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ON THE DISTRIBUTION OF ZEROS OF BICOMPLEX
VALUED ENTIRE FUNCTIONS IN A CERTAIN

DOMAIN
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SARKAR

Abstract. Bicomplex algebra is a modern developed area which
is a generalization of the field of complex numbers. In this paper we
derive some results related to the distribution of zeros of bicomplex
valued entire functions in a certain domain. A few examples with
related figures are given here to justify the results obtained.

1. Introduction

Bicomplex numbers which are the commutative generalization of
complex numbers were first introduced by Segre (cf, [5]). Stan-
dard definitions, notations and many more properties of bicomplex
numbers are available in [2] and [6]. A bicomplex entire function
f(z) is also represented by an everywhere convergent power series as
f(z) =

∑∞
j=0 αjz

j, where αj’s and z are bicomplex numbers. Thus,
bicomplex entire functions can be thought of the natural generaliza-
tion of bicomplex polynomials. The aim of the paper is to establish
some results concerning the distribution of zeros of bicomplex entire
functions in a certain domain.
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2. Preliminary Definitions and Notations

In this section we give some basic idea about bicomplex numbers.
The set of bicomplex numbers C2 is defined by C2 = {z : z =

a0 + ia1 + ja2 + ka3, a0, a1, a2, a3 ∈ R} or equivalently C2 = {z1 + jz2 :
z1, z2 ∈ C1}, where C1 is the set of complex numbers with imaginary
unit i such that i2 = j2 = −k2 = −1 and ij = ji = k.

2.1. Idempotent Representation. One of the important features of
a bicomplex number is its idempotent representation . The bicomplex
numbers e1 := 1+ij

2
, e2 := 1−ij

2
are linearly independent in the C1-linear

space C2 and e1 + e2 = 1, e1 − e2 = ij, e1.e2 = 0, e2
1 = e1, e

2
2 = e2. Any

z ∈ C2 can be uniqely expressed as z = (z1 − iz2)e1 + (z1 + iz2)e2,
which is known as the idempotent representation of z.

2.2. Norm. The norm ‖‖ : C2 → R+

(R+denote the set of all non negative real numbers) is defined as
follows:
If z = z1 + jz2 = ξ1e1 + ξ2e2 ∈ C2, then

‖z‖ = {|z1|2+|z2|2}
1
2 =

{
|ξ1|2+|ξ2|2

2

} 1
2

.

2.3. Auxiliary Complex Spaces. The spaces A1 = {z1 − iz2 :
z1, z2 ∈ C1} and A2 = {z1 + iz2 : z1, z2 ∈ C1} are called the aux-
iliary complex spaces. Each point z1 + jz2 = (z1− iz2)e1 + (z1 + iz2)e2

in C2 associates the points z1 − iz2 ∈ A1 and z1 + iz2 ∈ A2. Also to
each pair of points (z1− iz2, z1 + iz2) ∈ A1×A2 there is a uniqe point
in C2.

2.4. C2-Open Discus. An open discus D(ξ; r1, r2) with centre ξ =
ξ1e1 + ξ2e2 and radii r1 > 0, r2 > 0 is defined by

D(ξ; r1, r2) = {ω1e1 + ω2e2 ∈ C2 :|ω1 − ξ1| < r1, |ω2 − ξ2| < r2}.

2.5. C2-Closed Discus. A closed discus D̄(ξ; r1, r2) with centre ξ =
ξ1e1 + ξ2e2 and radii r1 > 0, r2 > 0 is defined as

D̄(ξ; r1, r2) = {ω1e1 + ω2e2 ∈ C2 :|ω1 − ξ1| ≤ r1, |ω2 − ξ2| ≤ r2}.

2.6. C2-Disc. If r1 > 0 , r2 > 0 and r1 = r2 = r, then the discus is
called a disc in C2 and is denoted by D(ξ; r, r) = D(ξ; r) .
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3. Lemmas

In this section we present some lemmas which will be needed in the
sequel.

Lemma 3.1. [1] If f(z) is holomorphic in | z |≤ R in C1, f(0) =
0, f ′(0) = b, and | f(z) |≤M for | z |= R, then for | z |≤ R,

| f(z) |≤ M | z |
R2

.
M | z | +R2 | b |
M+ | b || z |

.

The following lemma is due to Schwarz in C1.

Lemma 3.2. [4] If g(z) is holomorphic in | z |≤ R in C1, g(0) = 0
and | g(z) |≤M for | z |= R, then

|g(z)| ≤ M |z|
R

.

Lemma 3.3. [3] Let f(z) be holomorphic for | z |< R in C1. Suppose
f(0) 6= 0 and let r1, r2, ..., rn, ... be the moduli of the zeros of f(z) in
| z |< R arranged as a non decreasing sequence. If rn ≤ r ≤ rn+1,
then

log
rn | f(0) |
r1r2...rn

=
1

2π

∫ 2π

0

log | f(reiθ) | dθ,

where a zero of order p is counted p times.

Remark 3.1. Lemma 3.3 is known as Jensen’s Theorem in C1.

Lemma 3.4. [5] Let X = X1e1 +X2e2 := {ξ1e1 + ξ2e2 : ξ1 ∈ X1, ξ2 ∈
X2} be a domain in C2. A bicomplex function F = G1e1 +G2e2 : X →
C2 is holomorphic if and only if both the component function G1 and
G2 are holomorphic in X1 and X2 respectively .

Lemma 3.5. [5] Let F be a bicomplex holomorphic function defined
in a domain X = X1e1 +X2e2 := {ξ1e1 +ξ2e2 : ξ1 ∈ X1, ξ2 ∈ X2} such
that F (z) = G1(ξ1)e1 + G2(ξ2)e2, for all z = ξ1e1 + ξ2e2 ∈ X. Then,
F (z) has zero in X if and only if G1(ξ1) and G2(ξ2) both have zero at
ξ1 in X1 and at ξ2 in X2 respectively.

Lemma 3.6. Let F (z) = G1(ξ1)e1 + G2(ξ2)e2 be a bicomplex holo-
morphic function with ‖F (0)‖ 6= 0 and ‖F (z)‖ ≤ M(r1, r2) for all
z ∈ D̄(0; r1, r2). Then the number of zeros N1( r1

2
) of G1(ξ1) in the do-

main {ξ1 ∈ A1 :|ξ1| < r1
2
} and N2( r1

2
) of G2(ξ2) in {ξ2 ∈ A2 :|ξ2| < r2

2
}
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do not exceed respectively

1

log 2

{
log

√
2M(r1, r2)

|G1(0)|

}
and

1

log 2

{
log

√
2M(r1, r2)

|G2(0)|

}
.

Proof. In view of Lemma 3.4, G1(ξ1) and G2(ξ2) are holomorphic re-
spectively in X1 = {ξ1 ∈ A1 :|ξ1| ≤ r1} and X2 = {ξ2 ∈ A2 :|ξ2| ≤ r2}.

Since

G1(ξ1)√
2
≤
{
G1(ξ1)2 +G2(ξ2)2

2

} 1
2

=‖F (z)‖ ≤M(r1, r2)

for z = ξ1e1 + ξ2e2 ∈ D̄(0; r1, r2),

| G1(ξ1) |≤
√

2M(r1, r2) for ξ1 ∈ X1.

Let ξ11, ξ12, ..., ξ1n be n zeros of G1(ξ1) such that |ξ11| ≤|ξ12| ≤ ... ≤
|ξ1n| < r1.

Then by Lemma 3.3,

N1(
r1

2
) log 2 ≤

N1(
r1
2

)∑
i=1

log
r1

| ξ1i |

≤
N1(r1)∑
i=1

log
r1

| ξ1i |

≤ log
√

2M(r1, r2)− log|G1(0)|,

i.e,

N1(
r1

2
) ≤ 1

log 2

{
log

√
2M(r1, r2)

|G1(0)|

}
.

Similarly,

N2(
r2

2
) ≤ 1

log 2

{
log

√
2M(r1, r2)

|G2(0)|

}
.

This completes the proof of the lemma.
�
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4. Theorems

In this section we present the main results of the paper.

Theorem 4.1. Let f(z) =
∑∞

k=0 αkz
k be an entire function with

|| f(0) ||6= 0 , αk = ake1 + bke2, k = 0, 1, 2, .. and z = ξ1e1 + ξ2e2. Let
N1, N2 be the respective highest positive integers less than or equal to
N1(r1) in {ξ1 ∈ A1 :| ξ1 |< r1} and N2(r2) in {ξ2 ∈ A2 :| ξ2 |< r2} such
that aN1 6= 0 , aN2 6= 0. Then within the open discus D(0; r1, r2) , f(z)
does not vanish in the open discus D(0; t1, t2) where t1 , t2 are respec-
tively the least positive roots of the equations

g1(t) ≡| a0 | rN1+1
1 − (| a0 | +

√
2N1M(r1, r2))rN1

1 t+

+
√

2N1M(r1, r2)rN1−1
1 t2 −

√
2M(r1, r2)tN1+1 = 0

and
g2(t) ≡| b0 | rN2+1

2 − (| b0 | +
√

2N2M(r1, r2))rN2
2 t+

+
√

2N2M(r1, r2)rN2−1
2 t2 −

√
2M(r1, r2)tN2+1 = 0,

max
z∈D̄(0;r1,r2)

|| f(z) ||≤M(r1, r2).

Proof. As f(z) can be written as

f(z) =
∞∑
k=0

akξ
k
1e1 +

∞∑
k=0

bkξ
k
2e2 = f1(ξ1)e1 + f2(ξ2)e2,

clearly f(z) is holomorphic in the closed discus D̄(0; r1, r2), 0 < r1 <
∞, 0 < r2 < ∞. Hence in view of Lemma 3.4 , f1(ξ1) and f2(ξ1) are
holomorphic respectively in X1 = {ξ1 ∈ A1 :| ξ1 |≤ r1} ⊂ C1 and
X2 = {ξ2 ∈ A2 :| ξ2 |≤ r2} ⊂ C1.

Now for | ξ1 |< r1,

(1)

f1(ξ1) =
∞∑
k=0

akξ
k
1

= a0 + a1ξ1 + a2ξ
2
1 + ...+ aN1ξ

N1
1 +

∞∑
k=N1+1

akξ
k
1

= a0 +G(ξ1) +H(ξ1)

where G(ξ1) = a1ξ1 + a2ξ
2
1 + ...+ aN1ξ

N1
1 and H(ξ1) =

∑∞
k=N1+1 akξ

k
1 .
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Since

‖f(z)‖ =

{
f1(ξ1)2 + f2(ξ2)2

2

} 1
2

≥ f1(ξ1)√
2
,

we have for the coefficients of the power series
∑∞

k=0 akξ
k
1 in | ξ1 |≤ r1,

(2) | ak |≤
max
|ξ1|=r1

| f1(ξ1) |

rk1
≤
√

2M(r1, r2)

rk1
.

Hence for | ξ1 |= r1, by using (2) it follows that

| G(ξ1) |≤| a1 || ξ1 | + | a2 || ξ1 |2 +...+ | aN1 || ξ1 |N1

≤| a1 | r1+ | a2 | r2
1 + ...+ | aN1 | rN1

1

≤
√

2N1M(r1, r2).

Since G(ξ1) is holomorphic in | ξ1 |≤ r1, G(0) = 0 and | G(ξ1) |≤√
2N1M(r1, r2) for | ξ1 |= r1, by Lemma 3.2, we get that

(3) | G(ξ1) |≤
√

2N1M(r1, r2) | ξ1 |
r1

.

Also for | ξ1 |< r1, by using (2) we have

(4)

| H(ξ1) |=|
∞∑

k=N1+1

akξ
k
1 |

≤
∞∑

k=N1+1

| ak || ξ1 |k

≤
√

2M(r1, r2)
∞∑

k=N1+1

(
| ξ1 |
r1

)k

≤
√

2M(r1, r2)

(
ξ1

r1

)N1+1

1− ξ1

r1

=

√
2M(r1, r2) | ξ1 |N1+1

rN1
1 (r1− | ξ1 |)

.
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Hence for | ξ1 |< r1, it follows from (1) by (3) and (4) that

f1(ξ1) ≥| a0 | − | G(ξ1) | − | H(ξ1) |

≥| a0 | −
√

2N1M(r1, r2) | ξ1 |
r1

−
√

2M(r1, r2) | ξ1 |N1+1

rN1
1 (r1− | ξ1 |)

=

| a0 | rN1+1
1 − (| a0 | +

√
2N1M(r1, r2))rN1

1 | ξ1 |
+
√

2N1M(r1, r2)rN1−1
1 | ξ1 |2 −

√
2M(r1, r2) | ξ1 |N1+1

rN1
1 (r1− | ξ1 |)

.

Let

g1(t) ≡| a0 | rN1+1
1 − (| a0 | +

√
2N1M(r1, r2))rN1

1 t+

+
√

2N1M(r1, r2)rN1−1
1 t2 −

√
2M(r1, r2)tN1+1

We see that the number changes in sign in the coefficients of g1(t) is
3. Hence by Descarte’s rule of sign, the number of positive real roots
of g1(t) = 0 will be either 3 or 1.

Let us consider t1 be the least positive root of the equation g1(t) = 0.
Since g1(0) =| a0 | rN1+1 > 0 and g1(∞) = −∞ < 0, g1(t) > 0 if

t < t1, otherwise there will be another positive root in (0, t1), which
makes a contradiction. Hence for | ξ1 |< r1, | f1(ξ1) |> 0 if | ξ1 |< t1.

Similarly for | ξ2 |< r2, | f2(ξ2) |> 0 if | ξ2 |< t2 where t2 is the least
positive root of the equation

g2(t) ≡| b0 | rN2+1
2 − (| b0 | +

√
2N2M(r1, r2))rN2

2 t+

+
√

2N2M(r1, r2)rN2−1
2 t2 −

√
2M(r1, r2)tN2+1 = 0.

Therefore both f1(ξ1) and f2(ξ2) have no zeros respectively in
X ′1 = {ξ1 ∈ X1 :| ξ1 |< t1} and X ′2 = {ξ2 ∈ X2 :| ξ2 |< t2}.

Hence by Lemma 3.5, f(z) has no zero in X ′1e1 +X ′2e2 = D(0; t1, t2).
This proves the theorem.

�

Remark 4.1. The following example with related figure justifies the
validity of Theorem 4.1.

Example 4.1. Let f(z) = cos(z) = cos(ξ1)e1 + cos(ξ2)e2 .
Here, f1(ξ1) = cos(ξ1) = 1− 1

2!
ξ2

1 + 1
4!
ξ4

1 − ... and f2(ξ2) = cos(ξ2) =

1− 1
2!
ξ2

2 + 1
4!
ξ4

2 − ....
For r1 = r2 = 1, by Lemma 3.6 , N1(r1) ≤ 2.41, N2(r2) ≤ 2.41.
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Since a2 6= 0, b2 6= 0 , we may take N1 = N2 = 2.

Now, ‖f(z)‖ =
{
|cos(ξ1)|2+|cos(ξ2)|2

2

} 1
2 ≤ e+e−1

2
, for all z ∈ D̄(0; 1, 1).

Hence,

g1(t) ≡| a0 | rN1+1
1 − (| a0 | +

√
2N1M(r1, r2))rN1

1 t+

+
√

2N1M(r1, r2)rN1−1
1 t2 −

√
2M(r1, r2)tN1+1

= 1− (1 +
√

2(e+ e−1))t+
√

2(e+ e−1)t2 −
√

2 · e+e−1

2
t3

and

g2(t) ≡| b0 | rN2+1
2 − (| b0 | +

√
2N2M(r1, r2))rN2

2 t+

+
√

2N2M(r1, r2)rN2−1
2 t2 −

√
2M(r1, r2)tN2+1

= 1− (1 +
√

2(e+ e−1))t+
√

2(e+ e−1)t2 −
√

2 · e+e−1

2
t3.

We see that g1(.22) > 0, g1(.23) < 0 and g1(t) > 0 for 0 ≤ t ≤ .22.
Hence the positive root of g1(t) lies between .22 and .23.

Similarly the least positive root of g2(t) lies between .22 and .23.
Hence by Theorem 4.1, f(z) has no zeros in D̄(0; .22, .22) within the

open discus D(0; 1, 1).

| ξ1 |= 1 | ξ2 |= 1

| ξ1 |= 0.22 | ξ2 |= 0.22

ξ1-plane ξ2-plane

Figure 1. Zero free region of f(z) = cos(z) in D(0; 1, 1)
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Theorem 4.2. Let f(z) =
∑∞

k=0 αkz
k be an entire function with

‖f(0)‖ 6= 0, αk = ake1 + bke2, k = 0, 1, 2, .. and z = ξ1e1 + ξ2e2. Then
within any open discus D(0; r1, r2) , f(z) has no zero in the open dis-
cus D(0; t1, t2) where t1 and t2 are respectively the positive roots of the
equation

|a0|(|a0|+ 2B)r2
1 − 2B|a0 − r1a1|t− (|a0|+ 2B)2t2 = 0

and

|b0|(|b0|+ 2C)r2
2 − 2C|b0 − r2b1|t− (|b0|+ 2C)2t2 = 0,

where

B =
∞∑
k=1

|ak|rk1 , C =
∞∑
k=1

|bk|rk2 .

Proof. As f(z) can be expressed as

f(z) =
∞∑
k=0

akξ
k
1e1 +

∞∑
k=0

bkξ
k
2e2 = f1(ξ1)e1 + f2(ξ2)e2,

f(z) being holomorphic in C2, by Lemma 3.4, f1(ξ1) and f2(ξ2) both
are holomorphic respectively in X1 = {ξ1 ∈ A1 :| ξ1 |≤ r1} ⊂ C1 and
X2 = {ξ2 ∈ A2 :| ξ2 |≤ r2} ⊂ C1.

Clearly, lim
k→∞

akr
k
1 = 0 and lim

k→∞
bkr

k
2 = 0 .

Let us consider
F (ξ1) = (ξ1 − r1)f1(ξ1),

i.e, F (ξ1) = (ξ1 − r1)
∑∞

k=0 akξ
k
1

i.e, F (ξ1) = −a0r1 +
∑∞

k=1(ak−1 − r1ak)ξ
k
1

i.e, F (ξ1) = −a0r1 +G(ξ1).
Then for |ξ1| < r1,

(5) |F (ξ1)| ≥|a0|r1−|G(ξ1)|
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For |ξ1| = r1 and as because the series
∑∞

k=1|ak|rk1 converges for
|ξ1| ≤ r1 we have

|G(ξ1)| =|
∞∑
k=1

(ak−1 − r1ak)ξ
k
1 |

≤
∞∑
k=1

|ak−1 − r1ak||ξ1|k

≤
∞∑
k=1

(|ak−1|+ r1|ak|)rk1

=|a0|r1 + 2r1

∞∑
k=1

|ak|rk1

= (|a0|+ 2B)r1,

where

B =
∞∑
k=1

|ak|rk1 .

Since G(ξ1) is analytic in | ξ1 |≤ r1, G(0) = 0, G′(0) = (a0 − r1a1)
and | G(ξ1) |≤ (|a0| + 2B)r1 for | ξ1 |= r1 and in view of Lemma 3.1,
it follows for |ξ1| ≤ r1 that

| G(ξ1) |≤ (|a0|+ 2B)r1|ξ1|
r2

1

.
(|a0|+ 2B)r1|ξ1|+ r2

1|a0 − r1a1|
(|a0|+ 2B)r1+|a0 − r1a1||ξ1|

=
(|a0|+ 2B)|ξ1|{(|a0|+ 2B)|ξ1|+ r1|a0 − r1a1|}

(|a0|+ 2B)r1+|a0 − r1a1||ξ1|
.

Hence for |ξ1| < r1, we obtain from (5) that

|F (ξ1)| ≥|a0|r1 −
(|a0|+ 2B)|ξ1|{(|a0|+ 2B)|ξ1|+ r1|a0 − r1a1|}

(|a0|+ 2B)r1+|a0 − r1a1||ξ1|

=
|a0|(|a0|+ 2B)r2

1 − 2B|a0 − r1a1||ξ1| − (|a0|+ 2B)2|ξ1|2

(|a0|+ 2B)r1+|a0 − r1a1||ξ1|
.

Clearly the equation

g(t) ≡|a0|(|a0|+ 2B)r2
1 − 2B|a0 − r1a1|t− (|a0|+ 2B)2t2 = 0

has exactly one positive root.
Let the positive root of the equation be t1.
Since g(0) =|a0|(|a0|+ 2B)r2

1 > 0 , g(t) > 0 for t < t1 .
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Hence for |ξ1| < r1, |F (ξ1)| > 0, i.e. |f1(ξ1)| > 0 if |ξ1| < t1.
Similarly for |ξ2| < r2, |f2(ξ2)| > 0 if |ξ2| < t2 where t2 is the positive

root of the equation

|b0|(|b0|+ 2C)r2
2 − 2C|b0 − r2b1|t− (|b0|+ 2C)2t2 = 0

where

C =
∞∑
k=1

|bk|rk2 .

Therefore both f1(ξ1) and f2(ξ2) have no zeros respectively in

X ′1 = {ξ1 ∈ X1 :| ξ1 |< t1} ⊂ A1

and

X ′2 = {ξ2 ∈ X2 :| ξ2 |< t2} ⊂ A2.

Consequently by Lemma 3.5, f(z) has no zeros in

X ′1e1 +X ′2e2 = D(0; t1, t2).

Thus the theorem is established.
�

Remark 4.2. The following example with related figure ensures the
validity of Theorem 4.2.

Example 4.2. Let f(z) = −(1− j) + z + (2 + ji)z2.
Here,

α0 = −(1− j) = (−1− i)e1 + (−1 + i)e2 = a0e1 + b0e2,

α1 = 1 = 1e1 + 1e2 = a1e1 + b1e2,

α2 = (2 + ji) = (2− i.i)e1 + (2 + i.i)e2 = 3e1 + 1e2 = a2e1 + b2e2.

Now, f(z) can be written as
f(z) = (3ξ2

1 + ξ1 − 1− i)e1 + (ξ2
2 + ξ2 − 1 + i)e2

For r1 = r2 = 1, we get B = 4, C = 2.
Hence the equation

|a0|(|a0|+ 2B)r2
1 − 2B|a0 − r1a1|t− (|a0|+ 2B)2t2 = 0

becomes

√
2(
√

2 + 8)− 8
√

5t− (
√

2 + 8)2t2 = 0

and the positive root t1 ≈ 0.30.
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Again the equation

|b0|(|b0|+ 2C)r2
2 − 2C|b0 − r2b1|t− (|b0|+ 2C)2t2 = 0

reduces to

√
2(
√

2 + 4)− 4
√

5t− (
√

2 + 4)2t2 = 0

and the positive root t2 ≈ 0.38.
Hence by Theorem 4.2, f(z) has no zeros in D(0; .30, .38) within the

open discus D(0; 1, 1).

| ξ1 |= 1 | ξ2 |= 1

| ξ1 |< .30 | ξ2 |< .38

ξ1-plane ξ2-plane

Figure 2. Zero free region of f(z) = −(1 − j) + z +
(2 + ji)z2 in D(0; 1, 1)

Future prospect. In the line of the works as carried out in the pa-
per one may think of the extension of the results obtained dealing
with n-dimensional bicomplex numbers with the help of the idempo-

tents 0, 1,
1± i1i2

2
,
1± i2i3

2
, ...,

1± in−1in
2

in Cn. As a consequence,

the problem of taking the coeffiecients of the power series in Cn is
still virgin and may be considered as an open problem to the future
workers of this branch.
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