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Abstract.In this article we studied some growth properties of com-
posite entire functions with finite iterated logarithmic order. Also we
defined iterated logarithmic order of an entire function by using their
maximum term. Further, we proved some results on the growth of
composite entire functions of finite iterated logarithmic order in terms
of their maximum terms.

1. INTRODUCTION

For an entire function f(z) = >~ a,2" the maximum modulus
of f(z) is defined by M(r) = max{|f(z)|:|z| <r} for r > 0. It
follows immediately that M¢(r) is nondecreasing function of r. The
maximum term pf (r) of the function f(z) on |2| = r is defined as

J— n
pr (r) = maxfan|r".
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We recall the order p(f) and lower order \(f) of an entire function

f(2) which are defined as

log log M
p(f) = limsup ~08 708 M) #(7)
P00 log r
and
log log M
A(f) = liminf ~08 08 A1) s(7)
r—00 logr
respectively.

Also by Nevanlinna theory [4] , one get the order p(f) and lower
order \(f) of f(2) as
log Ty(r)

= 1 =Rt AN
p(f) m sup =

log T
Mf) = liminf 28700
r—00 lOg r
where T¢(r) is the Nevanlinna’s characteristic function.
Now it is already known [2] that for any two transcendental entire
functions f(z) and g¢(z2),
log Toq (1)

lim —2 o0
e Ty

and
lim log T'poq (1)
r—o0 Tg (r)
There are so many results that have been proved on the composition
of two entire functions with finite order ([2],[5],[6],[8],[9],[13]).

= OQ.

Definition 1. [1] Let S(r) (r > 0)be a nonnegative increasing function
of order zero is said to have finite logarithmic order piog if
_ log S(r)
Plog = limsup ————.
r—oo loglogr
If f(z) is an entire series in the complex plane C then the logarithmic
order of log™ M/ (r) is equal to the logarithmic order of f.
If f is a transcendental with finite logarithmic order pj, then its
lower logarithmic order

log T
Mg — lim inf 28 L")
r—oo loglogr
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One can easily check that piog < Aiog + 1 and there is a constant ¢
satisfying 0 < ¢ < piog — Alog-

In other words for a transcendental entire function f with order
zero we can define pioe(f) and Aog(f) as follows:

log log M loe T
(1) Piog(f) = limsup log log My(r) _ lim sup —2 f(T)7
rsoo loglogr oo loglogr
(2> Alog(f) = hm Hlf M — hm 1nf 1Og Tf (T) )
rooo loglogr roo loglogr

Definition 2. [10] For 0 <r < R,

(3) py (r) < My (r) < 5=y (R).
Using this result we get

i loglog pis(r)
4 . 9 log log ju(r)
( ) Pl g(f) lil’isogp log log,r
and
(5) Mg () = lim inf 128108 11 (1),

r—oo  loglogr

Definition 3. [12] The iterated p order p,(f) of an entire function f
as

lo M (r log T¢(r
(6)  pp(f) = limsup log, 1 M;(r) — limsup log, Ty(r)

(p e N).
Similarly, the iterated p lower order A\,(f) of an entire function f as

1 M loc T
7 A = liminf M = lim inf M
’ 1

r—00 Og T r—00 log T

(p € N).

Definition 4. [12] The finiteness degree of the order of an entire func-
tion f is defined by

0 when [ is a polynomial,
e . ) for f transcendental for which some
i(f) = min{g €N:py(f) < oo} q € N with p,(f) < oo eists.
00 for f with py(f) = oo for all p € N.



88 C. GHOSH, S. K. DATTA, S. MONDAL, S. KHAN

It is easily seen that i(f) and i(g) are positive integers.

We use the notations exp, 7 = €", exp,,; r = exp (exp; ) for 0 < r <
oo and 7 = 1,2, ... . Also for sufficiently large r, we use the notations
log, r =logr,log,,, r = log (log;r) for i = 1,2, ....

In this paper we established some results of composite entire func-
tions on the basis of iterated logarithmic order.To prove these results
we use some known lemmas which are stated in the following section

2. PRELIMINARY LEMMAS

In this section we shall present first the following known lemmas.

Lemma 5. [11] If f(2) and g(z) are two entire functions with My(r) >
2= g(0)| for any e > 0, then

(8) Trog(r) < (1+2) Ty (My(r)).
In particular if g(0) = 0, then for all » > 0
(9) Tpog(r) < Ty (My(r))-
Lemma 6. [11] Let A(g) < oo. Then for any € > 0 and sufficiently
large r,
(10) Myoq (r'%) = My (My(r)).

Lemma 7. [2] If f(2) and g(z) are two entire functions with g(0) = 0,
then

(11) Myog (r) 2 My (c(@) My (ar)).
where « satisfy 0 < a < 1 and take ¢ (o) = %. Then for r > 0

Further if g(z) is any entire function then with oo = %, for sufficiently
large values of r,

1 r
> - —) - .
(12) Myeg 1) 2 My (54, (5) = laO)])
Also from the definition it follows immediately that
(13) Myoq (1) < My (M,(r))

Lemma 8. [10] Let f(z) and g(z) be entire functions, then for a > 1,
and 0 <r < R,

) = =y (2, )

a—1
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In particular taking o = 2 and R = 2r,

(14) fioq (1) < 2415 (4pag (2r))

Lemma 9. [10] Let f(z) and g(z) be entire functions with g(0) = 0.

Let a satisfy 0 < a < 1 and let ¢ (o) = %. Also let 0 < § < 1 then
fifog (1) = (1= 0) puy (c(a) pg (d7)) .

And if g(2) is any entire function, then with « = § = %, for sufficiently
large values of r,

(15) 1o 1) 2 s (0 (5) = 1901

Lemma 10. [3] Suppose that f(z) and g(z) are entire functions of
finite iterated order. Then for all sufficiently large values of r and for
any € > 0, we have

(16) 1ng—&-q—l-l Mfog (r1+5) > logp (bf (Mg(r)) 1qu—l-l Mg (T)
and

(17) log,, i1 Myog (1) < log, ¢5 (My(r))log,, s My(r)
where o(r) = @g(r) is defined by
IngH My (r)
— oL IV (> ).
#s(7) log log r (r 2 7o)

3. MAIN RESULTS
In this section we first introduce the following definitions.

Definition 11. The iterated logarithmic p order py,, (f) of an entire
function f as follows

log, .1 My () log, Ty(r)

1 v () =1i Pt =i L N
(18) Prog (£) Tf;gp log log r H:Ligp loglogr (p€N)
and iterated logarithmic p lower order Ay, (f) as

log,, .4 My () log, T¢(r)

19) N (f) = liminf —2—— = liminf —2—""*(p € N).

(19) log (£) s log log r b loglog r (peN)

Theorem 12. For any two entire functions f(z) and g(z) of finite
iterated logarithmic order with i (f) = p,i(g) = q and if i, (f) >0,
then

Pt (fog) =pl, (9).
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Proof. By the definition of iterated logarithmic order we have,

log, Ty(r) log, ., M, (r)
D =1 _op~JN /g oy q+—g
Therefore for all sufficiently large r and for given any € > 0 we get
log, Ty(r) < log (log r) (Ao +<)
le,
Ty(r) < exp,_, {(10g 7»)(r7f’c,g(J”)+s)}
and
1qu-&-l Mg(r> < log (log r) (plog(g)+€)
ie,

My(r) < exp, {(log r)(pﬁ)g(g)ﬂ)} .
Now by lemma 5 we get
Thog(r) < 2Ty (My(r))
< Zexpy {(log Mg<r))(p1p0g(f)+s)}

IN

2exp, [{equ . { (log r)(p?og(g)ﬁ)}}(Pfog(f)ﬂ)}
2exp, [(p{’og (f) +¢)log {equf1 {(log T)(pii,g(g)+e)}H

(20) < 2exp, [c eXp,_o {d (logr) (plog(9)+2) H

where we take ¢ > pfog (f)and d > 1 are some constants not necessarily
same at each occurrence.
Therefore by (20) and from definition we get

logp-i-q—l Tfog (T) q

IN

21 li < :
Next, since i (g) = ¢, we have
log,. 1 M,(r)
d = 1i ol TT9V )
Piog (9) lglj;;lp log log r

If pi, (9) > 0, there exist a sequence {r,} — oo such that for any
given € ,where (0 <e< pfog (g)) and for r, sufficiently large we have

(22) M,(r,) > exp, {(10g rn)(p?og(g)—a)} ,
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Since {r,} is a sequence tending to infinity, not necessarily same at
each occurence and )\fog (f) > 0, therefore from Lemma 7 for suffi-
ciently large r, we have

1 1 Tn
> - M [ = on
Tfog ('I"n) = 3 log f (8 ( 4 > )

log M > } Olog(f)_E)]

1 .o
Z § epr 1 |:Cl equ 1 {CQ logr )<plog(g) )}:|
1
(23) > — expp 1 [cl exp, {(plog (9) — 5) log {¢ (log rn)}}]

where c1, ¢y are positive constants.
Hence by (22) and (23) we get,

lo Troo(Tn
(24) lim sup —oeta=1 27 o(Tn)
oo log log r,

Thus combining (21) and (24) we have

> plog (9) -

log, .1 Tfog(Tn)
p+q—1 g _ P?og (g) '

lim sup
00 log log ),

Therefore we have,

P (f o g) = p, (9)

fOI' pilog (g) > 0
Next consider pi, (g) = 0.
Hence by definition

li logq Mg(ﬂ

imsup ————— =

rooo  loglogr

So there exist a sequence {r,} — oo such that for any arbitrary A > 0

log, M,(r,
(25) lim sup logy My (rx)

A
r—oo0o  loglogr, > A= Mg(rn) > €XP,_1 (log rn)



92 C. GHOSH, S. K. DATTA, S. MONDAL, S. KHAN

Thus from (23) and (25) we have
lim sup 10g, 142 Trog(rn)
300 log log r,,

Since A is arbitrarily large, thus get

lo Teoo(Tn
(26) lim sup Bpa—2 Loy () = 00
300 loglogr,

Therefore by (21) and (26) we have
Pl (fo9) =l (9) =0.

> A.

OJ

Corollary 13. For any two entire functions f(z) and g(z) withi(g) =
L ifi(fog)=p, thenp—1<i(f) <p and p, (f)=0.
Proof. Given i (f o g) = p, which implies p,, (f 0 g) = a < oo.
Therefore for any sufficiently large r and given € > 0, we have
1 My,
(27) lim sup 041 Moy (r)
r—00 loglogr

Again since i (g) = 1, then g(z) is transcendental and for any suffi-
ciently large » and m arbitrarily large we get

a+te

=a = M,(r) < exp,, (log )

1 r m
Now by Lemma 7 and from (28)
1 r ade
20) My () < My (5M(5) ) < My () < exp, log ™

which implies from (29)
30 )
My (r) < exp, (log r)(ﬁ*‘f) = log,,, My (r) < (E + 5) loglogr

i.e from(30)

@
plpog (f) S E
Since m is arbitrarily large, we get
plpog (f) = O
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Theorem 14. Suppose f(z) and g(z) are two entire functions of finite
iterated logarithmic order with 0 < pj,, (f) < 0o and 0 < A (g) <

Plog (9) < 00,then

AL (9) < Pl (fog) < pll, (9)-

Proof. 1t is given pf (f) > 0, thus there exists a sequence {R,} —
oo such that for any given e ,where (0 <e< Pfog (f )) and for R,
sufficiently large, we have

(31) M;(Ry) = exp, { (1og Ry) Do) L

Now M,(r) is an increasing, continuous function, there exists a se-
quence {r,} — oo satisfying R, = 5M,(2) for r, sufficiently large,
we have from Lemma 7

1 Tn

Mg () 2 My (5M(5)) = My ()

> exp,, {(log Rn)(pfog(f)*E)} > eXPpy1 {Clog log Rn}
ie;
1 Tn
Mpog (rn) > exp,1 4 ¢loglog §Mg(§)

(32) > exp, {cequi {d (log rn)(’\fog(g)*s) }} 7

where ¢, d are positive constants.
Therefore we have

1 My,
(33)  limsup O8p+q 1/ g(r)

r—00 1og 10g7’ log ( ) pﬁfgq 1 ( ) > )\lqog ( )

or the second part of the inequality,

Moy (r) < My (Mgy(r)) < exp, (log Mg(r))(”f"g(f ) < exp,, 1 {c1loglog My(r)}

i.e;

IN

exDyin {c1 05, log ) 5=
expy i1 {1 exp,_y ((pizog (9) +¢)loglogr) }

where we take ¢ > pf, (f)

Myog (1)
(34)

IN
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From (34) we thus have

(35> plpo+gq71 (f © g) S p?og (g> '
Therefore combining (33) and (35) we get,

AL (9) < Pt (Fog) < pl, (9).
0

Theorem 15. Let f(z) and g(z) be two entire functions of finite loga-
rithmic order with the condition that g(0) = 0 and piog (9) < Aiog (f) <
Prog () sthen

lim log T'to (1)

= 0.
roe Ty (r)

Proof. By definition there exists a sequence {r,} — oo such that for
any given ¢ (> 0) and for r,, sufficiently large, we have

Alog (f) = lim infM

T - > 1 - (Alog(f)_g)
mint 22 L0 = 7 () > (1ogr)

and
: log T'¢(rn) P
prog (f) = lim sup 3572 = Ty(r) < (logr) %)
Also,
(36)

log log My (ry,)

Plog (g) = limsup = loglog My (11,) < (prog (9) + €) loglog ry,.

r—00 log log ry,
Combining the above two,
(log 1) M5 =9) < Ty(r)) < (log 1) (PesD¥e)

Now,
Tjog (ra) < Ty (My (1)) < {log M, (ra)} 7o) < exp {clog log M, (ra)}
which implies by(36)

Ttog (1) < exp{c(piog (9) + €)loglogr,},

where we take ¢ > piog (f).
Therefore

log Tyog (rn) _ {¢(piog (9) +¢)loglogry}
Ty (rn) (log Tn)(hog(f)—e)




ON THE GROWTH OF COMPOSITE ENTIRE FUNCTIONS ... 95

Since Aiog (f) > prog (9) , then for any given € > 0 we have Ajq (f)—€ >

plog (g) +e€.
Hence for sufficiently large r,, ,we have
log T},
lim 108 Trea (1) _
r—00 Tf (T)

This completes the proof. [l

We prove following theorems which improves the above one on com-
posite entire functions with finite iterated logarithmic order.

Theorem 16. Let f(z) and g(z) be two entire functions of iterated
logarithmic order with the condition that i(f) = p,i(9) = q and

Piog (9) < Aog () < phog (f)  then

lim 1qu Tfog (T) — 0. lim Iqu+1 Mfog (T)

= 0.
r=oo T (r) r—oo log My (r)

Proof. For sufficiently large values of r and given any € > 0, we have

log, Ts(r)

Nog (f) = fim inf loglog r = log, Ty(r) = (M (f) — ) loglogr
i.e;
(37) Ty(r) > exp,_, (logr)Meat=2)
and

log, T(r)
38 D =i _ep N7
( ) plog <f) liri)sogp log lOg r

Combining (37) and (38) we have

= Ty(r) < exp,; (logr) ).

(39)  exp,_y (logr) ) < Ty(r) < exp,.y (logr) e +)

Again
(40)

lo M, (r
pi, (g) = limsup M

= M, (r) < log 1) (Plog(@)+2)
oo 10g 10g7“ g (T> — equ ( 0og T)

Now from Lemma 5 and using (39) and (40) we get

Trog (r) < Ty (Mg (r)) < exp,_; {log M, (T)}(pf’og(f)+e)
S exXp, {('Ofog (f) +¢)loglog M, ()}
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ie;
Trog (1) < exp,, {cequ_2 (log r)(pgog(g)ﬁ)}
(41) = log, Toy (r) < exp,_, {cequ_2 (log r)<pfog(g)+5)} ’

where ¢ > p (f).
Hence for sufficiently large values of r and for given any

< (0 <e< Mfog (f) - pilog (g)) , We have
1qu Tfog (T) < epr_q {Cequ_2 (log 70) (Plog(g)+s)}

< - — 0.
1) exp, (log ) (s )

In a similar way for sufficiently large values of r and for given any
€ > 0, we have

(42) epr_l (log ’]") (Afog(f)_a) S log Mf(’r) S epr_l (]_Og T) (p{)og(f)+8)

and
M, (r) < exp, (log r)(plog(g)J“E) .

Now from Lemma 7 and using (42) we get
Myog (r) < My (M, (r)) < exp, {log M, (r)}(f’ﬁ)g(f)ﬂ)
< exp,y {eloglog My (r)}
i.e;
Mioq (1) < exppi4 {Cl exp,_, (logr) (Pfog(9)+s)}
where ¢; > p{’og (f).

Therefore
i +e
log, 1 Mo (1) < €XPp—q {01 exp,_, (log T)(plog(g) )}

— 0.
log My (r)

expy. (log r) s ))
Hence the theorem is proved. O

Theorem 17. Let f(z) and g(z) be two entire functions of finite it-
erated logarithmic order with the condition that i(f) = p,i(g) = q and

s (9) < plg (f), then

10 T og \T 10 M oa \T
hmjnfgq—fg() =0, liminf 8q+1 My g( )

= 0.
r—>00 Tf (7") r—00 log Mf (T)
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Proof. From definition we have a sequence {r,} — oo such that for
any given £ (> 0) and for r, sufficiently large,

Tf(rn) Z expp_l {(log Tﬂ)(p{)og(f)—ﬁ)} .

In the same line of the previous theorem we can easily obtain this
result. ([l

The following result can also be deduced as above.

Theorem 18. Let f(z) and g(z) be two entire functions of finite it-
erated logarithmic order with the condition that i(f) = p,i(g) = q and

Nog (9) < Xog () < piog (f) ; then
log, Tre log,41 Mo
tim inf 2B 200 ) gy g 08 Moo ()
r—00 T (7") r—00 log My (7")

Theorem 19. Let f(z), g(z) be transcendental entire functions of
finite logarithmic order. Let g(0) = 0 and let Aog(g) > 0. Then

lim sup log Tfog (7“) < Plog (g) .
roo 10gTy(r) ~ Aog(9)

Proof. From definition (1) and (2) we get,

Ti(r) < (logr)™= for all r > r,
Te(r) > (log r))‘l"g(f)fs, for all r > rq.
Now by Theorem12,

log T,
lim sup 208 L fogll) oo (7)

r—oo  loglogr = Pug(9).

Thus for sufficiently large r and for ¢ > 0,we obtain,
(43) log Tog(r) < (prog(g) + €) loglog .
Again for large r,

log Ty (1) > (Aiog(g) — €) loglog 7.
Since € > 0 is arbitrary hence we have,

log T, o
T 4(7) o/ g(9)
r—00 log Tg<r) )\log (g)
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Theorem 20. Let f(z) and g(z) be entire functions such that 0 <
Mog(f) < prog(f) < 00 and 0 < Ag(9) < prog(g) < 00, then

log Tr. log Tso o
Nog(9) < liminf 22870 q(7) < limsup 27 q(7) <P g(g)‘
plog(f) r—00 IOg Tf (T) r—00 lOg Tf (T) )\log(f)

Proof. From Lemma 7,

1 1 T
> - z _
Troglr) = 3log My <9Mg (4>)

(s (3e)))
exp {(Alog(ﬂ —¢)loglog (%Mg (2)) }
exp {cl log log (%Mg (g)) }

exp [01 log {d1 ((log T)/\log(g)*€> }]

v

v

AV
W= Wl W=

i.e;
log Tyey(r) > crlog {dh ((logr)* =) } + 0(1)
c1 (Mog(g) —€) loglogr + O(1)

where ¢1, d; are positive constants.

Also

V

log T(r) < (piog(f) +€)loglogr.
Hence we have,

(44) lim inf

Again from (43) and
log Ts (1) > (Aiog(f) — €) loglog r

we have
log T, o log1
lim sup 298 £ fog\) g(r) < limsup <pl g<g) + 8) o8 08 ™
rooo log T(r) rooo (Nog(f) — €)loglogr
(45) _ plog(g) + €

Alog(f) —€
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Since 0 < Aog(f) < prog(f) < 00 and 0 < Aiog(9) < prog(g) < o0,
combining(44) and (45) we have

Meslo) _ gy () 108 Tyos(r) _ prsts)
plog(f) - oo IOng(T) oo long(r) a )‘log(f)

Theorem 21. Let f(z) and g(z) be entire functions of finite iterated
logarithmic order such that 0 < X (f) < pjo,(f) < 00,0 < A[,(9) <
Piog(9) < 00, then

Ailog(g) imin 1Og]z)—i—q—l Tf09<r) min A?og(Q) p?og(g)
g = it = {Aigu)’pﬁg(ﬁ}

N~—
3
1
8
—
o
a3
bS]
3
—~
=
N~—

logp-‘rq—l Tfog (T) < pilog (g>

Niog(9) Plog(9)
< max ek < lim sup < .
{ A?og(f) p?og(f) r—00 logp Tf (T) )\{)og(f)
Proof. For given any € > 0 and for sufficiently large r, we have from
the definition

(46) ()\fog(f) — 5) loglogr <log, Tf(r) < (pfog(f) + 5) loglog r.
Again from (21) and (23) we get
(47)

()\f’og(g) — e) loglogr <log,,, 1 Tfoq(r) < (pf’og(g) + 5) log log r.

By (46) and (47) we get for sufficiently large 7.
(48)

plqog(g) te > 10gp+q—1 Tfog(r) _ 1ng—f—q—l TfOQ (T) lOg IOg'f’ > )\;Iog(g> —€
)\fog(f) —e— log,Ty(r) loglog r log, Ty(r) — plpog(f) +e

As e > 0 is arbitrary, we get from(48)
1ng+q,1 Tfog (T’) > Ailog (g)

49 lim sup > ,
) P og Ty(r) )
longrqfl Tfog (T) pi]og (g)

50 lim sup < :
(50) D ) e T (1) X, ()

Now for sufficiently large r,, and R,,, there exist two sequences {r,}
and {R,,} tending to infinity, then we have

logp Tf (rn) > (Pfog(f) - E) log 10g Tn,
log, T (Ry) < (A{’Og(f) + ¢) loglog R,y

(51)
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Similarly in (23) and (20), there exist two sequences {r},} and {R] }
tending to infinity for sufficiently large r/, and R],, we obtain

(52) 10g, 141 Tog(ry,) = (plog(g) — 6) loglog !, }
108,141 Trog(Ry,) < (Mg (9) +€) loglog Ry,

From (46), (50) and (51), (52) we have

lo Troo (7 A
lim inf Sprg—1 -/ o(r) < min log(g
r—o0 log, T (r)

Hence proves the theorem. [

Corollary 22. Let f(2), g(2) satisfy Theorem 21, then

Alog (9) < liminf 108,141 Trog(T) ~ min Azog(g)’pi’og(g)
pfog(f) r—o0 longf(k)(T) )\log(f) pfog(f

IN

o { Nig(9) plog<g>}

Moo ()" #lesl )
108,141 Trog(r) _ Plog(9)
) M)

< limsup
r—00 1ng Tf(k) (

fork=12 ...

Remark 23. One can get the same result by replacing
log Myog(r),log My(r) by Tpog(r),Ty(r) respectively in Theorem
21 and Corollary 22.

Theorem 24. Let f(z) and g(z) be entire functions of finite iterated
logarithmic order such that 0 < X, (f) < pj,(f) < 00,0 < Al (g9) <



ON THE GROWTH OF COMPOSITE ENTIRE FUNCTIONS ... 101

Piog(9) < 00, then

A 1 T,
;‘)g(g) < limint 2Bt L)
plog(.g) r—00 logq Tg (r)
< limsup 108q-1 Lyoo () < piog(g)’
r—00 logq Ty(r) >\log (9)
A\ 1 M;o
—ifg(g) < liminf 28 Mres(r)
Plog (9) r—00 10gq+1 My(r)

1 My, !
< limsup 22t t o(7) < pzog(g)'
r—oo logq—i-l Mg (7") )‘log (g)
Proof. For sufficiently large r and for given € > 0, we have
(53) log, Ty(r) < (ph,(9) + €) loglog 7.
For sufficiently large r, we have from (23)

1 1 r
> - _
Tpoy(r) > log M <9Mg (4))

1 1y ) PlestD )
b )

> %expp_l [Cl exp, | {62 (log r)(A?og(g)—a)}]
(54) > Zexn,y [eren, {(My (9) — <) log {ea (log )}

where ¢y, ¢y are positive constants.
From (53) and (54) we have

108,41 Trog(r) _ 108,141 Tyog(r) loglogr _ Aoy (9) —€
log, Ty(7) loglog r log, Ty(r) — plg(9) +¢

Since € > 0 is arbitrary, then we get
lo Teoolr 2\
(55) lim inf 1Bzt o) Aog (9),
r—00 logq Tg (’l”) plog (g)

Again by definition, there exists a sequence 7,, tending to infinity such
that for sufficiently large r,,

(56) log, Ty(rn) > (pl,(g) — €) loglog ry,.
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From Theorem 12 and also for any € > 0 and for sufficiently large r,
we have

(57) log, g1 Tfog(r) < (pfog(g) +¢) loglogr,
(58) log, Ty(r) < (pfog(g) +¢) loglogr,
(59) log, Ty(r) > ()\f’og(g) — e) log logr.

From (56) and (57) we have,

lo Teool(r
(60) lim i O8rra—t Trea(r)
r—00 log, Ty(r)

From (57) and (59) we have,

lo Tso q
(61> lim sup gp+q_1 f g(?”) S lOlqog(Q) '
r—00 log, Ty (r) AL (9)

Similarly from (54), for suffuciently large r,,, there exists a sequence
{rm} tending to infinity then we get

1 1y | MlestD2)
Tfog (T’m) Z g epr_l {log §Mg (Z) }

(62) > %expp_1 [c1 exp, {(pfog (9) — ) log {c2 (log ) } }] -

Thus from (58) and (62) we have,
lo Trog(r
(63) lim sup Sprg-1 ~f o(r)
o0 log, Ty(r)

Hence from (55), (60), (61) and (63), we get the proof of the theorem.
In similar way we have

Aog(9) < liminf 108, Myog(r)

> 1.

pilog(g) reo loqurl Mg (T) =00 1qu+1 Mg<r) B )\ilog (g) .

Corollary 25. Let f(2),9(z) satisfy Theorem 24 and if N (9) =
Plog(9), then

lim longrqfl Tfog(r) — lim 1Og]oJrq Mfog(r) -1
r—co  log, Ty(r) r—oco log, My(r)
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Corollary 26. Let f(2),g(2) satisfy Theorem 24 then

A 1 T, 1 Tto

;Og(g) < liminf O8p+g-1 7/ o(7) <1 < limsup O8p+g-1 7/ o(7) p]og(g)
plog (g) r—00 lqu Tg(’“) (T) r—00 lqu g(®) (T) log (g>
A lo Moo (r lo Mo, (7

(lzog(g) < liminf Eptrq M f 4(7) <1< limsup Eptrq My 4(7) plog(g)
Prog(9) r=oo log, 1 My (r) roo 10844 g<k>(7“) Aog(9)
fork=1,2,

Theorem 27. If p;,, (f) =0 and 0 < pj, (9) < 00, then

s’ (fo9) =
provided
(a) M. (9) >0 and limsuplog, p(r) = co or
r—00
(b) A, (9) = 0 and limsup log, ¢(r) = oo,

r—00
where @(r) = @(r) is defined by os(r) = % (r>rg).

Proof. For any € > 0, we have from Lemma 10
log, 4441 Mpog(r*e) > log,, o (M, (7)) log, 1 M,(r).
Hence,

lo Mo, (rite lo M,(r)) 1o M,(r
P (f 0 g) = limsup 8p+g+1 Mrog( )thsup 8p ¥ (My(r)) logy 1 My(r)

r—00 log log rlte r—00 log log rite

Again if g(z) has positive iterated lower logarithmic order A{, (g),
then

. . 10gq+1 MQ(T) q
h;gg}lf W = )\log (g) .

This implies
log, 41 My(r) > (X, (9) — ) loglog
for all sufficiently large values of r.Thus

. log, ¢ (My(r)) log, 4 M,(r)
e (fog) > lim sup —= l(fglogrlff :

o e 1980 @ (My(r) log (log r) V0~
> limsup oo log -1 +e .
r—00 glogr
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Now for € > 0,
log (log T)(’\lqog(g)_s) > loglog r'*e.
Therefore as r — oo,

log (log r)(kﬁog(g)_e)
log log r1+e

— 0

and ¢ (M, (r)) is increasing, continuous and unbounded in r, which
implies
Pt (f o g) = oo.
Next if g(2) is of finite positive iterated logarithmic order pi,, (¢) and

of zero lower iterated logarithmic order A{, (¢g) and if lim log, ¢(r) =
r—00

00, then for any ¢’ > 0 we have

lnglﬂqurl Mf<>g<7’1+a,)

T(fog) = limsup

log oo log log ri+e’
Z hm sup logp SO (Mg (T)) logq—,i-l Mg (T)
r—00 log log rite
. . 1quH Mg(r)
=z hfgs;lp log,, ¢ (M,(r)) . hfisogp Tog log ri+e
> limsuplog, ¢ (My(r)) .pi, (g) , [since, & > 0]
r—00
= 0.
This proves the theorem. 0
Theorem 28. Suppose that pi,(9) > 0,p,,(f) = 0. Let
limsuplog, p(r) = 7. If 7 is finite, then

r—00
p{)o—gq (f o g) S Tpilog (g> *
Furthermore, if lim log, ¢(r) = 7 then the above inequality becomes
—00
an equality.

Proof. Since, limsuplog, p(r) = 7, then for any € > 0, we have
T—00

log, o(r) <7 +e.

Also if g(2) is of iterated logarithmic order pf, (g), then for all
sufficiently large r,

log, 1 My(r) < (b, (9) +¢) loglog .
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Hence

log M oq(r)
+q — L pra+1 VY fog
S lim sup logp ¥ (Mg<r)) 10gq+1 Mg(r)
00 log log r
T+¢)(pl +¢) loglogr
< limsup (T+¢) (phy (9) + ) loglog
00 log log r

Since, € > 0 is arbitrary, thus

lo—gq (f Og) S Tp?og (g) :

Similarly, equality part follows.
Hence the theorem is proved. 0

Theorem 29. If f and g are transcendental entire functions of iter-
ated logarithmic order with (i) AL (g) = oo or (i) X (f) > 0 then

log log

A2 (f o g) = oc.

log

Proof. (i) Let A}

log
From Lemma 7

1 r
10810 Myeg 1) = 1oy, 217 (501, (5) =10 01
5)

(9) = o0

log,, 1 4 My (r)
logq(r)
sMy (5) =19 (0)] > r , we get

”
log,,, Myog (r) > log, M, <§>

Since is an increasing function of r for large r and

for large 7.
Hence

r
108,411 Myog(r) > log,41 My (5)
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ie.,

IngJrqH Mng(r) > lquH Mg (%)
log log r — loglogr

ie.,

Mo (F 09) = X, (9) = 0.

Hence first part of theorem is proved.
(ii) If AL, (f) > 0 and also let Af, (g) < co.Then by Lemma 6, for
any € > 0,we have

)\p+q(f Og) = liminf 10gp+q+1 Mfog(rHE)

log r—00 10g IOg rlte
2 lim inf 10gp+q+1 Mf (Mg (T)) 10gq+1 Mg (T)
r—00 log,, 1 My (7) log log r1+e
2 hm lnf logp+q+1 Mf (Mg (T)) 10gq+1 Mg (T)
r—00 log,,1 My (1) log log r

since € > 0. Since, g(z) is transcendental, for arbitrarily large K > 0
we have,
lo M, (r
gq+1 g()>K(r2TO).
loglog r
As M, (r) is increasing,continuous and unbounded in r, thus we
obtain

Mog'(fog) = Ny () K.

log log

Since A}, (f) >0,

Mo (fog) = 0.

Hence the theorem follows. O

Theorem 30. If f and g are transcendental entire functions of iter-
ated logarithmic order with [, (g) < oo and limsuplog, ¢ (r) = 7 <

log
r—00
oo, then

(64> )\fo—gq (f © g) S T')\?og (g) S lo—gq (f © g) :
Furthermore, in the above result the first inequaity becomes equality
of

lim log, ¢ (r) = 7 < o0,

r—00
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Proof. We have from maximum modulus principle
Mioq(r) < My (Mj (r))
Hence

lo Mo, (1
NI (fog) = liminf Bptatt Moy (7)

T—>00 log log r
< lim inf logp+q+1 Mf (Mg (T))

r—00 log log r
< limsup log,, , g1 My (M, (r)) limn inf log, 1 My(r)
T e log, 1 My(r) reoco loglogr
= T.)\ilog (9)

which proves the first inequality of (64) .
Again by Lemma 6, we have

lo Mo, (r1te
1q (f Og) — limsup Ep+q+1 VLf 9( )

log r—o0 log log rt+e
> lim sup 10gp+q+1 Mf (Mg (T)) 10gq+1 Mg<r)
o r—00 lqu+1 Mg (T) . log lOg 7“1+€
> limsup [logpﬂ“ My <Mg () logq+1 Mg(r)] since € > 0
T e log, 1 My(r) loglog r ’
> limsup logp +atl My (Mg (r)) lim inf —loqu My (r)
T oo log, 1 My(r) r—oo  loglogr
= T.)\fog (9).

Thus we get

7—')\lqog (g) < lo—gq (f © g) :

This proves the second inequality of (64).
Finally, if the limit

lim log, ¢ (r) =7

r—00
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exists, then we have

Xl (fog) > liminf [

7—00

logp+q+1 My (Mg (T)) 10gq+1 M, (T’)
log, . My(r) " loglogri+e

> liminf [logp+q+1 M; (M, (r)) .logq“ Mg(r)] (since € > 0)
r—00 log, 1 My(r) log log r
= Tl (9)
which gives
Mog! (f09) = 7AL, (9)-
Hence the theorem is proved. OJ

Remark 31. If \. (g) = oo, then by Theorem 29, plt?(fog) =

log log

)\f:gq (fog) = oo, and the inequalities in (64) become trivial. If
)\f’og (9) > 0 and T = oo, then by Theorem 27, 1qu (fog) = oo.

Hence the inequality is trivially true.

Theorem 32. Suppose that N (f)

log
.l M, e ]
lim inf g Mo 0, lim inf 2822

T—+00 (log7)® rT—00 (logq+1 7’)6 N

numbers a and f with o <1 and a (5 + 1) > 1. Then

AMog (9) = 0 and that
b > 0 for any positive

)\f(fgq (fog) = .
Proof. 1t is given that,
1 M 1 M
liminfw = aéwza—gforsomeg>0,
r—00 (log ) (log )

= log, M, (r) > (a—¢) (logr)”
and

1
lim inf 08P 2 (r)

m in 7 = b= log, o(r) > (b—¢) (logqul T)B for some € > 0,
(logqul 7’)

= log, p(M, () > (log,y My (r))” (b—¢)
= log, p(M, () > (a — &)’ (log )™ (b —¢).
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Then we have for 0 < ¢ < min (a,b),

[log Mog (1119)
p+q S pt+g+1 " fog
)\log (fog) > h;gg)lf I loglog?‘”e :|
hm lnf -logp+q+1 Mf (Mg (T)) 'logq—f—l M!i (T):|
roo | log, 4 M,(r) log log r1+e
log, 1 My (r'*°)
log log r1+e
log, .1 My(r)
" loglogrite

v

v

7—00

liminf |log, ¢(M, (r)).

IV

liminf |log, ¢(M, (1))

r—00

} (since, € > 0)

=2 a=2) 10gr)?] . [(a - ) (og )]
> liminf )
T—00 log log r1+e
B

Taking logr = z,(b—¢) (a —¢)” = c and (a — €) = ¢, we deduce

af «
pha o (cx ) (1)
)‘log (f og) Z 11;23)2& log log rlte

(cz®®) . (c12®)

> liminf
r—00 log log r
o (cx"‘ﬁ) (epx)

> liminf (since, logr = z,loglogr = logz)
r—00 log X

= o0.(since a <1land a(f+1)>1)
This completes the proof. O
Theorem 33. Suppse that X (f) = M._.(9) = 0 and that

log log

log, 4 k—1(4(r))

lim inf Batez Mol 0, liminf s = b > 0 for any

oo [logy, (r)]* r—00 [logq+k+2(r)]
positive integer k > s + 1 and any positive numbers o and 3 with
max (a, af) > 1. Then )\f;g'q (fog)=o0.

Proof. 1t is given that,

= log, o My(r) > (a — €) [log,(r)]* for some e > 0,
= loggi My (r) > expy_y [(a — ) (logy,(r))"]
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and

1Oz'%‘§p-|-/7c—1 (¢ (r))

lim inf 5 = b
e [logy s ()]

= log,, 1 (0 (r) > (b—e) [log, 4o (r)]”
= logyii 1 (6(M, (1) 2 (b= ) [(a — <) (loge(r)°)
(1) 2 expyy (b= <) (a— )” (logy(r)*”]

= log, o(M,

)
For 0 < € < min (a, b)

log Mpog (r11e)
p+q P p+q+1 ¥ fog
/\log (feg) = ll;gg)lf [ log log r1+¢ ]

R log, . My(r)  loglogrite
i.e,
. 1ng—i—q+1 Mfog (TH_E) - 1qu+1 M9<T)
it == g og rive = hmyinf |log, &7 (My (r) 70 mne
expi_y | (b—¢) (a —2)° (10 (1) ] expy_y [(a - ) (log ()]
> liminf
=00 log log r1+e
e [0 2) (@ - ) (lomu(r)™] expyy [(a — <) (logy(r)°]
> liminf
=00 loglogr

Putting log,(r) = 2, (b—¢) (a —e)” = dy and (a —¢) = dy, thus
we have

di2%P) 1 dox®
AZHE (f 0 g) > lim ing SRkt (B2) 108y (daz?)
T—00 eka_2<QZ)

Since max (o, @f) > 1. This completes the proof. O

= Q.

Theorem 34. Suppose for any two transcendental entire function with

Aog (f) = Niog (9) = 0 and that one of the following conditions (I) and
(I1) is satisfied:

1 M,
M Ay < oo, limsup

r—00 (Iqu+1 7”)51
any positive numbers ay and 51 with ay (B +1) > 1;

log, ¢(r)

(I) liminf = By < oo for
r—00
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.. log My (r) . log,,, 1 ¢(r)
II) liminf =222 = A, < 0o, limsup —2—~ = B, < 0o for
( ) oo (loglogr)®2 2 ’ r%oop (logqﬁ_1 r)BZ 2 f

any positive numbers cs and By with asBy > 1.
Then

Aol (f 0 g) = oo.

log

Proof. Suppose first that condition (I) hold, then
log,, 1 My (7)

lim inf a

1 o
m in (log 1) = Ay = log, . My(r) > §A1 (logr)™

for some ¢ > 0, for all sufficiently large values of r and also there exists
a sequence {r,} such that r, — 0o as n — oo and such that

lo
lim sup _O8p AT #(r)

1 B8
= By = log, (Mg (rn)) > 5B (loqurl M, <7nn)) .
r—00 (]ngJrl r) 2

since M, (r,) is continuous, increasing and unbounded of r.
Therefore, for any € > 0 ,

log M poq(r11e)
p+q o s p+q+1 ¥ fog
>‘log (f © g) - h;r_l)glf log log Tl-i—e

‘ ' logq+1 Mg(r>
> liminf \log, ¢ (M, (r) 7

B
%Bl- (logq+1 Mg (rn)) ' logq+1 Mg (Tn)

>
- log log r1+e
a1 P+l

_ 3B {34 (logr)™}
- log log r1+e

1\B1+2 Bi+1 ai(B1+1)

= By (A logr,
> (3) 1 (A)™" (logry) ~ .

log log r1+e

since oy (1 + 1) > 1 by our hypothesis.
Next suppose that condition (/1) hold, then for any sufficiently
small € > 0,

lim inf —logqﬂ M, (r)

r—oo  (loglogr)®? = Ay = log i My (r) > (A2 — ) (loglog r)*?

for all sufficiently large values of r and also there exists a sequence
{r,} such that r,, — oo as n — oo and such that
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lim sup Logpr19lr) By =

r—00 (10gq+1 7’>ﬁ2
log, 1 (M, (rn)) > (By — ¢) (logq+1 M, (rn))ﬁ2 =
log, ¢ (My (1)) > exp { (B, — £) (log,. M, (r)) ™ }.

Thus for any sufficiently small £ > 0, we have

log Moy (rtTe)
p+q i S p+q+1 1 fog
Nog (fog) = liminf log log r1+2

> liminf {logp ¢ (M (ry))

T—00

1quﬂ M, (7n)
log log rl+e

B2
exp [(Bg —e€) {loqu M, (T’n)} ] log, .4 M, (rn)
> liminf

r—00 loglog r}i+e

.. exp[(Bgfs){(Agfs)(log log 7y, )2 }62](A275)(10g log 7y, )2
> liminf TTe
r—00 loglog ry,
.. exp[(Bg—a)(Ag—s)’82 (log log rn)o‘262](A2—s)(log log ry )2
> lim inf e
T—00 loglog ry
.. exp{(log log 7"71)(B2—5)(Ag—£)ﬁ2 (log log rn)o‘23271}(A2—a)(log log T )2
> lim inf =
r—00 loglogry,

.. {exp(loglogry)} exp (Bgfs)(Agfa)l32 (loglog‘rn)a‘252_1 (A2—e¢)(loglog Ty, )2
=1 f
= limin —

r—00 loglog ry,
S L i 08T e {(Ba=e)(Aa—)% (og log r) 2%~ } (s ) loglog )2
T r—oo log log 7,

Since asfs — 1 > 0, as > 0 by our hypothesis and as r —

logr
s W — oo for e > 0.
Hence the theorem is proved. |

Theorem 35. Let f(z) and g(z) be two entire functions of finite iter-
ated logarithmic order with i(f) = p, i(g) = q and pj,,(9) < M, (f) <

log
Prog(f), then

lim sup longrqH freg ()
r—00 logp g (7")

Proof. From the definition of pf (f) and A (f) we get

=0.

(65) log,, s (r) < (log 7’)pﬁ>g(f)+‘E
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for large r and

(66) log,, p1(r) > (log r)’\fog(f)_a

for large r.
From (14),

10,1 q41 (2127 (441g (27))]
108, g1 (15 (4pag (27))] + O(1).

1ng—i-q—&-l Hfog (T)

IA A

Using (65) we have,

l0g, 11 fgeg (1) < logyy [{% 2} + 0 (1)
< log, (phg(f) +€) log {4y, (2r)} + O (1)
< log, (plog(f) +2) log{py (2r)} + O (1)
(67) < logq( b (f _1_5) exp,_; (log QT)plog( )te

From (66) and (67) we get,

q
108, 441 Hpog (7) - log, (pfog(f) + 5) exp,_; (log 27”)plog(9)+8

log, pus(r) (log 1) Nes( =

Since pi,(9) < A}

g (f), we choose € > 0 such that

p?og(Q) te< )‘log(f) €.
Therefore we have

lo oo (T
lim sup Ep+q+1 Hf g( )

=0.
rooo  log, pug (1)

O

Theorem 36. Let f(z) and g(z) be entire functions of finite iterated
logarithmic order p and q respectively. If pi,, (9) < pi,, (f) then

lim 10gp+q+1 Hfog (7)

=0.
r—o0 logp [y (7“)
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Proof. From Lemma 9 we get for large r

081011 g () = 108y |0 (10 (5) = 19000 )

> oty s (o0 (5) - Lot ) | + o)

1 r )\fog(f)*g
log, 4 (log gHo <Z>) +O(1)

r

> o, (1) = 2)tog (tow g () ) + 001

r

> log, (Afog(f) —¢) log <log g <4>) +0(1)

r ) Prog(9)—€

> log, (Afog(f) — 5) exp, (log 1

Thus for sufficiently large r, there exists a sequence {r,}
(68)

v

+0(1).

+0(1).

T ) Plog (9)—

1ng+q+1 (fpog (Tn)) > 1qu (/\:{JOg(f) o 6) XPg-1 <10g 4

Also for large r,

log, . (r, f) < (logr)*lesl <.

So for the sequence {r,} tending to infinity,
T\ Plog (9)—
l0g, 411 (Ffog (1)) < log, (Alpog(f) - 5) €XPy_1 (log Z>pl 519
log,, pu (7, f) (log r,,)lost ¥
Since pi,, (9) < plg (f), We choose € > 0 such that
Plog (9) =€ < Plog (f) +¢.

So we have
lim 10gp+q+1 Hfog (7)

r=oo log, iy (1)

=0.
0J

Theorem 37. Let f(z) and g(z) be transcendental entire functions of
finite iterated logarithmic order p and q respectively with pfog (g) > 0.
Then

lim inf 10gp+q+1 Hfog (r)

= 0.
T lqu—i—l /‘Lg (T)
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Proof. For a sequence {r,} tending to infinity, from (68),

Tn ) Prog(9)—€

1ngJqurl (tgog (Tn)) > Iqu ()\{]og(f) — 5) eXPy_1 (log 1

Also using the definition of pfog(g) for the entire function g, we get

+0(1).

logqﬂ py(r) < log (logr)f’ﬁ)g(gﬂs

= (plg(9) +¢)loglogr
< (ply(9) +¢)logr

for large r.
Thus for a sequence {r,} tending to infinity, we obtain

Tn qo~( )—€
10gp+q+1 Hfog (Tn) logq (Afog(f) B 5) €XPg—1 (log T)pl 5

log, f1g(7n) (plqog (9) + 8) log 1,

Since pi,(g) > 0 and so we can choose £ > 0 such that

plqog(g) —e>0.

Hence
lim inf 10gp+q+1 Hfog (7)

=0.
roo logg g g (1)

O

Remark 38. In particular, A, (g) > 0, which implies that pj,,(g) > 0,
therefore we have

lo oo (T
lim sup Bt Hrog (7)
r—00 1qu+1 fig (1)

Theorem 39. Let f(z) and g(z) be transcendental entire function of

finite iterated logarithmic order p and q and let )\fog(g) > 0, then

=0.

lo oo (T 7
lirnsup Eptq+2 Hf g( ) < kplqog(g)
oo 1084y i () Alog(9)

for some positive constant k such that logr* < (log r)k .
Proof. From (67) it easily follows that
108,411 Hpog (1) < log, (plpog(f )+ 5) exp,_; (log ZT)plog(gHE

for large r.
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So for sufficiently large r

108, 42 fifog (1) < log,.iexp,_, (log2r) k=% 1 0 (1)
= loglog (log 2r)*==* 1 O(1)

< log (log 2r)"e: 9% 1 O(1)
< (phg(9) +¢)loglog 2r + O(1)
< (phe(9) +¢) loglogr® + O(1)

IN

k (g (9) + ) loglogr + O(1)
Again we have for sufficiently large r

log,, 1 g (1) > ()\f’og(g) — 5) log log r.
Hence

lo oo (T 7
lim sup gp+q+2 Hfog ( ) < kplqog(g) '
T—00 logq-‘rl Hg (T) )‘log (g)
OJ

Theorem 40. Let h(z) and f(z) be two entire functions of finite it-
erated logarithmic order such that pf,, (h) < X, (f) then

i 10845 Hhog (T)
rereo 10gp+q Hfog (T)
for any nonconstant entire function g(z) of finite iterated order
Plog (9) -

Proof. We have from Niino [7],

[ifog (1) = Myoq (1)

=0

= —— My (r — ’I’_B) .
Now, from the definition of A, (f) we get,
(log 7’)>‘fog(f)_8 < log, My ()
for large r and also from the definition of pj, (h) we have,

(log r)*=="** > log, M), (r)
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for large 7.
Hence

1 _
Lfog (1) > T %Py log, Myoq (r — 7 5)

1 My (r —r=) —[g(0)|
> mexpplogpr < g — |9(0)|

5r2(at1)

! My (r =) ~ |g(0) 17
> 5 XDy (log{ g ) —19(0)]

1 M, (r—r=9) Mog(F) =
> r,3+1 epr (log { 6T2(a+1) })

(69) > exp, (log (M, (r,g)))"s"=.

On the other hand, for large r,

Mg (r)

My, (Mg (r))

exp, log, My, (M, (r))

exp, (log (M, (r))) e *e.

Hhog (1)

ININA

(70)
Choose € > 0 such that
Plog(h) + & < )\log(f) — €.
Thus from (69) and (70) we get,

(
hog () exps (log (M, (r)))Plog(h)+6 |
Hfog (T) exp,, (log (Mg (T)))Afog(f)*s

Therefore
lim Hhog (T)

=0.
=00 [Lfoq (1)

O

Theorem 41. Let f and g be entire functions of finite iterated log-
arithmic order such that 0 < A (f) < pi,(g9) < oo and pj,,(h) =
plog(k). Then the entire functions h and k with finite iterated logarith-
mic order s and t respectively satisfy

lim inf —logp v tgon (1)

T—00 1qu-f-t Hgok (7)

=0.
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Proof. Now for sufficiently large r, using (15) we obtain,

st = 1 [ 3 ) -0
> (log (%Mh (2) +O(1))>Aﬁ,g<f)—s

|:10g (%Mh G))J Noo(f)—2
> [log (uh G))]Abg(f)—a.

And so for a sequence {r,} with r, > rg

v

log, s [Hfon (Tn)] > log [log <,uh (2))})‘{;{;”)—5
= log,_, ()\{)og(f) - 5) log log iy, (%)

= logsfl (Aifog(f) - 8) eXp572 logs Hh <£>

0\ Plog (W) —€
(71) = logs—l ()\{)og(f) - 8) €XPs_2 (%) 1

On the other hand,

10gq+t Mgor, (7“)

log, log,, M, (M, (1))

log, [log Mk(r)]pﬁ)g(gHE

log, 4 (P?og(g) + 8) exp,_, log, My (r)
log, 1 (phg(9) +€) exp,_, (log r)Plos®B) e

lqu+t [1gor (1))

IA A

IA A

(72)

Since 0 < A, (f) < pig(9) < 0o and pf,(h) = pj,.(k), choose ¢
such that A\l (f) — & < pi,(9) + ¢ and p} (h) — e = pf,, (k) + €, then
from (71) and (72) it follows that as r — oo

logp—l-s Hfoh (7“)

=0.
10844 tgok (1)

Hence proves the theorem. [
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