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Abstract.In this article we studied some growth properties of com-
posite entire functions with finite iterated logarithmic order. Also we
defined iterated logarithmic order of an entire function by using their
maximum term. Further, we proved some results on the growth of
composite entire functions of finite iterated logarithmic order in terms
of their maximum terms.

1. Introduction

For an entire function f(z) =
∑∞

n=0 anz
n the maximum modulus

of f(z) is defined by Mf (r) = max {|f(z)| : |z| ≤ r} for r > 0. It
follows immediately that Mf (r) is nondecreasing function of r. The
maximum term µf (r) of the function f(z) on |z| = r is defined as
µf (r) = max

n≥0
|an|rn.
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We recall the order ρ(f) and lower order λ(f) of an entire function
f(z) which are defined as

ρ(f) = lim sup
r→∞

log logMf (r)

log r

and

λ(f) = lim inf
r→∞

log logMf (r)

log r

respectively.
Also by Nevanlinna theory [4] , one get the order ρ(f) and lower

order λ(f) of f(z) as

ρ(f) = lim sup
r→∞

log Tf (r)

log r

λ(f) = lim inf
r→∞

log Tf (r)

log r

where Tf (r) is the Nevanlinna’s characteristic function.
Now it is already known [2] that for any two transcendental entire

functions f(z) and g(z),

lim
r→∞

log Tf◦g (r)

Tf (r)
=∞

and

lim
r→∞

log Tf◦g (r)

Tg(r)
=∞.

There are so many results that have been proved on the composition
of two entire functions with finite order ([2],[5],[6],[8],[9],[13]).

Definition 1. [1] Let S(r) (r > 0)be a nonnegative increasing function
of order zero is said to have finite logarithmic order ρlog if

ρlog = lim sup
r→∞

logS(r)

log log r
.

If f(z) is an entire series in the complex plane C then the logarithmic
order of log+Mf (r) is equal to the logarithmic order of f.

If f is a transcendental with finite logarithmic order ρlog then its
lower logarithmic order

λlog = lim inf
r→∞

log Tf (r)

log log r
.
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One can easily check that ρlog < λlog + 1 and there is a constant c
satisfying 0 ≤ c < ρlog − λlog.

In other words for a transcendental entire function f with order
zero we can define ρlog(f) and λlog(f) as follows:

(1) ρlog(f) = lim sup
r→∞

log logMf (r)

log log r
= lim sup

r→∞

log Tf (r)

log log r
,

(2) λlog(f) = lim inf
r→∞

log logMf (r)

log log r
= lim inf

r→∞

log Tf (r)

log log r
.

Definition 2. [10] For 0 ≤ r < R,

(3) µf (r) ≤Mf (r) ≤ R

R− r
µf (R) .

Using this result we get

(4) ρlog(f) = lim sup
r→∞

log log µf (r)

log log r

and

(5) λlog(f) = lim inf
r→∞

log log µf (r)

log log r
.

Definition 3. [12] The iterated p order ρp(f) of an entire function f
as

(6) ρp(f) = lim sup
r→∞

logp+1Mf (r)

log r
= lim sup

r→∞

logp Tf (r)

log r
(p ∈ N).

Similarly, the iterated p lower order λp(f) of an entire function f as

(7) λp(f) = lim inf
r→∞

logp+1Mf (r)

log r
= lim inf

r→∞

logp Tf (r)

log r
(p ∈ N).

Definition 4. [12] The finiteness degree of the order of an entire func-
tion f is defined by

i(f) =


0 when f is a polynomial,

min {q ∈ N : ρq(f) <∞} for f transcendental for which some
q ∈ N with ρq(f) <∞ exists.

∞ for f with ρp(f) =∞ for all p ∈ N.
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It is easily seen that i(f) and i(g) are positive integers.
We use the notations exp1 r = er, expi+1 r = exp (expi r) for 0 ≤ r <

∞ and i = 1, 2, ... . Also for sufficiently large r, we use the notations
log1 r = log r, logi+1 r = log (logi r) for i = 1, 2, ... .

In this paper we established some results of composite entire func-
tions on the basis of iterated logarithmic order.To prove these results
we use some known lemmas which are stated in the following section
.

2. Preliminary Lemmas

In this section we shall present first the following known lemmas.

Lemma 5. [11] If f(z) and g(z) are two entire functions with Mg(r) >
2+ε
ε
|g(0)| for any ε > 0, then

(8) Tf◦g(r) ≤ (1 + ε)Tf (Mg(r)) .

In particular if g(0) = 0, then for all r > 0

(9) Tf◦g(r) ≤ Tf (Mg(r)) .

Lemma 6. [11] Let λ (g) < ∞. Then for any ε > 0 and sufficiently
large r,

(10) Mf◦g
(
r1+ε

)
≥Mf (Mg(r)) .

Lemma 7. [2] If f(z) and g(z) are two entire functions with g(0) = 0,
then

(11) Mf◦g (r) ≥Mf (c (α)Mg (αr)) .

where α satisfy 0 < α < 1 and take c (α) = (1−α)2
4α

. Then for r > 0

Further if g(z) is any entire function then with α = 1
2
, for sufficiently

large values of r,

(12) Mf◦g (r) ≥Mf

(
1

8
Mg

(r
2

)
− |g(0)|

)
.

Also from the definition it follows immediately that

(13) Mf◦g (r) ≤Mf (Mg(r))

Lemma 8. [10] Let f(z) and g(z) be entire functions, then for α > 1,
and 0 < r < R,

µf◦g (r) ≤ α

α− 1
µf

(
αR

R− r
µg (r)

)
.
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In particular taking α = 2 and R = 2r,

(14) µf◦g (r) ≤ 2µf (4µg (2r))

Lemma 9. [10] Let f(z) and g(z) be entire functions with g(0) = 0.

Let α satisfy 0 < α < 1 and let c (α) = (1−α)2
4α

. Also let 0 < δ < 1 then

µf◦g (r) ≥ (1− δ)µf (c(α)µg (αδr)) .

And if g(z) is any entire function, then with α = δ = 1
2
, for sufficiently

large values of r,

(15) µf◦g (r) ≥ 1

2
µf

(
1

8
µg

(r
4

)
− |g(0)|

)
.

Lemma 10. [3] Suppose that f(z) and g(z) are entire functions of
finite iterated order. Then for all sufficiently large values of r and for
any ε > 0, we have

(16) logp+q+1Mf◦g
(
r1+ε

)
≥ logp φf (Mg(r)) logq+1Mg(r)

and

(17) logp+q+1Mf◦g (r) ≤ logp φf (Mg(r)) logq+1Mg(r)

where ϕ(r) = ϕf (r) is defined by

ϕf (r) =
logp+1Mf (r)

log log r
(r ≥ r0) .

3. Main Results

In this section we first introduce the following definitions.

Definition 11. The iterated logarithmic p order ρplog (f) of an entire
function f as follows

(18) ρplog (f) = lim sup
r→∞

logp+1Mf (r)

log log r
= lim sup

r→∞

logp Tf (r)

log log r
(p ∈ N)

and iterated logarithmic p lower order λplog (f) as

(19) λplog (f) = lim inf
r→∞

logp+1Mf (r)

log log r
= lim inf

r→∞

logp Tf (r)

log log r
(p ∈ N).

Theorem 12. For any two entire functions f(z) and g(z) of finite
iterated logarithmic order with i (f) = p, i (g) = q and if λplog (f) > 0,
then

ρp+q−1log (f ◦ g) = ρqlog (g) .
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Proof. By the definition of iterated logarithmic order we have,

ρplog (f) = lim sup
r→∞

logp Tf (r)

log log r
, ρqlog (g) = lim sup

r→∞

logq+1Mg(r)

log log r
.

Therefore for all sufficiently large r and for given any ε > 0 we get

logp Tf (r) ≤ log (log r)(ρ
p
log(f)+ε)

i.e,

Tf (r) ≤ expp−1

{
(log r)(ρ

p
log(f)+ε)

}
and

logq+1Mg(r) ≤ log (log r)(ρ
q
log(g)+ε)

i.e,

Mg(r) ≤ expq

{
(log r)(ρ

q
log(g)+ε)

}
.

Now by lemma 5 we get

Tf◦g(r) ≤ 2Tf (Mg(r))

≤ 2 expp−1

{
(logMg(r))

(ρplog(f)+ε)
}

≤ 2 expp−1

[{
expq−1

{
(log r)(ρ

q
log(g)+ε)

}}(ρplog(f)+ε)
]

≤ 2 expp

[(
ρplog (f) + ε

)
log
{

expq−1

{
(log r)(ρ

q
log(g)+ε)

}}]
≤ 2 expp

[
c expq−2

{
d (log r)(ρ

q
log(g)+ε)

}]
(20)

where we take c > ρplog (f) and d ≥ 1 are some constants not necessarily
same at each occurrence.

Therefore by (20) and from definition we get

(21) lim sup
r→∞

logp+q−1 Tf◦g(r)

log log r
≤ ρqlog (g) .

Next, since i (g) = q, we have

ρqlog (g) = lim sup
r→∞

logq+1Mg(r)

log log r
.

If ρqlog (g) > 0, there exist a sequence {rn} → ∞ such that for any

given ε ,where
(
0 < ε < ρqlog (g)

)
and for rn sufficiently large we have

(22) Mg(rn) ≥ expq

{
(log rn)(ρ

q
log(g)−ε)

}
.
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Since {rn} is a sequence tending to infinity, not necessarily same at
each occurence and λplog (f) > 0, therefore from Lemma 7 for suffi-
ciently large rn we have

Tf◦g(rn) ≥ 1

3
logMf

(
1

8
Mg

(rn
4

)
+O(1)

)
≥ 1

3
logMf

(
1

9
Mg

(rn
4

))
≥ 1

3
expp−1

[{
log

1

9
Mg

(rn
4

)}(λplog(f)−ε)
]

≥ 1

3
expp−1

[
c1 expq−1

{
c2 (log rn)(ρ

q
log(g)−ε)

}]
≥ 1

3
expp−1

[
c1 expq

{(
ρqlog (g)− ε

)
log {c2 (log rn)}

}]
(23)

where c1, c2 are positive constants.
Hence by (22) and (23) we get,

(24) lim sup
r→∞

logp+q−1 Tf◦g(rn)

log log rn
≥ ρqlog (g) .

Thus combining (21) and (24) we have

lim sup
r→∞

logp+q−1 Tf◦g(rn)

log log rn
= ρqlog (g) .

Therefore we have,

ρp+q−1log (f ◦ g) = ρqlog (g)

for ρqlog (g) > 0.

Next consider ρqlog (g) = 0.
Hence by definition

lim sup
r→∞

logqMg(r)

log log r
=∞.

So there exist a sequence {rn} → ∞ such that for any arbitrary A > 0

(25) lim sup
r→∞

logqMg(rn)

log log rn
≥ A⇒Mg(rn) ≥ expq−1 (log rn)A .
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Thus from (23) and (25) we have

lim sup
r→∞

logp+q−2 Tf◦g(rn)

log log rn
≥ A.

Since A is arbitrarily large, thus get

(26) lim sup
r→∞

logp+q−2 Tf◦g(rn)

log log rn
=∞.

Therefore by (21) and (26) we have

ρp+q−1log (f ◦ g) = ρqlog (g) = 0.

�

Corollary 13. For any two entire functions f(z) and g(z) with i (g) =
1, if i (f ◦ g) = p, then p− 1 ≤ i (f) ≤ p and ρplog (f) = 0.

Proof. Given i (f ◦ g) = p, which implies ρplog (f ◦ g) = α <∞.
Therefore for any sufficiently large r and given ε > 0, we have

(27) lim sup
r→∞

logp+1Mf◦g(r)

log log r
= α⇒Mf◦g(r) ≤ expp (log r)α+ε .

Again since i (g) = 1, then g(z) is transcendental and for any suffi-
ciently large r and m arbitrarily large we get

(28)
1

9
Mg(

r

2
) ≥ rm.

Now by Lemma 7 and from (28)

(29) Mf (rm) ≤Mf

(
1

9
Mg(

r

2
)

)
≤Mf◦g (r) ≤ expp (log r)α+ε ,

which implies from (29)
(30)

Mf (r) ≤ expp (log r)(
α
m
+ε) ⇒ logp+1Mf (r) ≤

( α
m

+ ε
)

log log r

i.e from(30)

ρplog (f) ≤ α

m
.

Since m is arbitrarily large, we get

ρplog (f) = 0.

�
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Theorem 14. Suppose f(z) and g(z) are two entire functions of finite
iterated logarithmic order with 0 < ρplog (f) < ∞ and 0 < λqlog (g) ≤
ρqlog (g) <∞,then

λqlog (g) ≤ ρp+q−1log (f ◦ g) ≤ ρqlog (g) .

Proof. It is given ρplog (f) > 0, thus there exists a sequence {Rn} →
∞ such that for any given ε ,where

(
0 < ε < ρplog (f)

)
and for Rn

sufficiently large, we have

(31) Mf (Rn) ≥ expp

{
(logRn)(ρ

p
log(f)−ε)

}
.

Now Mg(r) is an increasing, continuous function, there exists a se-
quence {rn} → ∞ satisfying Rn = 1

9
Mg(

rn
2

) for rn sufficiently large,
we have from Lemma 7

Mf◦g (rn) ≥ Mf

(
1

9
Mg(

rn
2

)

)
= Mf (Rn)

≥ expp

{
(logRn)(ρ

p
log(f)−ε)

}
≥ expp+1 {c log logRn}

i.e;

Mf◦g (rn) ≥ expp+1

{
c log log

1

9
Mg(

rn
2

)

}
≥ expp+1

{
c expq−2

{
d (log rn)(λ

q
log(g)−ε)

}}
,(32)

where c, d are positive constants.
Therefore we have

(33) lim sup
r→∞

logp+qMf◦g(r)

log log r
≥ λqlog (g)⇒ ρp+q−1log (f ◦ g) ≥ λqlog (g) .

or the second part of the inequality,

Mf◦g (r) ≤Mf (Mg(r)) ≤ expp (logMg(r))
(ρplog(f)+ε) ≤ expp+1 {c1 log logMg(r)}

i.e;

Mf◦g (r) ≤ expp+1

{
c1 expq−2 (log r)(ρ

q
log(g)+ε)

}
≤ expp+1

{
c1 expq−1

((
ρqlog (g) + ε

)
log log r

)}
(34)

where we take c1 > ρplog (f) .
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From (34) we thus have

(35) ρp+q−1log (f ◦ g) ≤ ρqlog (g) .

Therefore combining (33) and (35) we get,

λqlog (g) ≤ ρp+q−1log (f ◦ g) ≤ ρqlog (g) .

�

Theorem 15. Let f(z) and g(z) be two entire functions of finite loga-
rithmic order with the condition that g(0) = 0 and ρlog (g) < λlog (f) <
ρlog (f) ,then

lim
r→∞

log Tf◦g (r)

Tf (r)
= 0.

Proof. By definition there exists a sequence {rn} → ∞ such that for
any given ε (> 0) and for rn sufficiently large, we have

λlog (f) = lim inf
r→∞

log Tf (rn)

log log rn
⇒ Tf (rn) ≥ (log rn)(λlog(f)−ε)

and

ρlog (f) = lim sup
r→∞

log Tf (rn)

log log rn
⇒ Tf (rn) ≤ (log rn)(ρlog(f)+ε) .

Also,
(36)

ρlog (g) = lim sup
r→∞

log logMg (rn)

log log rn
⇒ log logMg (rn) ≤ (ρlog (g) + ε) log log rn.

Combining the above two,

(log rn)(λlog(f)−ε) ≤ Tf (rn) ≤ (log rn)(ρlog(f)+ε) .

Now,

Tf◦g (rn) ≤ Tf (Mg (rn)) ≤ {logMg (rn)}(ρlog(f)+ε) ≤ exp {c log logMg (rn)}

which implies by(36)

Tf◦g (rn) ≤ exp {c (ρlog (g) + ε) log log rn} ,
where we take c > ρlog (f) .

Therefore

log Tf◦g (rn)

Tf (rn)
≤ {c (ρlog (g) + ε) log log rn}

(log rn)(λlog(f)−ε)
.
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Since λlog (f) > ρlog (g) , then for any given ε > 0 we have λlog (f)−ε >
ρlog (g) + ε.

Hence for sufficiently large rn ,we have

lim
r→∞

log Tf◦g (r)

Tf (r)
= 0.

This completes the proof. �

We prove following theorems which improves the above one on com-
posite entire functions with finite iterated logarithmic order.

Theorem 16. Let f(z) and g(z) be two entire functions of iterated
logarithmic order with the condition that i(f) = p, i(g) = q and
ρqlog (g) < λplog (f) < ρplog (f) , then

lim
r→∞

logq Tf◦g (r)

Tf (r)
= 0, lim

r→∞

logq+1Mf◦g (r)

logMf (r)
= 0.

Proof. For sufficiently large values of r and given any ε > 0, we have

λplog (f) = lim inf
r→∞

logp Tf (r)

log log r
⇒ logp Tf (r) ≥

(
λplog (f)− ε

)
log log r

i.e;

(37) Tf (r) ≥ expp−1 (log r)(λ
p
log(f)−ε) .

and

(38) ρplog (f) = lim sup
r→∞

logp Tf (r)

log log r
⇒ Tf (r) ≤ expp−1 (log r)(ρ

p
log(f)+ε) .

Combining (37) and (38) we have

(39) expp−1 (log r)(λ
p
log(f)−ε) ≤ Tf (r) ≤ expp−1 (log r)(ρ

p
log(f)+ε) .

Again
(40)

ρqlog (g) = lim sup
r→∞

logq+1Mg (r)

log log r
⇒Mg (r) ≤ expq (log r)(ρ

q
log(g)+ε) .

Now from Lemma 5 and using (39) and (40) we get

Tf◦g (r) ≤ Tf (Mg (r)) ≤ expp−1 {logMg (r)}(ρ
p
log(f)+ε)

≤ expp
{(
ρplog (f) + ε

)
log logMg (r)

}



96 C. GHOSH, S. K. DATTA, S. MONDAL, S. KHAN

i.e;

Tf◦g (r) ≤ expp

{
c expq−2 (log r)(ρ

q
log(g)+ε)

}
⇒ logq Tf◦g (r) ≤ expp−q

{
c expq−2 (log r)(ρ

q
log(g)+ε)

}
,(41)

where c > ρplog (f) .
Hence for sufficiently large values of r and for given any

ε
(
0 < ε < µplog (f)− ρqlog (g)

)
, we have

logq Tf◦g (r)

Tf (r)
≤

expp−q

{
c expq−2 (log r)(ρ

q
log(g)+ε)

}
expp−1 (log r)(λ

p
log(f)−ε)

→ 0.

In a similar way for sufficiently large values of r and for given any
ε > 0, we have

(42) expp−1 (log r)(λ
p
log(f)−ε) ≤ logMf (r) ≤ expp−1 (log r)(ρ

p
log(f)+ε)

and

Mg (r) ≤ expq (log r)(ρ
q
log(g)+ε) .

Now from Lemma 7 and using (42) we get

Mf◦g (r) ≤ Mf (Mg (r)) ≤ expp {logMg (r)}(ρ
p
log(f)+ε)

≤ expp+1 {c1 log logMg (r)}
i.e;

Mf◦g (r) ≤ expp+1

{
c1 expq−2 (log r)(ρ

q
log(g)+ε)

}
where c1 > ρplog (f) .

Therefore

logq+1Mf◦g (r)

logMf (r)
≤

expp−q

{
c1 expq−2 (log r)(ρ

q
log(g)+ε)

}
expp−1 (log r)(λ

p
log(f)−ε)

→ 0.

Hence the theorem is proved. �

Theorem 17. Let f(z) and g(z) be two entire functions of finite it-
erated logarithmic order with the condition that i(f) = p, i(g) = q and
ρqlog (g) < ρplog (f) , then

lim inf
r→∞

logq Tf◦g (r)

Tf (r)
= 0, lim inf

r→∞

logq+1Mf◦g (r)

logMf (r)
= 0.
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Proof. From definition we have a sequence {rn} → ∞ such that for
any given ε (> 0) and for rn sufficiently large,

Tf (rn) ≥ expp−1

{
(log rn)(ρ

p
log(f)−ε)

}
.

In the same line of the previous theorem we can easily obtain this
result. �

The following result can also be deduced as above.

Theorem 18. Let f(z) and g(z) be two entire functions of finite it-
erated logarithmic order with the condition that i(f) = p, i(g) = q and
λqlog (g) < λplog (f) ≤ ρplog (f) , then

lim inf
r→∞

logq Tf◦g (r)

Tf (r)
= 0, lim inf

r→∞

logq+1Mf◦g (r)

logMf (r)
= 0.

Theorem 19. Let f(z), g(z) be transcendental entire functions of
finite logarithmic order. Let g(0) = 0 and let λlog(g) > 0. Then

lim sup
r→∞

log Tf◦g(r)

log Tg(r)
≤ ρlog(g)

λlog(g)
.

Proof. From definition (1) and (2) we get,

Tf (r) < (log r)ρlog(f)+ε , for all r ≥ r0,

Tf (r) > (log r)λlog(f)−ε , for all r ≥ r0.

Now by Theorem12,

lim sup
r→∞

log Tf◦g(r)

log log r
= ρlog(g).

Thus for sufficiently large r and for ε > 0,we obtain,

(43) log Tf◦g(r) ≤ (ρlog(g) + ε) log log r.

Again for large r,

log Tg(r) > (λlog(g)− ε) log log r.

Since ε > 0 is arbitrary hence we have,

lim sup
r→∞

log Tf◦g(r)

log Tg(r)
≤ ρlog(g)

λlog(g)
.

�
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Theorem 20. Let f(z) and g(z) be entire functions such that 0 <
λlog(f) ≤ ρlog(f) <∞ and 0 < λlog(g) ≤ ρlog(g) <∞, then

λlog(g)

ρlog(f)
≤ lim inf

r→∞

log Tf◦g(r)

log Tf (r)
≤ lim sup

r→∞

log Tf◦g(r)

log Tf (r)
≤ ρlog(g)

λlog(f)
.

Proof. From Lemma 7,

Tf◦g(r) ≥
1

3
logMf

(
1

9
Mg

(r
4

))
≥ 1

3

(
log

(
1

9
Mg

(r
4

)))λlog(f)−ε
≥ 1

3
exp

{
(λlog(f)− ε) log log

(
1

9
Mg

(r
4

))}
≥ 1

3
exp

{
c1 log log

(
1

9
Mg

(r
4

))}
≥ 1

3
exp

[
c1 log

{
d1

(
(log r)λlog(g)−ε

)}]
i.e;

log Tf◦g(r) ≥ c1 log
{
d1

(
(log r)λlog(g)−ε

)}
+O(1)

≥ c1 (λlog(g)− ε) log log r +O(1)

where c1, d1 are positive constants.
Also

log Tf (r) ≤ (ρlog(f) + ε) log log r.

Hence we have,

(44) lim inf
r→∞

log Tf◦g(r)

log Tf (r)
≥ λlog(g)− ε
ρlog(f) + ε

.

Again from (43) and

log Tf (r) ≥ (λlog(f)− ε) log log r

we have

lim sup
r→∞

log Tf◦g(r)

log Tf (r)
≤ lim sup

r→∞

(ρlog(g) + ε) log log r

(λlog(f)− ε) log log r

=
ρlog(g) + ε

λlog(f)− ε
.(45)
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Since 0 < λlog(f) ≤ ρlog(f) < ∞ and 0 < λlog(g) ≤ ρlog(g) < ∞,
combining(44) and (45) we have

λlog(g)

ρlog(f)
≤ lim inf

r→∞

log Tf◦g(r)

log Tf (r)
≤ lim sup

r→∞

log Tf◦g(r)

log Tf (r)
≤ ρlog(g)

λlog(f)
.

�

Theorem 21. Let f(z) and g(z) be entire functions of finite iterated
logarithmic order such that 0 < λplog(f) ≤ ρplog(f) < ∞, 0 < λqlog(g) ≤
ρqlog(g) <∞, then

λqlog(g)

ρplog(f)
≤ lim inf

r→∞

logp+q−1 Tf◦g(r)

logp Tf (r)
≤ min

{
λqlog(g)

λplog(f)
,
ρqlog(g)

ρplog(f)

}

≤ max

{
λqlog(g)

λplog(f)
,
ρqlog(g)

ρplog(f)

}
≤ lim sup

r→∞

logp+q−1 Tf◦g(r)

logp Tf (r)
≤
ρqlog(g)

λplog(f)
.

Proof. For given any ε > 0 and for sufficiently large r, we have from
the definition

(46)
(
λplog(f)− ε

)
log log r ≤ logp Tf (r) ≤

(
ρplog(f) + ε

)
log log r.

Again from (21) and (23) we get
(47)(

λqlog(g)− ε
)

log log r ≤ logp+q−1 Tf◦g(r) ≤
(
ρqlog(g) + ε

)
log log r.

By (46) and (47) we get for sufficiently large r.
(48)
ρqlog(g) + ε

λplog(f)− ε
≥

logp+q−1 Tf◦g(r)

logp Tf (r)
=

logp+q−1 Tf◦g(r)

log log r
.

log log r

logp Tf (r)
≥
λqlog(g)− ε
ρplog(f) + ε

.

As ε > 0 is arbitrary, we get from(48)

lim sup
r→∞

logp+q−1 Tf◦g(r)

logp Tf (r)
≥

λqlog(g)

ρplog(f)
,(49)

lim sup
r→∞

logp+q−1 Tf◦g(r)

logp Tf (r)
≤

ρqlog(g)

λplog(f)
.(50)

Now for sufficiently large rn and Rm, there exist two sequences {rn}
and {Rm} tending to infinity, then we have

(51)
logp Tf (rn) ≥

(
ρplog(f)− ε

)
log log rn,

logp Tf (Rm) ≤
(
λplog(f) + ε

)
log logRm.

}



100 C. GHOSH, S. K. DATTA, S. MONDAL, S. KHAN

Similarly in (23) and (20) , there exist two sequences {r′n} and {R′m}
tending to infinity for sufficiently large r′n and R′m, we obtain

(52)
logp+q−1 Tf◦g(r

′
n) ≥

(
ρqlog(g)− ε

)
log log r′n,

logp+q−1 Tf◦g(R
′
m) ≤

(
λqlog(g) + ε

)
log logR′m.

}
From (46), (50) and (51) , (52) we have

lim inf
r→∞

logp+q−1 Tf◦g(r)

logp Tf (r)
≤ min

{
λqlog(g)

λplog(f)
,
ρqlog(g)

ρplog(f)

}

≤ max

{
λqlog(g)

λplog(f)
,
ρqlog(g)

ρplog(f)

}

≤ lim sup
r→∞

logp+q−1 Tf◦g(r)

logp Tf (r)
.

Hence proves the theorem. �

Corollary 22. Let f(z), g(z) satisfy Theorem 21, then

λqlog(g)

ρplog(f)
≤ lim inf

r→∞

logp+q−1 Tf◦g(r)

logp Tf (k)(r)
≤ min

{
λqlog(g)

λplog(f)
,
ρqlog(g)

ρplog(f)

}

≤ max

{
λqlog(g)

λplog(f)
,
ρqlog(g)

ρplog(f)

}

≤ lim sup
r→∞

logp+q−1 Tf◦g(r)

logp Tf (k)(r)
≤
ρqlog(g)

λplog(f)

for k = 1, 2, ... .

Remark 23. One can get the same result by replacing
logMf◦g(r), logMf (r) by Tf◦g(r), Tf (r) respectively in Theorem
21 and Corollary 22.

Theorem 24. Let f(z) and g(z) be entire functions of finite iterated
logarithmic order such that 0 < λplog(f) ≤ ρplog(f) < ∞, 0 < λqlog(g) ≤
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ρqlog(g) <∞, then

λqlog(g)

ρqlog(g)
≤ lim inf

r→∞

logp+q−1 Tf◦g(r)

logq Tg(r)
≤ 1

≤ lim sup
r→∞

logp+q−1 Tf◦g(r)

logq Tg(r)
≤
ρqlog(g)

λqlog(g)
,

λqlog(g)

ρqlog(g)
≤ lim inf

r→∞

logp+qMf◦g(r)

logq+1Mg(r)
≤ 1

≤ lim sup
r→∞

logp+qMf◦g(r)

logq+1Mg(r)
≤
ρqlog(g)

λqlog(g)
.

Proof. For sufficiently large r and for given ε > 0, we have

(53) logq Tg(r) ≤
(
ρqlog(g) + ε

)
log log r.

For sufficiently large r, we have from (23)

Tf◦g(r) ≥
1

3
logMf

(
1

9
Mg

(r
4

))
≥ 1

3
expp−1

[{
log

1

9
Mg

(r
4

)}(λplog(f)−ε)
]

≥ 1

3
expp−1

[
c1 expq−1

{
c2 (log r)(λ

q
log(g)−ε)

}]
≥ 1

3
expp−1

[
c1 expq

{(
λqlog (g)− ε

)
log {c2 (log r)}

}]
(54)

where c1, c2 are positive constants.
From (53) and (54) we have

logp+q−1 Tf◦g(r)

logq Tg(r)
=

logp+q−1 Tf◦g(r)

log log r
.

log log r

logq Tg(r)
≥
λqlog (g)− ε
ρqlog(g) + ε

.

Since ε > 0 is arbitrary, then we get

(55) lim inf
r→∞

logp+q−1 Tf◦g(r)

logq Tg(r)
≥
λqlog (g)

ρqlog(g)
.

Again by definition, there exists a sequence rn tending to infinity such
that for sufficiently large rn,

(56) logq Tg(rn) ≥
(
ρqlog(g)− ε

)
log log rn.
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From Theorem 12 and also for any ε > 0 and for sufficiently large r,
we have

logp+q−1 Tf◦g(r) ≤
(
ρqlog(g) + ε

)
log log r,(57)

logq Tg(r) ≤
(
ρqlog(g) + ε

)
log log r,(58)

logq Tg(r) ≥
(
λqlog(g)− ε

)
log log r.(59)

From (56) and (57) we have,

(60) lim inf
r→∞

logp+q−1 Tf◦g(r)

logq Tg(r)
≤ 1.

From (57) and (59) we have,

(61) lim sup
r→∞

logp+q−1 Tf◦g(r)

logq Tg(r)
≤
ρqlog(g)

λqlog(g)
.

Similarly from (54), for suffuciently large rm, there exists a sequence
{rm} tending to infinity then we get

Tf◦g(rm) ≥ 1

3
expp−1

[{
log

1

9
Mg

(rm
4

)}(λplog(f)−ε)
]

≥ 1

3
expp−1

[
c1 expq

{(
ρqlog (g)− ε

)
log {c2 (log rm)}

}]
.(62)

Thus from (58) and (62) we have,

(63) lim sup
r→∞

logp+q−1 Tf◦g(r)

logq Tg(r)
≥ 1.

Hence from (55) , (60) , (61) and (63) , we get the proof of the theorem.
In similar way we have

λqlog(g)

ρqlog(g)
≤ lim inf

r→∞

logp+qMf◦g(r)

logq+1Mg(r)
≤ 1 ≤ lim sup

r→∞

logp+qMf◦g(r)

logq+1Mg(r)
≤
ρqlog(g)

λqlog(g)
.

�

Corollary 25. Let f(z), g(z) satisfy Theorem 24 and if λqlog(g) =

ρqlog(g), then

lim
r→∞

logp+q−1 Tf◦g(r)

logq Tg(r)
= lim

r→∞

logp+qMf◦g(r)

logq+1Mg(r)
= 1.
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Corollary 26. Let f(z), g(z) satisfy Theorem 24 then

λqlog(g)

ρqlog(g)
≤ lim inf

r→∞

logp+q−1 Tf◦g(r)

logq Tg(k)(r)
≤ 1 ≤ lim sup

r→∞

logp+q−1 Tf◦g(r)

logq Tg(k)(r)
≤
ρqlog(g)

λqlog(g)
,

λqlog(g)

ρqlog(g)
≤ lim inf

r→∞

logp+qMf◦g(r)

logq+1Mg(k)(r)
≤ 1 ≤ lim sup

r→∞

logp+qMf◦g(r)

logq+1Mg(k)(r)
≤
ρqlog(g)

λqlog(g)

for k = 1, 2, ...

Theorem 27. If ρplog (f) = 0 and 0 < ρqlog (g) <∞, then

ρp+qlog (f ◦ g) =∞

provided
(a) λqlog (g) > 0 and lim sup

r→∞
logp ϕ(r) =∞ or

(b) λqlog (g) = 0 and lim sup
r→∞

logp ϕ(r) =∞,

where ϕ(r) = ϕf (r) is defined by ϕf (r) =
logp+1Mf (r)

log log r
(r ≥ r0) .

Proof. For any ε > 0, we have from Lemma 10

logp+q+1Mf◦g(r
1+ε) ≥ logp ϕ (Mg(r)) logq+1Mg(r).

Hence,

ρp+qlog (f ◦ g) = lim sup
r→∞

logp+q+1Mf◦g(r
1+ε)

log log r1+ε
≥ lim sup

r→∞

logp ϕ (Mg(r)) logq+1Mg(r)

log log r1+ε
.

Again if g(z) has positive iterated lower logarithmic order λqlog (g) ,
then

lim inf
r→∞

logq+1Mg(r)

log log r
= λqlog (g) .

This implies

logq+1Mg(r) >
(
λqlog (g)− ε

)
log log r

for all sufficiently large values of r.Thus

ρp+qlog (f ◦ g) ≥ lim sup
r→∞

logp ϕ (Mg(r)) logq+1Mg(r)

log log r1+ε

≥ lim sup
r→∞

logp ϕ (Mg(r)) log (log r)(λ
q
log(g)−ε)

log log r1+ε
.
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Now for ε > 0,

log (log r)(λ
q
log(g)−ε) > log log r1+ε.

Therefore as r →∞,

log (log r)(λ
q
log(g)−ε)

log log r1+ε
→∞

and ϕ (Mg (r)) is increasing, continuous and unbounded in r, which
implies

ρp+qlog (f ◦ g) =∞.
Next if g(z) is of finite positive iterated logarithmic order ρqlog (g) and

of zero lower iterated logarithmic order λqlog (g) and if lim
r→∞

logp ϕ(r) =

∞, then for any ε′ > 0 we have

ρp+qlog (f ◦ g) = lim sup
r→∞

logp+q+1Mf◦g(r
1+ε′)

log log r1+ε′

≥ lim sup
r→∞

logp ϕ (Mg(r)) logq+1Mg(r)

log log r1+ε′

≥ lim sup
r→∞

logp ϕ (Mg(r)) . lim sup
r→∞

logq+1Mg(r)

log log r1+ε′

≥ lim sup
r→∞

logp ϕ (Mg(r)) .ρ
q
log (g) , [since, ε′ > 0]

= ∞.
This proves the theorem. �

Theorem 28. Suppose that ρqlog (g) > 0, ρplog (f) = 0. Let
lim sup
r→∞

logp ϕ(r) = τ. If τ is finite, then

ρp+qlog (f ◦ g) ≤ τρqlog (g) .

Furthermore, if lim
r→∞

logp ϕ(r) = τ then the above inequality becomes

an equality.

Proof. Since, lim sup
r→∞

logp ϕ(r) = τ, then for any ε > 0, we have

logp ϕ(r) < τ + ε.

Also if g(z) is of iterated logarithmic order ρqlog (g) , then for all
sufficiently large r,

logq+1Mg(r) <
(
ρqlog (g) + ε

)
log log r.
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Hence

ρp+qlog (f ◦ g) = lim sup
r→∞

logp+q+1Mf◦g(r)

log log r

≤ lim sup
r→∞

logp ϕ (Mg(r)) logq+1Mg(r)

log log r

≤ lim sup
r→∞

(τ + ε)
(
ρqlog (g) + ε

)
log log r

log log r

= (τ + ε)
(
ρqlog (g) + ε

)
.

Since, ε > 0 is arbitrary, thus

ρp+qlog (f ◦ g) ≤ τρqlog (g) .

Similarly, equality part follows.
Hence the theorem is proved. �

Theorem 29. If f and g are transcendental entire functions of iter-
ated logarithmic order with (i) λqlog (g) =∞ or (ii) λplog (f) > 0 then

λp+qlog (f ◦ g) =∞.

Proof. (i) Let λqlog (g) =∞.
From Lemma 7

logp+qMf◦g (r) ≥ logp+qMf

(
1

8
Mg

(r
2

)
− |g (0)|

)
≥

logp+qMf

(
1
8
Mg

(
r
2

)
− |g (0)|

)
logq

(
1
8
Mg

(
r
2

)
| − |g (0)|

) . logq

(
1

8
Mg

(r
2

)
− |g (0)|

)
≥

logp+qMf (r)

logq (r)
.
(

logqMg

(r
2

)
+O(1)

)
.

Since
logp+qMf (r)

logq(r)
is an increasing function of r for large r and

1
8
Mg

(
r
2

)
− |g (0)| > r , we get

logp+qMf◦g (r) ≥ logqMg

(r
2

)
for large r.

Hence

logp+q+1Mf◦g(r) ≥ logq+1Mg

(r
2

)
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i.e.,

logp+q+1Mf◦g(r)

log log r
≥

logq+1Mg

(
r
2

)
log log r

i.e.,

λp+qlog (f ◦ g) ≥ λqlog (g) =∞.
Hence first part of theorem is proved.

(ii) If λplog (f) > 0 and also let λqlog (g) < ∞.Then by Lemma 6, for
any ε > 0,we have

λp+qlog (f ◦ g) = lim inf
r→∞

logp+q+1Mf◦g(r
1+ε)

log log r1+ε

≥ lim inf
r→∞

[
logp+q+1Mf (Mg(r))

logq+1Mg (r)
×

logq+1Mg (r)

log log r1+ε

]
≥ lim inf

r→∞

[
logp+q+1Mf (Mg(r))

logq+1Mg (r)
×

logq+1Mg (r)

log log r

]
,

since ε > 0. Since, g(z) is transcendental, for arbitrarily large K > 0
we have,

logq+1Mg (r)

log log r
> K (r ≥ r0) .

As Mg (r) is increasing,continuous and unbounded in r, thus we
obtain

λp+qlog (f ◦ g) ≥ λplog (f)K.

Since λplog (f) > 0,

λp+qlog (f ◦ g) =∞.
Hence the theorem follows. �

Theorem 30. If f and g are transcendental entire functions of iter-
ated logarithmic order with λqlog (g) < ∞ and lim sup

r→∞
logp φ (r) = τ <

∞, then

(64) λp+qlog (f ◦ g) ≤ τ.λqlog (g) ≤ ρp+qlog (f ◦ g) .

Furthermore, in the above result the first inequaity becomes equality
if

lim
r→∞

logp φ (r) = τ <∞.
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Proof. We have from maximum modulus principle

Mf◦g(r) ≤Mf (Mg (r))

Hence

λp+qlog (f ◦ g) = lim inf
r→∞

logp+q+1Mf◦g (r)

log log r

≤ lim inf
r→∞

logp+q+1Mf (Mg (r))

log log r

≤ lim sup
r→∞

logp+q+1Mf (Mg (r))

logq+1Mg(r)
. lim inf
r→∞

logq+1Mg(r)

log log r

= τ.λqlog (g)

which proves the first inequality of (64) .
Again by Lemma 6, we have

ρp+qlog (f ◦ g) = lim sup
r→∞

logp+q+1Mf◦g (r1+ε)

log log r1+ε

≥ lim sup
r→∞

[
logp+q+1Mf (Mg (r))

logq+1Mg(r)
.
logq+1Mg(r)

log log r1+ε

]
≥ lim sup

r→∞

[
logp+q+1Mf (Mg (r))

logq+1Mg(r)
.
logq+1Mg(r)

log log r

]
since ε > 0,

≥ lim sup
r→∞

logp+q+1Mf (Mg (r))

logq+1Mg(r)
. lim inf
r→∞

logq+1Mg(r)

log log r

= τ.λqlog (g) .

Thus we get

τ.λqlog (g) ≤ ρp+qlog (f ◦ g) .

This proves the second inequality of (64).
Finally, if the limit

lim
r→∞

logp φ (r) = τ
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exists, then we have

λp+qlog (f ◦ g) ≥ lim inf
r→∞

[
logp+q+1Mf (Mg (r))

logq+1Mg(r)
.
logq+1Mg(r)

log log r1+ε

]
≥ lim inf

r→∞

[
logp+q+1Mf (Mg (r))

logq+1Mg(r)
.
logq+1Mg(r)

log log r

]
(since ε > 0)

= τλqlog (g)

which gives

λp+qlog (f ◦ g) = τλqlog (g) .

Hence the theorem is proved. �

Remark 31. If λqlog (g) = ∞, then by Theorem 29, ρp+qlog (f ◦ g) =

λp+qlog (f ◦ g) = ∞, and the inequalities in (64) become trivial. If

λqlog (g) > 0 and τ = ∞, then by Theorem 27, ρp+qlog (f ◦ g) = ∞.
Hence the inequality is trivially true.

Theorem 32. Suppose that λplog (f) = λqlog (g) = 0 and that

lim inf
r→∞

logq+1Mg(r)

(log r)α
= a > 0, lim inf

r→∞

logp φf (r)

(logq+1 r)
β = b > 0 for any positive

numbers α and β with α < 1 and α (β + 1) > 1. Then

λp+qlog (f ◦ g) =∞.

Proof. It is given that,

lim inf
r→∞

logq+1Mg (r)

(log r)α
= a⇒

logq+1Mg (r)

(log r)α
≥ a− ε for some ε > 0,

⇒ logq+1Mg (r) ≥ (a− ε) (log r)α

and

lim inf
r→∞

logp ϕ(r)(
logq+1 r

)β = b⇒ logp ϕ(r) ≥ (b− ε)
(
logq+1 r

)β
for some ε > 0,

⇒ logp ϕ(Mg (r)) ≥
(
logq+1Mg (r)

)β
(b− ε)

⇒ logp ϕ(Mg (r)) ≥ (a− ε)β (log r)αβ (b− ε) .
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Then we have for 0 < ε < min (a, b) ,

λp+qlog (f ◦ g) ≥ lim inf
r→∞

[
logp+q+1Mf◦g (r1+ε)

log log r1+ε

]
≥ lim inf

r→∞

[
logp+q+1Mf (Mg (r))

logq+1Mg(r)
.
logq+1Mg(r)

log log r1+ε

]
≥ lim inf

r→∞

[
logp ϕ(Mg (r)).

logq+1Mg(r
1+ε)

log log r1+ε

]
≥ lim inf

r→∞

[
logp ϕ(Mg (r)).

logq+1Mg(r)

log log r1+ε

]
(since, ε > 0)

≥ lim inf
r→∞

[
(b− ε) (a− ε)β (log r)αβ

]
. [(a− ε) (log r)α]

log log r1+ε
.

Taking log r = x, (b− ε) (a− ε)β = c and (a− ε) = c1, we deduce

λp+qlog (f ◦ g) ≥ lim inf
r→∞

(
cxαβ

)
. (c1x

α)

log log r1+ε

≥ lim inf
r→∞

(
cxαβ

)
. (c1x

α)

log log r

≥ lim inf
r→∞

(
cxαβ

)
. (c1x

α)

log x
(since, log r = x, log log r = log x)

= ∞. (since α < 1 and α (β + 1) > 1)

This completes the proof. �

Theorem 33. Suppse that λplog (f) = λqlog (g) = 0 and that

lim inf
r→∞

logq+k+2Mg(r)

[logk(r)]
α = a > 0, lim inf

r→∞

logp+k−1(φ(r))

[logq+k+2(r)]
β = b > 0 for any

positive integer k ≥ s + 1 and any positive numbers α and β with
max (α, αβ) > 1. Then λp+qlog (f ◦ g) =∞.

Proof. It is given that,

lim inf
r→∞

logq+k+2Mg(r)

[logk(r)]
α = a

⇒ logq+k+2Mg(r) ≥ (a− ε) [logk(r)]
α for some ε > 0,

⇒ logq+1Mg (r) ≥ expk−1 [(a− ε) (logk(r))
α]
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and

lim inf
r→∞

logp+k−1 (φ (r))[
logq+k+2 (r)

]β = b

⇒ logp+k−1 (φ (r)) ≥ (b− ε)
[
logq+k+2 (r)

]β
⇒ logp+k−1 (φ (Mg (r))) ≥ (b− ε) [(a− ε) (logk(r))

α]
β

⇒ logp ϕ(Mg (r)) ≥ expk−1

[
(b− ε) (a− ε)β (logk(r))

αβ
]
.

For 0 < ε < min (a, b)

λp+qlog (f ◦ g) ≥ lim inf
r→∞

[
logp+q+1Mf◦g (r1+ε)

log log r1+ε

]
≥ lim inf

r→∞

[
logp+q+1Mf (Mg (r))

logq+1Mg(r)
.
logq+1Mg(r)

log log r1+ε

]
i.e,

lim inf
r→∞

logp+q+1Mf◦g (r1+ε)

log log r1+ε
≥ lim inf

r→∞

[
logp φf (Mg (r))

logq+1Mg(r)

log log r1+ε

]

≥ lim inf
r→∞

expk−1

[
(b− ε) (a− ε)β (logk(r))

αβ
]
expk−1 [(a− ε) (logk(r))

α]

log log r1+ε

. ≥ lim inf
r→∞

expk−1

[
(b− ε) (a− ε)β (logk(r))

αβ
]
expk−1 [(a− ε) (logk(r))

α]

log log r

Putting logk(r) = x, (b− ε) (a− ε)β = d1 and (a− ε) = d2, thus
we have

λp+qlog (f ◦ g) ≥ lim inf
r→∞

expk−1
(
d1x

αβ
)
. logk (d2x

α)

expk−2(x)
=∞.

Since max (α, αβ) > 1. This completes the proof. �

Theorem 34. Suppose for any two transcendental entire function with
λplog (f) = λqlog (g) = 0 and that one of the following conditions (I) and
(II) is satisfied:

(I) lim inf
r→∞

logq+1Mg(r)

(log r)α1
= A1 < ∞, lim sup

r→∞

logp φ(r)

(logq+1 r)
β1

= B1 < ∞ for

any positive numbers α1 and β1 with α1 (β1 + 1) > 1;
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(II) lim inf
r→∞

logq+1Mg(r)

(log log r)α2
= A2 < ∞, lim sup

r→∞

logp+1 φ(r)

(logq+1 r)
β2

= B2 < ∞ for

any positive numbers α2 and β2 with α2β2 > 1.
Then

λp+qlog (f ◦ g) =∞.

Proof. Suppose first that condition (I) hold, then

lim inf
r→∞

logq+1Mg (r)

(log r)α1
= A1 ⇒ logq+1Mg (r) ≥ 1

2
A1 (log r)α1

for some ε > 0, for all sufficiently large values of r and also there exists
a sequence {rn} such that rn →∞ as n→∞ and such that

lim sup
r→∞

logp ϕ(r)(
logq+1 r

)β1 = B1 ⇒ logp ϕ(Mg (rn)) ≥ 1

2
B1

(
logq+1Mg (rn)

)β1 .
since Mg (rn) is continuous, increasing and unbounded of r.

Therefore, for any ε > 0 ,

λp+qlog (f ◦ g) = lim inf
r→∞

logp+q+1Mf◦g(r
1+ε)

log log r1+ε

≥ lim inf
r→∞

[
logp φ (Mg (r))

logq+1Mg(r)

log log r1+ε

]
≥

1
2
B1.
(
logq+1Mg (rn)

)β1 logq+1Mg (rn)

log log r1+ε

≥
1
2
B1.
{

1
2
A1 (log rn)α1

}β1+1

log log r1+ε

≥
(
1
2

)β1+2
B1 (A1)

β1+1 (log rn)α1(β1+1)

log log r1+ε
=∞,

since α1 (β1 + 1) > 1 by our hypothesis.
Next suppose that condition (II) hold, then for any sufficiently

small ε > 0,

lim inf
r→∞

logq+1Mg (r)

(log log r)α2
= A2 ⇒ logq+1Mg (r) > (A2 − ε) (log log r)α2

for all sufficiently large values of r and also there exists a sequence
{rn} such that rn →∞ as n→∞ and such that
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lim sup
r→∞

logp+1 ϕ(r)

(logq+1 r)
β2

= B2 ⇒

logp+1 ϕ(Mg (rn)) > (B2 − ε)
(
logq+1Mg (rn)

)β2 ⇒
logp φ (Mg (r)) > exp

{
(B2 − ε)

(
logq+1Mg (rn)

)β2} .
Thus for any sufficiently small ε > 0, we have

λp+qlog (f ◦ g) = lim inf
r→∞

logp+q+1Mf◦g(r
1+ε)

log log r1+ε

≥ lim inf
r→∞

[
logp φ (Mg (rn))

logq+1Mg (rn)

log log r1+εn

]

≥ lim inf
r→∞

exp
[
(B2 − ε)

{
logq+1Mg (rn)

}β2] logq+1Mg (rn)

log log r1+εn

≥ lim inf
r→∞

exp[(B2−ε){(A2−ε)(log log rn)α2}β2 ](A2−ε)(log log rn)α2

log log r1+εn

≥ lim inf
r→∞

exp[(B2−ε)(A2−ε)β2 (log log rn)α2β2 ](A2−ε)(log log rn)α2

log log r1+εn

≥ lim inf
r→∞

exp{(log log rn)(B2−ε)(A2−ε)β2 (log log rn)α2β2−1}(A2−ε)(log log rn)α2

log log r1+εn

= lim inf
r→∞

{exp(log log rn)} exp{(B2−ε)(A2−ε)β2 (log log rn)α2β2−1}(A2−ε)(log log rn)α2

log log r1+εn

≥ lim inf
r→∞

(log rn) exp{(B2−ε)(A2−ε)β2 (log log rn)α2β2−1}(A2−ε)(log log rn)α2

log log r1+εn

=∞.
Since α2β2 − 1 > 0, α2 > 0 by our hypothesis and as r →

∞, log r

log log r1+ε
→∞ for ε > 0.

Hence the theorem is proved. �

Theorem 35. Let f(z) and g(z) be two entire functions of finite iter-
ated logarithmic order with i(f) = p, i(g) = q and ρqlog(g) < λplog(f) <

ρplog(f), then

lim sup
r→∞

logp+q+1 µf◦g (r)

logp µf (r)
= 0.

Proof. From the definition of ρplog(f) and λplog(f) we get

(65) logp µf (r) < (log r)ρ
p
log(f)+ε
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for large r and

(66) logp µf (r) > (log r)λ
p
log(f)−ε

for large r.
From (14),

logp+q+1 µf◦g (r) ≤ logp+q+1 [2µf (4µg (2r))]

≤ logp+q+1 [µf (4µg (2r))] +O(1).

Using (65) we have,

logp+q+1 µf◦g (r) ≤ logq+1

[
{4µg (2r)}ρ

p
log(f)+ε

]
+O (1)

≤ logq
(
ρplog(f) + ε

)
log {4µg (2r)}+O (1)

≤ logq
(
ρplog(f) + ε

)
log {µg (2r)}+O (1)

≤ logq
(
ρplog(f) + ε

)
expq−1 (log 2r)ρ

q
log(g)+ε .(67)

From (66) and (67) we get,

logp+q+1 µf◦g (r)

logp µf (r)
≤

logq
(
ρplog(f) + ε

)
expq−1 (log 2r)ρ

q
log(g)+ε

(log r)λ
p
log(f)−ε

.

Since ρqlog(g) < λplog(f), we choose ε > 0 such that

ρqlog(g) + ε < λplog(f)− ε.

Therefore we have

lim sup
r→∞

logp+q+1 µf◦g (r)

logp µf (r)
= 0.

�

Theorem 36. Let f(z) and g(z) be entire functions of finite iterated
logarithmic order p and q respectively. If ρqlog (g) < ρplog (f) then

lim
r→∞

logp+q+1 µf◦g (r)

logp µf (r)
= 0.
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Proof. From Lemma 9 we get for large r

logp+q+1 (µf◦g (r)) ≥ logp+q+1

[
1

2
µf

(
1

8
µg

(r
4

)
− |g(0)|

)]
≥ logp+q+1

[
µf

(
1

8
µg

(r
4

)
− |g(0)|

)]
+O(1)

≥ logq+1

(
log

1

8
µg

(r
4

))λplog(f)−ε
+O(1)

> logq
(
λplog(f)− ε

)
log

(
log

1

8
µg

(r
4

))
+O(1)

> logq
(
λplog(f)− ε

)
log
(

log µg

(r
4

))
+O(1)

> logq
(
λplog(f)− ε

)
expq−1

(
log

r

4

)ρqlog(g)−ε
+O(1).

Thus for sufficiently large r, there exists a sequence {rn}
(68)

logp+q+1 (µf◦g (rn)) > logq
(
λplog(f)− ε

)
expq−1

(
log

rn
4

)ρqlog(g)−ε
+O(1).

Also for large r,

logp µ (r, f) < (log r)ρ
p
log(f)+ε .

So for the sequence {rn} tending to infinity,

logp+q+1 (µf◦g (rn))

logp µ (rn, f)
>

logq
(
λplog(f)− ε

)
expq−1

(
log rn

4

)ρqlog(g)−ε
(log rn)ρ

p
log(f)+ε

.

Since ρqlog (g) < ρplog (f), we choose ε > 0 such that

ρqlog (g)− ε < ρplog (f) + ε.

So we have

lim
r→∞

logp+q+1 µf◦g (r)

logp µf (r)
= 0.

�

Theorem 37. Let f(z) and g(z) be transcendental entire functions of
finite iterated logarithmic order p and q respectively with ρqlog (g) > 0.
Then

lim inf
r→∞

logp+q+1 µf◦g (r)

logq+1 µg (r)
= 0.
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Proof. For a sequence {rn} tending to infinity, from (68) ,

logp+q+1 (µf◦g (rn)) > logq
(
λplog(f)− ε

)
expq−1

(
log

rn
4

)ρqlog(g)−ε
+O(1).

Also using the definition of ρqlog(g) for the entire function g, we get

logq+1 µg(r) < log (log r)ρ
q
log(g)+ε

=
(
ρqlog(g) + ε

)
log log r

<
(
ρqlog(g) + ε

)
log r

for large r.
Thus for a sequence {rn} tending to infinity, we obtain

logp+q+1 µf◦g (rn)

logq+1 µg(rn)
>

logq
(
λplog(f)− ε

)
expq−1

(
log rn

4

)ρqlog(g)−ε(
ρqlog(g) + ε

)
log rn

.

Since ρqlog(g) > 0 and so we can choose ε > 0 such that

ρqlog(g)− ε > 0.

Hence

lim inf
r→∞

logp+q+1 µf◦g (r)

logq+1 µg (r)
= 0.

�

Remark 38. In particular, λqlog(g) > 0, which implies that ρqlog(g) > 0,
therefore we have

lim sup
r→∞

logp+q+1 µf◦g (r)

logq+1 µg (r)
= 0.

Theorem 39. Let f(z) and g(z) be transcendental entire function of
finite iterated logarithmic order p and q and let λqlog(g) > 0, then

lim sup
r→∞

logp+q+2 µf◦g (r)

logq+1 µg (r)
≤ k

ρqlog(g)

λqlog(g)

for some positive constant k such that log r2 < (log r)k .

Proof. From (67) it easily follows that

logp+q+1 µf◦g (r) ≤ logq
(
ρplog(f) + ε

)
expq−1 (log 2r)ρ

q
log(g)+ε

for large r.



116 C. GHOSH, S. K. DATTA, S. MONDAL, S. KHAN

So for sufficiently large r

logp+q+2 µf◦g (r) ≤ logq+1 expq−1 (log 2r)ρ
q
log(g)+ε +O (1)

= log log (log 2r)ρ
q
log(g)+ε +O(1)

≤ log (log 2r)ρ
q
log(g)+ε +O(1)

≤
(
ρqlog(g) + ε

)
log log 2r +O(1)

≤
(
ρqlog(g) + ε

)
log log r2 +O(1)

≤ k
(
ρqlog(g) + ε

)
log log r +O(1)

Again we have for sufficiently large r

logq+1 µg (r) >
(
λqlog(g)− ε

)
log log r.

Hence

lim sup
r→∞

logp+q+2 µf◦g (r)

logq+1 µg (r)
≤ k

ρqlog(g)

λqlog(g)
.

�

Theorem 40. Let h(z) and f(z) be two entire functions of finite it-
erated logarithmic order such that ρslog (h) < λplog (f) then

lim
r→∞

logq+s µh◦g (r)

logp+q µf◦g (r)
= 0

for any nonconstant entire function g(z) of finite iterated order
ρqlog (g) .

Proof. We have from Niino [7],

µf◦g (r) ≥ r − r′

r
Mf◦g (r′)

=
r − r + r−β

r
Mf◦g

(
r − r−β

)
=

1

rβ+1
Mf◦g

(
r − r−β

)
.

Now, from the definition of λplog (f) we get,

(log r)λ
p
log(f)−ε < logpMf (r)

for large r and also from the definition of ρslog (h) we have,

(log r)ρ
s
log(h)+ε ≥ logsMh (r)
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for large r.
Hence

µf◦g (r) ≥ 1

rβ+1
expp logpMf◦g

(
r − r−β

)
≥ 1

rβ+1
expp logpMf

(
Mg (r − r−α)− |g(0)|

5r2(α+1)
− |g(0)|

)
>

1

rβ+1
expp

(
log

{
Mg (r − r−α)− |g(0)|

5r2(α+1)
− |g(0)|

})λplog(f)−ε
>

1

rβ+1
expp

(
log

{
Mg (r − r−α)

6r2(α+1)

})λplog(f)−ε
> expp (log (Mg (r, g)))λ

p
log(f)−ε .(69)

On the other hand, for large r,

µh◦g (r) ≤ Mh◦g (r)

≤ Mh (Mg (r))

= exps logsMh (Mg (r))

= exps (log (Mg (r)))ρ
s
log(h)+ε .(70)

Choose ε > 0 such that

ρslog(h) + ε < λplog(f)− ε.

Thus from (69) and (70) we get,

µh◦g (r)

µf◦g (r)
<

exps (log (Mg (r)))ρ
s
log(h)+ε

expp (log (Mg (r)))λ
p
log(f)−ε

.

Therefore

lim
r→∞

µh◦g (r)

µf◦g (r)
= 0.

�

Theorem 41. Let f and g be entire functions of finite iterated log-
arithmic order such that 0 < λplog(f) < ρqlog(g) < ∞ and ρslog(h) =

ρtlog(k). Then the entire functions h and k with finite iterated logarith-
mic order s and t respectively satisfy

lim inf
r→∞

logp+s µf◦h (r)

logq+t µg◦k (r)
= 0.
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Proof. Now for sufficiently large r, using (15) we obtain,

logp [µf◦h (r)] ≥ logp

[
1

2
µf

(
1

8
µh

(r
4

)
+O(1)

)]
≥

(
log

(
1

8
µh

(r
4

)
+O(1)

))λplog(f)−ε
≥

[
log

(
1

9
µh

(r
4

))]λplog(f)−ε
>

[
log
(
µh

(r
4

))]λplog(f)−ε
.

And so for a sequence {rn} with rn ≥ r0

logp+s [µf◦h (rn)] ≥ logs

[
log
(
µh

(r
4

))]λplog(f)−ε
= logs−1

(
λplog(f)− ε

)
log log µh

(r
4

)
= logs−1

(
λplog(f)− ε

)
exps−2 logs µh

(r
4

)
= logs−1

(
λplog(f)− ε

)
exps−2

(rn
4

)ρslog(h)−ε
.(71)

On the other hand,

logq+t [µg◦k (r)] ≤ logq+tMg◦k (r)

≤ logt logqMg (Mk(r))

≤ logt [logMk(r)]
ρqlog(g)+ε

≤ logt−1
(
ρqlog(g) + ε

)
expt−2 logtMk(r)

= logt−1
(
ρqlog(g) + ε

)
expt−2 (log r)ρ

t
log(k)+ε .(72)

Since 0 < λplog(f) < ρqlog(g) < ∞ and ρslog(h) = ρtlog(k), choose ε

such that λplog(f)− ε < ρqlog(g) + ε and ρslog(h)− ε = ρtlog(k) + ε , then
from (71) and (72) it follows that as r →∞

logp+s µf◦h (r)

logq+t µg◦k (r)
= 0.

Hence proves the theorem. �
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