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WEAK FORMS OF OPEN FUNCTIONS BETWEEN
MINIMAL STRUCTURE SPACES AND BOUNDARY
PRESERVATION
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Abstract. In this note we continue the study of almost M —open
functions between spaces with minimal structure, also taking into
account the unified theory of weakly M —open functions developed
by Noiri and Popa. Our main result is a characterization of almost
M —open functions via preservation of boundary under inverse image,
generalizing a classical characterization of open functions in topologi-
cal spaces. We partially extend this result to the setting of generalized
closure spaces, which allows us to obtain, as a special case, a new char-
acterization of weakly M —open functions in terms of m —f—boundary
preservation.

1. INTRODUCTION

between spaces endowed with minimal structures [31]. A family mx C
P(X) is called a minimal structure (shortly, m—structure) on X if
) € mx and X € mx. The couple (X, my) is called a space with
minimal structure or an m—space, for short.
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The members of myx are called m—open sets and their complements
form the class of m—closed sets. Arbitrary unions of m—open sets play
an important role and will be called almost m—open sets, while com-
plements of almost m—open sets will be called almost m—closed sets.
A minimal structure mx is said to have property (B) if it closed under
arbitrary unions and in this case it is called a generalized topology [5].
In topological spaces, each of the following classes of sets forms a min-
imal structure which plays an important role in the study of various
forms of generalized continuity: semi-open sets [8], preopen sets [11],
semi-preopen sets [2], a—open sets [19], f—open sets [1], d—open sets
[39], 6—open sets [39].

Using the framework of minimal structure spaces, Popa and Noiri
obtained unified theories for generalized forms of continuous functions
[31], [32], [33], [34], [35], [36], [24], [25], contra-continuous functions
23], open functions [28], [29], [30], closed functions [26], [27]. This
unifying approach, that encompasses a broad range of generalizations
of continuous functions, open functions and closed functions, opened
new perspectives for research on these concepts.

In this note we continue the study of a class of generalized open
functions between minimal structure spaces introduced in our earlier
paper [13], also taking into account the unified theory of weakly open
functions developed by Noiri and Popa in [28]. A function between
m—spaces is M —open if it maps m—open sets to m—open sets, respec-
tively is almost M —open if it maps almost m—open sets to almost
m—open sets. Let us recall the following special cases of M —open
functions: semi-open functions [22], almost open functions (in the
sense of Singal) [20] and [21], preopen functions [11], a«—open func-
tions [12], f—open functions [1], semi-preopen functions [18].

Our main result is a characterization of almost M —open functions
via preservation of boundary under inverse image. We prove that a
function between minimal structure spaces f : (X, mx) — (Y, my) is
almost M —open if and only if f~! (my Fr(B)) C mxEFr (f~'(B)) for
all B C Y. Finally, we partially extend to generalized closure spaces
this result on boundary preservation under the inverse image of an
almost open function, obtaining a new characterization of weakly
M —open functions as a special case. The topological study of gener-
alized closure spaces [7], [37] has many applications to mathematical
models used in various fields [3], [38].
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2. PRELIMINARIES

A function u from the power set P(X) of a non-empty set X into
itself is called a generalized closure operator on X (GCO, for short)
and the pair (X, u) is said to be a generalized closure space (GCS, for
short).

Definition 1. [37] A GCO u : P(X) — P(X) is called grounded if
uw(@) = 0, isotone if A C B C X implies u(A) C u(B), expansive
if A C u(A) for every A C X, contractive if A C u(A) for every
A C X, idempotent if u(u(A)) = u(A) for every A C X, sublinear if
u(AUB) C u(A)Uu(B) for every A,B C X.

A Cech closure operator is a GCO which is grounded, expansive,
isotone and sublinear. A Kuratowski closure operator is a GCO which
is grounded, expansive, isotone, idempotent and sublinear.

The GCS (X, u) is said to be isotonic if u is isotone, a closure space
if u is expansive, isotone and idempotent, a neighborhood space or
monotone space if u is grounded, expansive and isotone.

The u—interior operator, w — Int : P(X) — P(X) is defined by

u— Int(A) = X\ u(X \ A)

and is called the dual of the GCO wu. Note that u is the dual of the
GCO u — Int.

Remark 2. Let u: P(X) — P(X). Then u is isotone if and only if
u— Int is isotone, u is idempotent if and only if u— Int is idempotent,
and u is grounded if and only if u — Int(X) = X.

For every family of sets F we will denote by U (F) the family of all
unions of sets that belong to F. Note that a minimal structure mx
has property (B) if and only if U(mx) = mx.

Spaces with minimal structure are generalized closure spaces [14],
[15]. The fundamental generalized closure operators associated to a
minimal structure have been introduced by Maki in [10].

Definition 3. Let mx C P(X) be a minimal structure. For each
subset A C X the mx—closure of A and the mx—interior of A are

defined as follows:
mxCIl(A):={F:ACF and X \ F € mx},
mxInt(A) :==U{U:U C A and U € mx}.
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Remark 4. The above definitions are equivalent to: x € mx — Cl(A)
if and only if DN A # 0 for every D € mx containing x, respectively
x € myx — Int(A) if and only if there exists D € mx containing x such
that D C A.

Lemma 5. [10] Let mx C P(X) be a minimal structure. For all
subset A and B of X the following properties hold:

(1)) mxClUX \ A) = X \ mxInt(A) and mxInt(X \ A) = X \
mXC'l(A),

(11) mxCIl(A) = Aif X\ A € mx and mxInt(B) = B if B € mx;

(iii) mxClL(0) = 0, mxCl(X) = X and mxInt()) = 0,
mxInt(X)=X;

(iv) If A C B, then mxCIl(A) C mxCl(B) and mxInt(A) C
mxInt(B);

(v) mxInt(A) C A C mxCIl(A);

(vi) mxClimxCIl(A)) = mxCIl(A) and mxInt(mxInt(A)) =
mxInt(A).

The above lemma shows that the GCO’s mxCl and mxInt are
dual to each other and are both grounded, isotone and idempotent.
In addition, mxC1 is expansive, while mx Int is contractive.

Definition 6. Let (X, mx) be an m—space. A set A C X is said to be
almost m—open if mxInt(A) = A. A set B C X is said to be almost
m—closed if mxCIl(B) = B.

Since mxCl and mxInt are dual to each other, a set is almost
m—closed if and only if its complement is almost m—open. Clearly,
every m—closed set is almost m—closed, while the converse holds if
the minimal structure has property (B). Note that A C X is al-
most m—open if and only if A € U(mx). Therefore, a set is almost
m—closed if and only if this set is an arbitrary intersection of m—closed
sets. Since mxCl and mxInt are idempotent, for all subsets A and
B of X, the set mxCl(A) is almost m—closed and the set mxInt(B)
is almost m—open.

Unlike the standard closure operator C1 of a topological space, the
GCO mxCl need not to be sublinear, even if my has property (B),
as the following example shows.

Example 7. Let myx be a minimal structure such that there exist A,

B e mx with AN B ¢ U(mx). Then (AN B)\ mx — Int(AN B) is
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non-empty. But (AN B)\ mx — Int(ANB) = mx — ClL(CUD) \
(mx — Cl(C)Umx — Cl(D)), where C:= X \ A and D := X \ B.

The following GCOs mxCl, and mxInt, have been introduced and
studied in [24].

Definition 8. Let (X, mx) be a space with m—structure and S C X.
A point x € X s called:

(a) an m — @—adherent point of S if mxCUU) NS # O for every
U € mx containing x;

(b) an m—6@—interior point of S if mxCIl(V) C S for some V € mx
containing x.

Definition 9. The set mxCl,(S) containing all the m — 0—adherent
points of S is called the m — 0—closure of S. The set mxInt,(S) con-
taining all the m — @—interior points of S is called the m — @—interior

of S.

A set A C X is said to be m —f—closed in (X, mx) if mxCl,(A) =
A. The complements of m —6#—closed sets are called m —f—open sets.

The following properties have been proved in [24]. The GCOs
mxCl, and mxInt, are dual to each other, grounded and isotone. A
set A C X is m — 6—open in (X, mx) if and only if mxInt,(A) = A.
For every A C X,

mxInt,(A) C mxInt(A) C A C mxCIl(A) C mxCly(A).
In general, mxCly and mxInt, are not idempotent [17].

Lemma 10. Let (X,myx) be an m— space, A and B subsets of X,
and x € X. The following properties hold:

(i) mxInty (A) € U (mx), in particular every  — m—open set is
almost m—open;

(i1) mxCly(B) is almost m—closed, in particular every 6 —
m—closed set is almost m— closed;

(111) If x € mxCly(A), then for every 8 — m—open set D C X
containing x© we have D N A # ().

Proof. (1) We may assume that mxIntg (A) is non-empty. Denote
B = mxlInty (A). For every x € B, there exists U, € mx such that
zx e U, CmxCIl(U,;) C B. Then B= |J U,, hence B € U (mx).

zeB
(ii) Write mxCly (B) = X \ mxInty (X \ B) and use (i) with A =
X\ B.
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(iii) Assume that there exists some § —m—open set D C X contain-
ing x such that DNA = 0. Thenz € D C X\ Aand D = mxInty (D),
hence x € mxInty (D) C mxInty (X \ A). O

Corollary 11. [24, Lemma 3.6 (6)]If mx has property (B), then
mx Inty (A) is m—open and mxCly (A) is m—closed, for every A C X.

Moreover, by [24, Lemma 3.6 (5)] it is known that mxCI(A) =
mxClg(A) whenever A € myx. A more general property holds.

Lemma 12. Let (X,my) be an m— space. If A € U(mx), then
mXC'le(A) = mXC'l(A)

Proof. The inclusion mxCIl(A) C mxCl,(A) holds for every A C X.

Assume that A € U(mx). Write A = U{A4; : i € I}, where A; € mx
for every i € I. We prove that X \ mxCIl(A) C X \ mxCl,(A), hence
the reverse inclusion of the above also holds.

Let x € X \ mxCIl(A). Since x € mxInt(X \ A), there exists
U € myx containing x such that UN A = 0, i.e. UNA; = 0 for
every i € I. But A; € mx and U N A; = () implies the stronger
relation A; N mxCI(U) = 0; indeed, if there exists some y € A; N
mxCIl(U), then y € mxCl(U) and A; € mx contains y, therefore
A; NU # (. Consequently, we have A; N U = () for every i € I, hence
ANmxClU) =10. Since x € U C mxCl(U) C X \ A and U € my,
it follows that © € mxInt,(X \ A) = X \ mxCl,(A). O

2.1. Weak forms of open functions in spaces with minimal
structures. In [13] we introduced the notions of M —open function
and almost M —open function as counterparts of open functions in
the setting of m—spaces. The notion of almost M —open function is
more general than that of M —open function and is a natural dual
of the notion of M —continuous function, since a bijective function
f:(X,mx) — (Y,my) is almost M —open if and only if its inverse is
M —continuous.

Definition 13. [13, Definitions 3.1 and 3.2|A function f : (X, mx) —
(Y, my) is said to be:

(i) M—open at x € X if for each U € myx containing v € X we
have f(U) € my;

(1) M —open if it is open at each point in X ;

(11i) almost M —open at x € X if for each U € my containing
x € X there exists V € my such that f(x) € V C f(U).
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(1v) almost M —open if it is almost M —open at each point in X .

It is easy to see that f : (X,mx) — (Y,my) is M—open if and
only if it maps m—open sets to m—open sets. Similarly, it was shown
that f : (X,mx) — (Y,my) is almost M—open if and only if it
maps almost m—open sets to almost m—open sets [13, Corollary 3.1.].
Obviously, every M —open function is almost M —open. The converse
is false in general [13, Example 3.1.], but holds if my has property (B).
See [28, Lemma 4.2, Remark 4.2] for more connections to previously
studied notions of generalized open functions.

We summarize below several characterizations of (global) almost
M —open functions, proved in [13, Lemma 3.1, Lemma 3.2, Corollary
3.1, Theorem 5.1].

Lemma 14. The following are equivalent for a function f
(X, mx) — (Y, my).'

(i) f is almost M—open;

(i1) f(mxInt(A)) C myInt(f(A)) for all A C X;

(111) If U € mx, then f(U) € U(mx);

(iv) mxInt (f~*(B)) C f~' (myInt(B)) for all BC Y,

(v) [~ (myCl(B)) C mxCl(f*(B)) for all BCY.

(vi) f maps almost m—open sets to m—almost m—open sets.

In [28] Noiri and Popa introduced and investigated the notion of
weakly M —open function, that is more general than that of almost
M —open function.

Definition 15. A function f : (X,mx) — (Y,my) is said to be
weakly M —open if for each U € mx, f(U) C myInt (f(mxCI(U))).

Lemma 16. A function f:(X,mx) — (Y, my) is weakly M—open
if and only if for each U € U (mx), f(U) C myInt (f(mxClU))).

Proof. The sufficiency is obvious. The necessity follows writing

U € U(mx) as U = EUIUi, whence f(U) = g{f(Ui) C
Lejlmy[nt (f(mxCUU))) C myInt (f(mxCILU))). O

The following characterizations for weakly M —open functions have
been proved in [28].

Theorem 17. [28, Theorem 3.1.] For a function f : (X,mx) —
(Y, my) the following properties are equivalent:
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(i) f is weakly M—open;

(ii) f(mxInty(A)) C myInt(f(A)) for every subset A of X;

(iii) mxInty (f~1(B)) C f~' (myInt(B)) for every subset B of Y ;

(iv) f~ (myCl(B)) C mxCly (f~1(B)) for every subset B of Y ;

(v) For each x € X and each U € mx containing x, there exists
V € my containing f(z), such that V C f(mx — Cl(U)).

Every almost M —open function is weakly M —open, by Theorem
17 and Lemma 14, due to the inclusion mxInt,(A) C mxInt(A) for
every subset A of X. The converse is false in general, as shown in
28, Remark 4.2]. However, Noiri and Popa provided several types
of additional assumptions under which weakly M —open functions are
necessarily almost M —open.

Namely, Noiri and Popa proved that every weakly M —open function
[ (X,mx) — (Y,my) is almost M —open if at least one of the
following conditions is satisfied:

(a) f is strongly M—continuous, i.e. f(myx — Cl(A)) C f(A) for
every A C X [28, Theorem 4.1];

(b) The space (X, mx) is m—regular, i.e. for each m—closed set
F C X and each x € X \ F there exist disjoint m—open subsets U
and V' of X such that z € U and F C V [28, Theorem 4.2];

(c) f satisfies the weakly M —open interiority condition, that is, for
every U € my the following inclusion holds: my Int (f (mxCI1(U))) C
f(U) [28, Theorem 4.3];

(d) f is complementary weakly M—open, ie. f(mxFr(U)) is
m—closed in (Y, my) for each U € my, and f is a bijection, while
mx has property (B) and my is closed under finite intersection [28,
Theorem 4.4].

3. BOUNDARY PRESERVATION UNDER THE INVERSE IMAGE OF AN
WEAK OPEN FUNCTION

Open functions between topological spaces can be characterized by
the property of boundary preservation under inverse image, i.e. a
function f : (X,7x) — (Y,7y) is open if and only if f~'(0B) C
df ' (B) for every BC Y.

We extend this characterization to almost M —open functions be-
tween minimal structure spaces.

We recall the definition of the boundary (frontier) of a set in an m—
space.
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Definition 18. [35] mxEFr(A) = mxCIl(A) NmxCI(X \ A).

As a direct consequence of the above definition and of Lemma 5, we
get the alternative formulas

mxFr(A) = (X \mxInt(X\ A)) N (X \mxInt(A))
Remark 19. (i) X \ mxFr(A) = mxInt(A) UmxInt(X \ A).
(i) © € mxFr(A) if and only if every set U € mx containing x
intersects both A and (X \ A).

Lemma 20. Let (X, mx) be a space with minimal structure and A C
X. The intersection mx Fr(A)N A is empty if and only if A is almost
m—open.

Proof. By Remark 19, mxFr(A) N A is empty if and only if A C
mxInt(A) UmxInt(X \ A). But the intersection A N mxInt(X \ A)
is always empty, therefore mx Fr(A) N A is empty if and only if A C
mx Int(A), which is equivalent to A € U(mx). O

Our main result is the following characterization of almost M —open
functions.

Theorem 21. A function f: (X,mx) — (Y, my) is almost M—open
if and only if

[ (my Fr(B)) C mxFr (f~'(B)) for each BCY.
Proof. Necessity. Let B C Y. By the definition of the boundary,
[ (my Fr(B)) = f~' (myCI(B)) N [~ (myCI(Y \ B)).

Assume that f: (X, mx) — (Y, my) is almost M —open. Lemma 14
shows that

fH(myClU(B)) C mxCl(f"(B)) and
F 7 myCIY\ B)) € myxCL(f (Y'\ B)) = myCL(X\ f(B))
therefore f~! (my Fr(B)) C mxClL(f~Y(B)) NmxCL(X \ f7Y(B)) =
mxFr (f~(B)).
Sufficiency. Let B C Y. Assume that f~!(myFr(B)) C
mxFr (f~Y(B)). This is equivalent to X \ mxFr (f~4(B)) C X\
f=H (my Fr(B)).



130 MARCELINA MOCANU

We will prove that mxInt (f~1(B)) C f~!(myInt(B)), then we
will apply Lemma 14.

Using Remark 19 we see that X \ mxFEr(f~%(B)) =
mxInt(f~*(B))UmxInt(f~' (Y \ B)) and

X\ f(myFr(B)) = f= (Y \myFr(B))
= [ (myInt(B))U fH (myInt(Y \ B)).

Our assumption is equivalent to

(1) mxInt(f~' (B)) UmxInt(f~ (Y \ B))
c fHmyInt(B)U f~H (myInt(Y \ B)).

But the intersection mxInt(f~'(B)) N f~! (myInt(Y \ B))
is empty, since mxInt(f~'(B)) < X \ f7Y(Y \ B) and
fHmyInt(Y \ B)) C f7YY \ B).

Then inclusion (1) implies mxInt (f~'(B)) C f~'(myInt(B)),
q.e.d. U

We also give a pointwise version of the previous theorem, that is
stronger than that.

Theorem 22. f: (X, mx) — (Y, my) is almost M—open at x € X if
and only if for every B C'Y such that x € f~*(my Fr (B)) it follows
that x € mxFr (f~Y(B)).

Proof. Necessity. Let f : (X,mx) — (Y, my) be almost M—open
at * € X. Assume by contradiction that z € f~'(myFr(B))\
mxFr (f~Y(B)) for some B C Y.

Denote A := f~Y(B). Since z € X \ mxFr(A) = mxInt(4) U
mxInt(X \ A), there exists U € my containing = such that either
UcAorUcCX)\ A

Case 1. Assume that U C A. Then f(U) C f(A) = f(f~1(B)) C
B. As f is almost M —open at x, there exists V' € my such that f(z) €
V C f(U) C B. It follows that f(z) € myInt(B), a contradiction
with f (x) € my Fr (B).

Case 2. Assume that U € X \ A. But X\ A= X\ f7Y(B) =
7YY\ B), hence f(U) C Y\ B. As f is almost M —open at z, there
exists W € my such that f(x) e W C f(U) C Y \ B. It follows that
f(z) € myInt(Y \ B), a contradiction with f (x) € my Fr (B).
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Sufficiency. Assume by contradiction that there exists some x € X
such that x € f~'(my Fr (B)) implies x € mxEFr (f~'(B)) for every
B CY, but f is not almost M —open at x.

By the last assertion, there exists U € mx containing x such that
for every V' € my containing f (z) the set V' is not included in f(U).
Since each V' € my containing f(x) intersects Y \ f(U) and since
f(z) € VN f(U), Remark 19 (ii) shows that f(z) € myFr(f(U)).
Therefore, z € f~ (my Fr (f(U))).

For B := f(U) our assumption shows that z € f~t(my Fr (f(U)))
implies = € mx Fr (f~*(f(0))).

On the other hand, U € my contains x and U C f~!(f(U)), there-
fore x € mxInt (f~1(f(U))).

We obtained z € mxFr (f~'(f(U))) and x € mxInt (f~*(f(U))),
a contradiction. 0

4. WEAK FORMS OF OPEN FUNCTIONS BETWEEN GENERALIZED
CLOSURE SPACES

In this section we generalize the notions of almost M —open func-
tions and weakly M —open functions to the setting of generalized clo-
sure spaces. Our aim is to extend the result on the boundary preser-
vation under the inverse image of an almost open function.

Definition 23. Let (X, u) be a generalized closure space. A set A C X
is said to be:

(i) u—closed if u(A) = A;

(i1) almost u—closed if u(A) C A;

(111) u—open if A =u — Int(A);

(iv) almost u—open if A C u — Int(A).

Using the terminology from [6], a subset A in an almost u—open in
a generalized closure space (X, u) if and only if A is a neighborhood
of itself.

Given a GCS (X, u), we denote by C(X), a — C,(X), O,(X) and
a — O,(X) the family of all u—closed sets, almost u—closed subsets,
u—open subsets and almost u—open subsets, respectively.

Clearly, C,(X) C a — C(X) and O,(X) C a — O,(X), while the
reverse inclusions hold if u is expansive. Note that U € O,(X) if and
only if X\ U € Cu(X), and U € a — O,(X) if and only if X \ U €
a— Cu(X).
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By the Knaster-Tarski theorem, C,(X) # () whenever u is isotone.
If u is idempotent, then u(A) € C,(X) and u— Int(A) € O,(X) for
every A C X.

Example 24. Let mx C P(X) be a minimal structure. Denote u :=
mxCl. Then Ou(X) = a — Ou(X) = U(mx) and Cy(X) = a —
Cu(X)={X\A:AcU(mx)}.

The boundary of a set in a GCS is a concept which naturally gen-
eralizes the boundary of a set in a topological space, useful in some
applications in Theoretical Computer Science [4].

Definition 25. Let (X,u) be a GCS. The boundary of A C X in
(X, u) is
u— Fr(A) =u(A) Nu(X \ A).

Note that u — Fr(A) = u(A) \ u— Int(A) and X \ u— Fr(A) =
u—Int(A)Uu— Int(X \ A).

We recall that the notion of m—6—boundary (called m—6—frontier)
mxFryg(A) of a set A in a space with minimal structure (X, my) was
introduced in [24, Definition 5.4].

Definition 26. The m — 0—boundary of a set A C X in (X, my) is
mxFrg(A) =mxClg(A) NmxCly(X \ A).

Note that mxFrg = u — Fr for u = mxCly.

Lemma 27. Let (X,u) be a GCS, A C X and v € X. Consider the
following assertions:
(i) = € u(A);
(1)) DN A %O for every almost u—open set D C X containing .
a) If u is isotone, then (i) implies (ii).
b) If u is expansive and idempotent, then (ii) implies (i).

Proof. a) Let u be isotone. Assume by contradiction that x € u(A)
and that D N A = () for some almost u—open set D C X containing
x. The assumptions that A C X \ D, u is isotone and X \ D is almost
u—closed imply € u(A) Cu (X \ D) C X\ D. Weget ue X\ D, a
contradiction.

b) Let u be expansive and idempotent. Assume by contradiction
that DN A # () for every almost u—open set D C X containing = and
that z € X \u(A) =u—Int(X \ A). Theset Dy =u—Int(X \ A) is
u—open, since u is idempotent, therefore Dy N A # (). On the other
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hand, since u is expansive it follows Dy C X \ A, which contradicts
DanA#0D. O

Corollary 28. Let (X,u) be a GCS, A C X and x € X. Consider
the following assertions:

(i) x € u— Fr(A);

(ii) DNA#0 and DN (X \ A) # 0 for every almost u—open set
D C X containing z.

a) If u is isotone, then (i) implies (ii).

b) If u is expansive and idempotent, then (ii) implies (i).

We recall some weak forms of open functions between generalized
closure spaces, as defined in [16].

Definition 29. Let (X,u) and (Y,v) be generalized closure spaces. A
function f: (X, u) — (Y,v) is said to be:

a) open if f(A) is v—open whenever A C X is u—open;

b) almost open if f (u— Int(A)) Cv—Int(f(A)) for every A C X;

c) weakly open if f(A) C v — Int(f(u(A)) whenever A C X is
almost u—open.

Example 30. Let (X, mx) and (Y, my) be spaces with minimal struc-
ture.

a) For u =mxCl and v = myCl, a function f: (X, u) — (Y,v) is
almost open if and only if f : (X, mx) — (Y, my) is almost M —open,
by Lemma 14. Note that in this setting the notions of open function
and almost open functions are the same, since u = mxCl and v =
myCl are expansive.

b) For u=mxCl and v = myCl, a function f: (X,u) = (Y,v) is
weakly open if and only if f: (X, mx) — (Y, my) is weakly M —open,
by Lemma 16.

c) Foru=mxCl, and v =myCl, a function f : (X,u) = (Y,v) is
almost open if and only if f: (X,mx) — (Y, my) is weakly M —open,
by Theorem 17 [28, Theorem 3.1].

We compare the above forms of weak open functions.

Lemma Let f: (X,u) — (Y,v) be almost open. Then:

(i) The set f(A) is almost v—open whenever A C X is almost
u—open.

(i1) If w is expansive and v is isotone, then f is weakly open.

Proof. Let A C X be almost u—open, i.e. A Cu— Int(A). Then:
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(i) f(A) C f(u—Int(A)) C v — Int(f((A)), hence f(A) is almost

v—open.
(ii) Assuming that u is expansive and v is isotone and using v —
Int(f(A)) C v—Int(f(u(A)), it follows that f(A) C v— Int(f(u(A)).
O

Remark 31. If u is expansive and idempotent and v s isotone, then
every function f : (X,u) — (Y,v) that maps almost u—open sets to
almost v—open sets is an almost open function, in particular every
open function is almost open.

We are also interested in pointwise versions for the above types of
weak open functions between generalized closure spaces.

Definition 32. Let (X,u) and (Y,v) be generalized closure spaces. A
function f: (X, u) — (Y,v) is said to be:

a) open at x € X if for each u—open set U C X containing = the
set f(U) is v—open,

b) almost open at x € X if for each almost u—open set U containing
x there exists an almost u—open set V' containing f(x) such that V. C
F(U);

c) weakly open at x € X if for each almost u—open set U containing
x there exists an almost u—open set V' containing f(x) such that V C

f(u(U)).

Obviously, every function that is open at a point is almost open at
that point. If u is expansive, then every function that is almost open
at a point is also weakly open at that point.

We compare the pointwise version and the global version for the
notions of almost open function and of weakly open function in gen-
eralized closure spaces, respectively.

Proposition 33. Let (X,u) and (Y,v) be generalized closure spaces
and f:(X,u) = (Y,v). If f is almost open, then f is almost open at
every point x € X. The converse holds if u is an expansive, idempotent
operator and v is isotone.

Proof. Assume that f : (X,u) — (Y,v) is almost open. Fix an arbi-
trary x € X. Let U C X be an almost u—open set containing . Then
fx)e f(U) C flu—Int(U)) Cv—Int(f(U)), therefore V := f(U)
is a almost v—open set containing f(z) that is included in f(U). We
proved that f is almost open at x.
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Let f : (X,u) — (Y,v) be almost open at every point = € X.
Assume that u is an expansive, idempotent operator and v is isotone.
We prove that f (u— Int(A)) Cv— Int(f(A)) for every A C X. We
may suppose that u — Int(A) is nonempty.

Fix an arbitrary x € u — Int(A). Since u is idempotent, the set
u — Int(A) is u—open. As f is almost open at x, there exists an
almost v—open set V C Y such that f(z) € V C f (u— Int(A)). But
u is expansive, therefore f (u — Int(A)) C f(A). Since v is isotone,

V C f(A) implies v — Int(V) C v — Int(f(A)),
but f(z) € V.Cv— Int(V), hence f(z) € v— Int(f(A4)), qed. O

Proposition 34. Let (X,u) and (Y,v) be generalized closure spaces
and f: (X, u) = (Y,v).

(i) Assume that u is expansive. If f is weakly open, then f is weakly
open at every point r € X.

(i1) Assume that v is an expansive, isotone and idempotent operator.
If f is weakly open at every point x € X, then f is weakly open.

Proof. (i) Assume u is expansive. Let f : (X,u) — (Y,v) be weakly
open. Fix an arbitrary z € X. Let U C X be an almost u—open set
containing . Then f(z) € f(U) = f(u—Int(U)) Cv—Int (f(u(U))).
Then V := f(U) is an almost v—open set containing f(z) that is
included in f(U). We proved that f is almost open at z.

(ii) Assume that v is an expansive, isotone and idempotent operator.
Let f: (X,u) = (Y,v) be weakly open at every point x € X. We
prove that f(A) C v — Int(f(u(A))) for every almost u—open set
A C X. We may suppose that A is nonempty.

Fix an arbitrary x € A. As f is weakly open at z, there exists an
almost v—open set V' C Y such that f(z) € V C f(u(A)). But v
is expansive, therefore V' = v — Int(V). Moreover, since v is idem-
potent and isotone, we have v — Int(V) = v — Int(v — Int(V)) C
v—Int(f(A)).

We get f(x) € v— Int(f(A)), as desired. O

We give for a counterpart for [13, Theorem 5.1], providing nec-
essary conditions, respectively sufficient conditions for a function
f o (X,u) = (Y,v) to be almost open, under minimal assumptions
on the closure operators.
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Lemma 35. Let (X,u) and (Y,v) be generalized closure spaces. For
f (X, u) = (Y,v) consider the following assertions:

(i) f is almost open,

(ii) u — Int (f~Y(B)) C f~' (v — Int(B)) for every B CY;

(iii) f~' (v(C)) C u(f~H(C)) for every C C Y.

Then (ii) and (iii) are equivalent and

a) For v isotone, (i) implies (ii);

b) For u isotone, (ii) implies (1).

Proof. The equivalence between (ii) and (iii) is clear, since
PO\ B) = X\ f (o — Int(B) and u(f(V\ B) = X \
u— Int (f~1(B)), for every BCY.

a) Let v be isotone. Assume that f is almost open. Let B C Y.
Then f(u—Int(f~'(B))) C v—Int(f(f*(B)). Since f(f*(B) C
B and v is isotone, v — Int (f(f~'(B)) C v — Int(B). It follows
that f (u— Int(f~%(B))) C v — Int(B), hence u — Int (f~'(B)) C
[t (v — Int(B)).

b) Let u be isotone. Assume that (ii) holds. Let A C X. We prove
that f (u— Int (A)) C v — Int(f(A)). Since A C f71(f(A)) and u is
isotone, u — Int (A) C u — Int (f~1(f(A))), hence f (u— Int(A)) C
fw—=1Int(f*(f(A)))). Using (ii) for B = f(A), it follows that
fw—1Int(f*(f(A)))) C v—Int(f(A)). Then f(u— Int(A)) C
v—1Int(f(A)), qe.d. O

Now we generalize the result on the boundary preservation under
the inverse image of an almost open function, from the setting of
minimal structure spaces to that of generalized closure spaces.

Theorem 36. Let (X, u),(Y,v) be generalized closure spaces and f :
(X,u) = (Y,v). Consider the following assertions:

(i) f is almost open.

(ii) = (v—Fr(B)) Cu— Fr(f~Y(B)) for every BCY.

a) For v isotone, (i) implies (ii);

b) For u isotone expansive and v expansive, (i) implies (i).

Proof. a) Let v be isotone. Assume that f is almost open. Let B C Y.
Then f~'(v— Fr(B)) = ' (v(B)Nv(Y \ B)). By Lemma 35 (a),

fTo=Fr(B) = fB)nf(Y\B)
C u(fY(B)Nu(X\f(B) =u—Fr(B).
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b) Let u be isotone expansive and v be expansive. Assume that
(ii) holds. Let B C Y. We will prove that v — Int(f~'(B)) C
/7Y (v — Int(B)), then we may apply Lemma 35 (b), since u is isotone.

Taking complements of both members in (ii), we get

(2) u—Int(f7'(B))Uu—1Int(f~'(Y\ B))
C flw—Int(B)Uf ' (v—Int(Y\B)).

Having u expansive, u — Int(f~*(B)) C f~%(B) = X \ f~'(Y \ B).
Since v is expansive, we get f~1 (v —Int(Y \ B)) C f~1(Y \ B). It
follows that u — Int (f~Y(B))N f~ (v —Int(Y \ B)) = 0.

Then (2) implies u — Int (f~*(B)) C f~' (v — Int(B)), qe.d. O

Corollary 37. Let (X, mx) and (Y, my) be spaces with minimal struc-
ture. A function f : (X, mx) — (Y, my) is weakly M —open if and only

if
fH(my Fr(B)) C mxFro (f'(B)) forall BCY.

Proof. It suffices to note that f : (X,myx) — (Y,my) is weakly
M —open if and only if the function between GCS’s f : (X, mxCly) —
(Y, myCl) is almost open, as well as that the generalized closure op-
erators mxCly and myCl are both isotone and expansive. O
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