arbitrarily and h−1(A) is the union of all fuzzy points in
h−1(A), h−1(A) ≤ fmgint(h−1(A)) ⇒ h−1(A) is an fmg-open set in
X ⇒ h is an fmg-continuous function. (i) ⇒ (iii). Let A ∈ IX .
Then cl(h(A)) is a fuzzy closed set in Y . By (i), h−1(cl(h(A)))
is fmg-closed set in X. Now A ≤ h−1(h(A)) ≤ h−1(cl(h(A)))
and so fmgcl(A) ≤ fmgcl(h−1(cl(h(A)))) = h−1(cl(h(A))) ⇒
h(fmgcl(A)) ≤ cl(h(A)). (iii)⇒ (i). Let V be a fuzzy closed set in Y .
Put U = h−1(V ). Then U ∈ IX . By (iii), h(fmgcl(U)) ≤ cl(h(U)) =
cl(h(h−1(V ))) ≤ clV = V ⇒ fmgcl(U) ≤ h−1(V ) = U ⇒ U
is fmg-closed set in X ⇒ h is fmg-continuous function. (iii) ⇒
(iv). Let B ∈ IY and A = h−1(B). Then A ∈ IX . By (iii),
h(fmgcl(A)) ≤ cl(h(A)) ⇒ h(fmgcl(h−1(B))) ≤ cl(h(h−1(B))) ≤
clB ⇒ fmgcl(h−1(B)) ≤ h−1(clB). (iv) ⇒ (iii). Let A ∈ IX .
Then h(A) ∈ IY . By (iv), fmgcl(h−1(h(A))) ≤ h−1(cl(h(A))) ⇒
fmgcl(A) ≤ fmgcl(h−1(h(A))) ≤ h−1(cl(h(A))) ⇒ h(fmgcl(A)) ≤
cl(h(A)).
Remark 6.3. Composition of two fmg-continuous functions need not
be so, as it seen from the following example.
Example 6.4. Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X},
τ3 = {0X , 1X , B} where A(a) = 0.5, A(b) = 0.6, B(a) = 0.5, B(b) =
0.3. Then (X, τ1), (X, τ2) and (X, τ3) are fts’s. Consider two identity
functions i1 : (X, τ1) → (X, τ2) and i2 : (X, τ2) → (X, τ3). Then
clearly i1 and i2 are fmg-continuous functions. Now 1X \ B ∈ τ c3 . So
(i2◦i1)−1(1X \B) = 1X \B ≤ 1X \B which is an fg-open set in (X, τ1).
But clτ1intτ1(1X \ B) = 1X 6≤ 1X \ B ⇒ 1X \ B is not an fmg-closed
set in (X, τ1)⇒ i2 ◦ i1 is not an fmg-continuous function.

Let us now recall the following definition from [18] for ready refer-
ences.
Definition 6.5 [18]. A function h : X → Y is called fuzzy continuous
function if h−1(V ) is fuzzy closed set in X for every fuzzy closed set
V in Y .
Remark 6.6. Since every fuzzy closed set is fmg-closed set, it is clear
that fuzzy continuous function is fmg-continuous function. But the
converse is not necessarily true , as follows from the next example.
Example 6.7. Let X = {a, b}, τ1 = {0X , 1X}, τ2 = {0X , 1X , A} where
A(a) = A(b) = 0.5. Then (X, τ1) and (X, τ2) are fts’s. Consider the
identity function i : (X, τ1)→ (X, τ2). Since every fuzzy set in (X, τ1)
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is fmg-closed set in (X, τ), clearly i is fmg-continuous function. But
A ∈ τ c2 , i−1(A) = A 6∈ τ c1 ⇒ i is not fuzzy continuous function.
Theorem 6.8. If h1 : X → Y and h2 : Y → Z are fuzzy continuous
functions, then h2 ◦ h1 : X → Z is fmg-continuous function.
Proof. Obvious.
Theorem 6.9. If a bijective function h : X → Y is an fmg-
continuous, fuzzy open function from an fmg-regular space X onto
an fts Y , then Y is fuzzy regular space.
Proof. Let yα be a fuzzy point in Y and F , a fuzzy closed set in
Y with yα 6∈ F . As h is bijective, there exists unique x ∈ X such
that h(x) = y. So h(xα) 6∈ F ⇒ xα 6∈ h−1(F ) where h−1(F ) is
fmg-closed set in X (as h is an fmg-continuous function). As X is
fmg-regular space, there exist U, V ∈ τ such that xα ∈ U, h−1(F ) ≤ V
and U 6 qV . Then h(xα) ∈ h(U), F = h(h−1(F )) (as h is bijective)
≤ h(V ) and h(U) 6 qh(V ) where h(U) and h(V ) are fuzzy open sets in
Y . (Indeed, h(U)qh(V ) ⇒ there exists z ∈ Y such that [h(U)](z) +
[h(V )](z) > 1⇒ U(h−1(z)) + V (h−1(z)) > 1 as h is bijective ⇒ UqV ,
a contradiction). Hence Y is a fuzzy regular space.

In a similar manner we can state the following theorems which have
similar proofs to that of Theorem 6.9.
Theorem 6.10. If a bijective function h : X → Y is fmg-continuous,
fuzzy open function from an fmg-normal space X onto an fts Y , then
Y is fuzzy normal space.
Theorem 6.11. If a bijective function h : X → Y is fmg-continuous,
fuzzy open function from a fuzzy regular (resp., fuzzy normal), fmTg-
space X onto an fts Y , then Y is fuzzy regular (resp., fuzzy normal)
space.
Definition 6.12. A function h : X → Y is called fmg-irresolute
function if h−1(U) is an fmg-open set in X for every fmg-open set U
in Y .
Theorem 6.13. A function h : X → Y is fmg-irresolute function if
and only if for each fuzzy point xα in X and each fmg-open nbd V
in Y of h(xα), there exists an fmg-open nbd U in X of xα such that
h(U) ≤ V .
Proof. Let h : X → Y be an fmg-irresolute function. Let xα be a
fuzzy point in X and V be any fmg-open nbd of h(xα) in Y . Then
xα ∈ h−1(V ) being an fmg-open set in X is an fmg-open nbd of xα
in X. Put U = h−1(V ). Then U is an fmg-open nbd of xα in X and
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h(U) = h(h−1(V )) ≤ V . Conversely, let A be an fmg-open set in Y
and xα be any fuzzy point in X such that xα ∈ h−1(A). Then h(xα) ∈
A. By hypothesis, there exists an fmg-open nbd U of xα in X such
that h(U) ≤ A ⇒ xα ∈ U = fmgint(U) ≤ fmgint(h−1(A)). Since
xα is taken arbitrarily and h−1(A) is the union of all fuzzy points in
h−1(A), h−1(A) ≤ fmgint(h−1(A)) ⇒ h−1(A) = fmgint(h−1(A)) ⇒
h−1(A) is fmg-open set in X ⇒ h is an fmg-irresolute function.

Now we state the following two theorems which have similar proofs
to that of Theorem 6.9.
Theorem 6.14. If a bijective function h : X → Y is fmg-irresolute,
fuzzy open function from an fmg-regular (resp., fmg-normal) space
X onto an fts Y , then Y is fmg-regular (resp., fmg-normal) space.
Theorem 6.15. If a bijective function h : X → Y is fmg-irresolute,
fuzzy open function from an fmg-regular (resp., fmg-normal) space
X onto an fts Y , then Y is fuzzy regular (resp., fuzzy normal) space.
Theorem 6.16. If a bijective function h : X → Y is fmg-irresolute,
fuzzy open function from a fuzzy regular (resp., fuzzy normal), fmTg-
space X onto an fts Y , then Y is fuzzy regular (resp., fuzzy normal)
space.
Theorem 6.17. Let h : X → Y be an fmg-continuous function from
X onto an fts Y and A(∈ IX) be an fmg-compact set in X. Then
h(A) is a fuzzy compact (resp., fuzzy almost compact, fuzzy nearly
compact) set in Y .
Proof. Let U = {Uα : α ∈ Λ} be a fuzzy cover of h(A) by fuzzy
open (resp., fuzzy open, fuzzy regular open) sets of Y . Then h(A) ≤⋃
α∈Λ

Uα ⇒ A ≤ h−1(
⋃
α∈Λ

Uα) =
⋃
α∈Λ

h−1(Uα). Then V = {h−1(Uα) : α ∈

Λ} is a fuzzy cover of A by fmg-open sets of X as h is an fmg-
continuous function. As A is fmg-compact set in X, there exists

a finite subcollection Λ0 of Λ such that A ≤
⋃
α∈Λ0

h−1(Uα) ⇒ h(A) ≤

h(
⋃
α∈Λ0

h−1(Uα) ≤
⋃
α∈Λ0

Uα ⇒ h(A) is fuzzy compact (resp., fuzzy almost

compact, fuzzy nearly compact) set in Y .
Since fuzzy open set is fmg-open, we can state the following theo-

rems easily the proofs of which are same as that of Theorem 6.17.
Theorem 6.18. Let h : X → Y be an fmg-irresolute function from
X onto an fts Y and A(∈ IX) be an fmg-compact set in X. Then
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h(A) is fmg-compact (resp., fuzzy compact, fuzzy almost compact,
fuzzy nearly compact) set in Y .
Theorem 6.19. Let h : X → Y be an fmg-continuous function from
an fmg-compact space X onto an fts Y . Then Y is fuzzy compact
(resp., fuzzy almost compact, fuzzy nearly compact) space.
Theorem 6.20. Let h : X → Y be an fmg-irresolute function from
an fmg-compact space X onto an fts Y . Then Y is fmg-compact
(resp., fuzzy compact, fuzzy almost compact, fuzzy nearly compact)
space.
Theorem 6.21. Let h : X → Y be an fmg-continuous function from
a fuzzy compact, fmTg-space X onto an fts Y . Then Y is fuzzy
compact (resp., fuzzy almost compact, fuzzy nearly compact) space.
Theorem 6.22. Let h : X → Y be an fmg-irresolute function from a
fuzzy compact, fmTg-space X onto an fts Y . Then Y is fmg-compact
(resp., fuzzy compact, fuzzy almost compact, fuzzy nearly compact)
space.
Remark 6.23. It is clear from definitions that (i) fmg-irresolute
function is fmg-continuous, but the converse may not be true, as
it seen from the following example. Also (ii) fuzzy continuity and
fmg-irresoluteness are independent concepts follow from the following
examples.
Example 6.24. There exists a function which is Fuzzy continu-
ous, fmg-continuous but it is not an fmg-irresolute Let X = {a, b},
τ1 = {0X , 1X , A}, τ2 = {0X , 1X} where A(a) = 0.5, A(b) = 0.6.
Then (X, τ1) and (X, τ2) are fts’s. Consider the identity function
i : (X, τ1) → (X, τ2). Clearly i is fmg-continuous as well as fuzzy
continuous function. Now every fuzzy set in (X, τ2) is fmg-closed set
in (X.τ2). Consider the fuzzy set B defined by B(a) = 0.5, B(b) = 0.7.
Then B is fmg-closed set in (X, τ2). Then B ≤ B which is an fg-open
set in (X, τ1). But clτ1intτ1B = 1X 6≤ B ⇒ B is not an fmg-closed
set in (X, τ1)⇒ i is not an fmg-irresolute function.
Example 6.25. fmg-irresoluteness does not imply fuzzy continuity
Let X = {a, b}, τ1 = {0X , 1X}, τ2 = {0X , 1X , A} where A(a) = A(b) =
0.5. Then (X, τ1) and (X, τ2) are fts’s. Consider the identity function
i : (X, τ1) → (X, τ2). Since every fuzzy set in (X, τ1) is fmg-closed
set in (X, τ1), clearly i is fmg-irresolute function. Also i is not fuzzy
continuous function as A ∈ τ2, i

−1(A) = A 6∈ τ1.
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Theorem 6.26. Let h : X → Y be an fmg-continuous function
where Y is an fmTg-space. Then h is fmg-irresolute function.
Proof. Obvious.
Theorem 6.27. It is clear from definition that composition of two
fmg-irresolute functions is fmg-irresolute function. Again if h1 : X →
Y is fmg-irresolute function and h2 : Y → Z is fmg-continuous
function, then h2 ◦ h1 : X → Z is an fmg-continuous function.

To establish the mutual relationship of fmg-continuous function
with the classes of functions defined in [3, 5, 6, 7, 10, 11, 12, 13, 14,
15, 16], we first recall the definitions of the functions introduced in
[3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16].
Definition 6.28. Let h : (X, τ1) → (Y, τ2) be a function. Then h is
called (i) fg-continuous function [3] if h−1(V ) is fg-closed set in X for
every V ∈ τ c2 , (ii) fgβ-continuous function [7] if h−1(V ) is fgβ-closed
set in X for every V ∈ τ c2 , (iii) fβg-continuous function [7] if h−1(V ) is
fβg-closed set in X for every V ∈ τ c2 , (iv) fgp-continuous function [3]
if h−1(V ) is fgp-closed set in X for every V ∈ τ c2 , (v) fpg-continuous
function [3] if h−1(V ) is fpg-closed set in X for every V ∈ τ c2 , (vi)
fgα-continuous function [3] if h−1(V ) is fgα-closed set in X for every
V ∈ τ c2 , (vii) fαg-continuous function [3] if h−1(V ) is fαg-closed set
in X for every V ∈ τ c2 , (viii) fgs-continuous function [3] if if h−1(V ) is
fgs-closed set in X for every V ∈ τ c2 , (ix) fsg-continuous function [3]
if h−1(V ) is fsg-closed set in X for every V ∈ τ c2 , (x) fgs∗-continuous
function [5] if h−1(V ) is fgs∗-closed set in X for every V ∈ τ c2 , (xi)
fs∗g-continuous function [6] if h−1(V ) is fs∗g-closed set in X for every
V ∈ τ c2 , (xii) fgγ-continuous function [11] if h−1(V ) is fgγ-closed set
in X for every V ∈ τ c2 , (xiii) fgγ∗-continuous function [12] if h−1(V ) is
fgγ∗-closed set in X for every V ∈ τ c2 , (xiv) frwg-continuous function
[16] if h−1(V ) is frwg-closed set in X for every V ∈ τ c2 , (xv) fswg-
continuous function [15] if h−1(V ) is fswg-closed set in X for every
V ∈ τ c2 , (xvi) fgpr-continuous function [10] if h−1(V ) is fgpr-closed set
in X for every V ∈ τ c2 , (xvii) fwg-continuous function [14] if h−1(V ) is
fwg-closed set in X for every V ∈ τ c2 , (xviii) fπg-continuous function
[13] if h−1(V ) is fπg-closed set in X for every V ∈ τ c2 .
Remark 6.29. It is clear from definitions that (i) fs∗g-
continuity implies fmg-continuity, (ii) fmg-continuity implies fgp-
continuity, fgpr-continuity, fgα-continuity, fgβ-continuity, fgγ-
continuity, fgγ∗-continuity, fwg-continuity, frwg-continuity, (iii)
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fmg-continuity is independent concept of fg-continuity, fπg-
continuity, fpg-continuity, fαg-continuity, fβg-continuity, fgs-
continuity, fsg-continuity, fgs∗-continuity, fswg-continuity. But the
reverse implications are not necessarily true, as it seen from the fol-
lowing examples.
Example 6.30. fmg-continuity does not imply fg-continuity, fgs-
continuity, fsg-continuity, fgs∗-continuity and fs∗g-continuity Let
X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B} where A(a) =
0.5, A(b) = 0.6, B(a) = 0.6, B(b) = 0.4. Then (X, τ1) and (X, τ2)
are fts’s. Consider the identity function i : (X, τ1 → (X, τ2). Now
1X \B ∈ τ c2 , i−1(1X \B) = 1X \B and clτ1intτ1(1X \B) = 0X ⇒ 1X \B
is fmg-closed set in (X, τ1) ⇒ i is fmg-continuous function. But
1X\B < A where A ∈ τ1 (resp., A ∈ FSO(X, τ1) and also A is fg-open
set in (X, τ1). But clτ1(1X \B) = sclτ1(1X \B) = 1X 6≤ A⇒ 1X \B is
not an fg-closed set, fgs-closed set, fsg-closed set, fgs∗-closed set and
fs∗g-closed set in (X, τ1) ⇒ i is not an fg-continuous function, fgs-
continuous function, fsg-continuous function, fgs∗-continuous func-
tion, fs∗g-continuous function.
Example 6.31. fmg-continuity does not imply fπg-continuity Let
X = {a, b}, τ1 = {0X , 1X , A,B,C}, τ2 = {0X , 1X , D} where A(a) =
0.3, A(b) = 0.4, B(a) = B(b) = 0.4, C(a) = 0.6, C(b) = 0.5, D(a) =
0.4, D(b) = 0.6. Then (X, τ1) and (X, τ2) are fts’s. Consider the
identity function i : (X, τ1) → (X, τ2). Now 1X \ D ∈ τ c2 , i−1(1X \
D) = 1X \ D. Now fg-open sets in (X, τ1) is {0X , 1X , U, V } where
U(a) ≥ 0.6, 0.5 ≤ U(b) < 0.6, V 6≥ 1X \ C. Then 1X \D < U1 where
U1 is fg-open set in (X, τ1) defined by U1(a) ≥ 0.6, 0.5 ≤ U1(b) < 0.6.
So clτ1intτ1(1X \ D) = 1X \ C < U1 ⇒ 1X \ D is fmg-closed set
in (X, τ1) ⇒ i is fmg-continuous function. Now 1X \ D < C ∈
FπO(X, τ1). But clτ1(1X \ D) = 1X \ D 6≤ C ⇒ 1X \ D is not fπg-
closed set in (X, τ1)⇒ i is not fπg-continuous function.
Example 6.32. fmg-continuity does not imply any of fswg-
continuity, fpg-continuity, fβg-continuity and fαg-continuity Let
X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B} where A(a) =
0.4, A(b) = 0.7, B(a) = 0.4, B(b) = 0.3. Then (X, τ1) and (X.τ20 are
fts’s. Consider the identity function i : (X.τ1)→ (X, τ2). 1X \B ∈ τ c2 ,
i−1(1X\B) = 1X\B. Now fg-open sets in (X, τ1) is {0X , 1X , U} where
U 6≥ 1X \ A. Since 1X \ B ≥ 1X \ A, so 1X is the only fg-open set in
(X, τ1) containing 1X \B and so 1X \B is fmg-closed set in (X, τ1)⇒ i
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is an fmg-continuous function. Again 1X \B ∈ FβO(X, τ1) as well as
1X \ B ∈ FSO(X, τ1), 1X \ B ∈ FPO(X, τ1), 1X \ B ∈ FαO(X, τ1).
But as 1X \ B 6∈ FβC(X, τ1), 1X \ B 6∈ FPC(X, τ1), 1X \ B 6∈
FαC(X, τ1), we conclude that 1X \B is not fβg-closed set, fpg-closed
set and fαg-closed set in (X, τ1) ⇒ i is not an fβg-continuous func-
tion, fpg-continuous function and fαg-continuous function. Again
clτ1intτ1(1X \ B) = 1X 6≤ 1X \ B ⇒ 1X \ B is not fswg-closed set in
(X, τ1)⇒ i is not an fswg-continuous function.
Example 6.33. None of fg-continuity, fπg-continuity, fgpr-
continuity, fwg-continuity, frwg-continuity, fgγ-continuity implies
fmg-continuity Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B}
where A(a) = 0.5, A(b) = 0.6, B(a) = 0.3, B(b) = 0.4. Then (X, τ1)
and (X, τ2) are fts’s. Consider the identity function i : (X, τ1) →
(X, τ2). Now 1X \B ∈ τ c2 , i−1(1X \B) = 1X \B. Here 1X \B ≤ 1X \B
which is fg-open set in (X, τ1). But clτ1intτ1(1X \B) = 1X 6≤ 1X \B ⇒
1X\B is not an fmg-closed set in (X, τ1)⇒ i is not an fmg-continuous
function. Now 1X ∈ τ1 (resp., 1X ∈ FπO(X, τ1), 1X ∈ FRO(X, τ1))
only containing 1X \B and so 1X \B is fg-closed set (resp., fgγ-closed
set, fπg-closed set, fgpr-closed set, fwg-closed set, frwg-closed set)
in (X, τ1) ⇒ i is an fg-continuous function (resp., fgγ-continuous
function, fπg-continuous function, fgpr-continuous function, fwg-
continuous function, frwg-continuous function).
Example 6.34. fpg-continuity does not imply fmg-continuity

Let X = {a}, τ = {0X , 1X , B, C}, τ2 = {0X , 1X , A} where
A(a) = 0.5, B(a) = 0.4, C(a) = 0.45. Then (X, τ1) and (X, τ2) are
fts’s. Consider the identity function i : (X, τ1) → (X, τ2). Now
1X \ A ∈ τ c2 , i−1(1X \ A) = 1X \ A ≤ 1X \ A which is fg-open set
in (X, τ1). But clτ1intτ1(1X \ A) = 1X \ C 6≤ 1X \ A ⇒ 1X \ A is
not fmg-closed set in (X, τ1) ⇒ i is not an fmg-continuous func-
tion. Now 1X \ A < U ∈ FPO(X, τ1) where U > 1X \ B. So
pclτ1(1X \A) = 1X \ C < U ⇒ 1X \A is fpg-closed set in (X, τ1)⇒ i
is an fpg-continuous function.
Example 6.35. None of fgβ-continuity, fβg-continuity, fgp-
continuity, fgα-continuity, fαg-continuity, fgs-continuity, fsg-
continuity and fgγ∗-continuity implies fmg-continuity Let X =
{a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B} where A(a) = 0.5, A(b) =
0.4, B(a) = B(b) = 0.5. Then (X, τ1) and (X, τ2) are fts’s. Con-
sider the identity function i : (X, τ1) → (X, τ2). Now 1X \ B ∈ τ c2 ,
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i−1(1X \B) = 1X \B ≤ 1X \B which is an fg-open set in (X, τ1). But
clτ1intτ1(1X \ B) = 1X \ A 6≤ 1X \ B ⇒ 1X \ B is not an fmg-closed
set in (X, τ1) ⇒ i is not an fmg-continuous function. Again since
1X \B ∈ FβC(X, τ1), 1X \B is fgβ-closed set as well as fβg-closed set
in (X, τ1)⇒ i is an fgβ-continuous function as well as fβg-continuous
function. Also 1X \ B ∈ FSC(X, τ1) as well as 1X \ B ∈ FγC(X, τ1)
and so 1X \ B is fgs-closed set, fsg-closed set and fgγ∗-closed set
in (X, τ1)⇒ i is an fgs-continuous function, fsg-continuous function
and fgγ∗-continuous function. Now 1X ∈ τ1 also 1X ∈ FαO(X, τ1)
only containing 1X \ B ⇒ 1X \ B is fgp-closed set, fgα-closed set
and fαg-closed set in (X, τ1)⇒ i is an fgp-continuous function, fgα-
continuous function and fαg-continuous function.
Example 6.36. None of fswg-continuity, fgs∗-continuity implies
fmg-continuity Let X = {a, b}, τ1 = {0X , 1X , A,B,C}, τ2 =
{0X , 1X , D} where A(a) = 0.3, A(b) = 0.4, B(a) = B(b) = 0.4, C(a) =
0.6, C(b) = 0.5, D(a) = 0.65, D(b) = 0.4. Then (X, τ1) and (X, τ2)
are fts’s. Consider the identity function i : (X, τ1) → (X, τ2). Now
1X \D ∈ τ c2 , i−1(1X \D) = 1X \D ≤ 1X \D which is an fg-open set in
(X, τ1). But clτ1intτ1(1X \D) = 1X \ C 6≤ 1X \D ⇒ 1X \D is not an
fmg-closed set in (X, τ1)⇒ i is not an fmg-continuous function. Now
FSO(X, τ1) = {0X , 1X , U, V } where A ≤ U ≤ 1X\C, C ≤ V ≤ 1X\B.
Then 1X \D < 1X \B ∈ FSO(X, τ1). Then clτ1(1X \D) = 1X \B ≤
1X \B ⇒ 1X \D is fgs∗-closed set in (X, τ1)⇒ i is an fgs∗-continuous
function. Again clτ1intτ1(1X \D) = 1X \ C < 1X \ B ⇒ 1X \D is an
fswg-closed set in (X, τ1)⇒ i is an fswg-continuous function.
Remark 6.37. (i) Let h : X → Y be a function where
X is an fmTg-space. Then if h is an fmg-continuous func-
tion, then h is an fg-continuous function, fπg-continuous function,
fpg-continuous function, fαg-continuous function, fβg-continuous
function, fsg-continuous function, fgs∗-continuous function, fs∗g-
continuous function, fswg-continuous function. (ii) Let h : X → Y
be a function where X is an fTg-space (resp., fTβ-space, fβTb-
space, fTα-space, fαTb-space, fTb-space, fTsg-space, fgTs∗-space,
fTp-space, fpTb-space, fTγ-space, fTγ∗-space, frTg-space, fsTg-
space, fTw-space, fTπ-space, fTpr-space). If h is fg-continuous
function (resp., fgβ-continuous function, fβg-continuous function,
fgα-continuous function, fαg-continuous function, fgs-continuous
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function, fsg-continuous function, fgs∗-continuous function, fgp-
continuous function, fpg-continuous function, fgγ-continuous func-
tion, fgγ∗-continuous function, frwg-continuous function, fswg-
continuous function, fwg-continuous function, fπg-continuous func-
tion, fgpr-continuous function), then h is fmg-continuous function.

7. fmg-T2 Space

In this section a strong form of fuzzy T2-space is introduced and
established. Afterwards, a strong form of fmg-continuity is introduced
and the applications of this newly defined function is established.

We first recall the definition and theorem from [24, 25] for ready
references.
Definition 7.1 [24]. An fts (X, τ) is called fuzzy T2-space if for any
two distinct fuzzy points xα and yβ; when x 6= y, there exist fuzzy open
sets U1, U2, V1, V2 such that xα ∈ U1, yβqV1, U1 6 qV1 and xαqU2, yβ ∈
V2, U2 6 qV2; when x = y and α < β (say), there exist fuzzy open sets
U and V in X such that xα ∈ U, yβqV and U 6 qV .
Theorem 7.2 [25]. An fts (X, τ) is fuzzy T2-space if and only if for
any two distinct fuzzy points xα and yβ in X; when x 6= y, there exist
fuzzy open sets U, V in X such that xαqU , yβqV and U 6 qV ; when
x = y and α < β (say), xα has a fuzzy open nbd U and yβ has a fuzzy
open q-nbd V such that U 6 qV .

Now we introduce the following concept.
Definition 7.3. An fts (X, τ) is called fmg-T2-Space if for any two
distinct fuzzy points xα and yβ in X; when x 6= y, there exist fmg-
open sets U, V in X such that xαqU , yβqV and U 6 qV ; when x = y
and α < β (say), xα has an fmg-open nbd U and yβ has an fmg-open
q-nbd V such that U 6 qV .
Theorem 7.4. If an injective function h : X → Y is fmg-continuous
function from an fts X onto a fuzzy T2-space Y , then X is fmg-T2-
space.
Proof. Let xα and yβ be two distinct fuzzy points in X. Then h(xα)
(= zα, say) and h(yβ) (= wβ, say) are two distinct fuzzy points in Y .
Case I. Suppose x 6= y. Then z 6= w. Since Y is fuzzy T2-space, there
exist fuzzy open sets U, V in Y such that zαqU,wβqV and U 6 qV .
As h is fmg-continuous function, h−1(U) and h−1(V ) are fmg-open
sets in X with xαqh

−1(U), yβqh
−1(V ) and h−1(U) 6 qh−1(V ) [Indeed,

zαqU ⇒ U(z) + α > 1 ⇒ U(h(x)) + α > 1 ⇒ [h−1(U)](x) + α >
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1 ⇒ xαqh
−1(U). Again, h−1(U)qh−1(V ) ⇒ there exists t ∈ X such

that [h−1(U)](t) + [h−1(V )](t) > 1⇒ U(h(t)) + V (h(t)) > 1⇒ UqV ,
a contradiction]. Case II. Suppose x = y and α < β (say). Then
z = w and α < β. Since Y is fuzzy T2-space, there exist a fuzzy
open nbd U of xα and a fuzzy open q-nbd V of wβ such that U 6 qV .
Then U(z) ≥ α ⇒ [h−1(U)](x) ≥ α ⇒ xα ∈ h−1(U), yβqh

−1(V ) and
h−1(U) 6 qh−1(V ) where h−1(U) and h−1(V ) are fmg-open sets in X
as h is fmg-continuous function. Consequently, X is fmg-T2-space.

Similarly we can state the following theorems easily the proofs of
which are similar to that of Theorem 7.4.
Theorem 7.5. If a bijective function h : X → Y is fmg-irresolute
function from an fts X onto an fmg-T2-space Y , then X is fmg-T2-
space.
Theorem 7.6. If a bijective function h : X → Y is fmg-continuous
function from an fmTg-space X onto a fuzzy T2-space Y , then X is
fuzzy T2-space.
Theorem 7.7. If a bijective function h : X → Y is fmg-irresolute
function from an fmTg-space X onto an fmg-T2-space Y , then X is
fuzzy T2-space.
Theorem 7.8. If a bijective function h : X → Y is fmg-open function
from a fuzzy T2-space X onto an fts Y , then Y is fmg-T2-space.
Theorem 7.9. If a bijective function h : X → Y is fmg-open function
from a fuzzy T2-space X onto an fmTg-space Y , then Y is fuzzy T2-
space.

It is clear from definitions that every fuzzy T2-space is fmg-T2-
space, but the converse is not necessarily true, follows from the fol-
lowing example.
Example 7.10. Let X = {a}, τ = {0X , 1X}. Then (X, τ) is an fts.
Clearly (X, τ) is not a fuzzy T2-space. Here every fuzzy set in (X, τ) is
fmg-open set in (X, τ). Consider two fuzzy points a0.1 and a0.4. Then
there exist two fmg-open sets U, V in X where U(a) = 0.2, V (a) =
0.61 such that a0.1 ∈ U , a0.4qV and U 6 qV and this is true for every
pair of distinct fuzzy points in X. So (X, τ) is an fmg-T2-space.

Now we introduce the strong form of fmg-continuous function.
Definition 7.11. A function h : X → Y is called strongly fmg-
continuous function if h−1(V ) is fuzzy closed set in X for every fmg-
closed set V in Y .
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Theorem 7.12. A function h : X → Y is strongly fmg-continuous
function iff for each fuzzy point xα in X and each fmg-open nbd V
in Y of h(xα), there exists a fuzzy open nbd U in X of xα such that
h(U) ≤ V .
Proof. Let h : X → Y be a strongly fmg-continuous function. Let
xα be a fuzzy point in X and V be any fmg-open nbd of h(xα) in
Y . Then h(xα) ∈ V ⇒ xα ∈ h−1(V ) which being a fuzzy open
set in X is a fuzzy open nbd of xα in X. Put U = h−1(V ). Then
h(U) = h(h−1(V )) ≤ V . Conversely, let A be an fmg-open set
in Y and xα be any fuzzy point in X such that xα ∈ h−1(A). Then
h(xα) ∈ A. By hypothesis, there exists a fuzzy open nbd U of xα in
X such that h(U) ≤ A ⇒ xα ∈ U = int(U) ≤ int(h−1(A)). Since
xα is taken arbitrarily and h−1(A) is the union of all fuzzy points in
h−1(A), h−1(A) ≤ int(h−1(A))⇒ h−1(A) = int(h−1(A))⇒ h−1(A) is
fuzzy open set in X ⇒ h is a strongly fmg-continuous function.
Remark 7.13. It is clear from above discussion that strongly fmg-
continuous function implies fuzzy continuous, fmg-continuous and
fmg-irresolute functions. But the converses are not true, in general,
follow from the following examples.
Example 7.14. None of fuzzy continuity, fmg-continuity implies
strongly fmg-continuity Let X = {a, b}, τ = {0X , 1X , A}, τ2 =
{0X , 1X} where A(a) = 0.5, A(b) = 0.4. Then (X, τ1) and (X, τ2)
are fts’s. Consider the identity function i : (X, τ1) → (X, τ2). Since
0X and 1X are the only fuzzy closed sets in (X, τ2), clearly i is fuzzy
continuous as well as fmg-continuous function. As every fuzzy set
in (X, τ2) is fmg-closed set in (X, τ2), considering the fuzzy set B,
defined by B(a) = B(b) = 0.5. Then B is fmg-closed set in (X, τ2).
Now i−1(B) = B 6∈ τ c1 ⇒ i is not strongly fmg-continuous function.
Example 7.15. fmg-irresoluteness does not imply strongly fmg-
continuity Let X = {a, b}, τ1 = {0X , 1X}, τ2 = {0X , 1X , A} where
A(a) = A(b) = 0.5. Then (X, τ1) and (X, τ2) are fts’s. Consider the
identity function i : (X, τ1)→ (X, τ2). Since every fuzzy set in (X, τ1)
is fmg-closed set in (X, τ1), clearly i is fmg-irresolute function. Now
A ∈ τ2 is fmg-closed set in (X, τ2). i−1(A) = A 6∈ τ c1 ⇒ i is not
strongly fmg-continuous function.
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Note 7.16. Clearly composition of two fmg-irresolute functions is
also so.
Theorem 7.17. If h1 : X → Y is strongly fmg-continuous function
and h2 : Y → Z is fmg-continuous function, then h2 ◦ h1 : X → Z is
fuzzy continuous function.
Proof. Obvious.

Since fuzzy open set is fmg-open set, we have the following theo-
rems.
Theorem 7.18. If a bijective function h : X → Y is strongly fmg-
continuous, fuzzy open function from a fuzzy regular (resp., fuzzy
normal) space X onto an fts Y , then Y is fmg-regular (resp., fmg-
normal) space.
Theorem 7.19. If a bijective function h : X → Y is strongly fmg-
continuous, fuzzy open function from a fuzzy regular (resp., fuzzy
normal) space X onto an fts Y , then Y is fuzzy regular (resp., fuzzy
normal) space.
Theorem 7.20. If a bijective function h : X → Y is strongly fmg-
continuous function from an fts X onto an fmg-T2-space Y , then X
is fuzzy T2-space.
Theorem 7.21. If a bijective function h : X → Y is strongly fmg-
continuous function from a fuzzy compact space X onto an fts Y , then
Y is fmg-compact (resp., fuzzy compact, fuzzy almost compact, fuzzy
nearly compact) space.
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