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ON δ–β–GENERALIZED CLOSED SETS IN
TOPOLOGICAL SPACES

MANISHA SHRIVASTAVA, TAKASHI NOIRI, PURUSHOTTAM JHA

Abstract.The concepts of δ–β–open sets and δ–β–continuous func-
tions have been introduced by Hatir and Noiri [12] and the ideas were
further investigated and their properties have been explored in [13]. In
the present paper we introduce a new notion of generalized closed sets
called δβg–closed sets in topological spaces which is the more general
form of generalized δ–closed, δ–generalized–semi–closed, δ generalized
preclosed and δ–β–closed sets. Extending this idea to define and study
δβg–quotient maps and δβg-regular and δβg–normal spaces, the au-
thors have explored further characterizations of the new concept.

1. Introduction

Levine [17], Monsef et al. [21] and Velićko [29] introduced semi–
open sets, β-open sets, δ-open and δ-closed sets, respectively. The
initiation of study of g–closed sets was done by Levine [18] in 1970.
A subset A of a topological space X is said to be generalized closed
(resp. g-closed) if Cl(A) ⊂ U whenever A ⊂ U and U is open.
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This notion has been studied extensively in recent years by many
topologist because generalized closed sets are not only natural gener-
alizations of closed sets but also suggestions of several new properties
of topological spaces.

The spaces in which the concepts of closed sets and g–closed sets
coincide are called T1/2–spaces. The concept of g–closed sets has
been generalized and investigated in the last twenty years by weaker
forms of open sets such as, α–open [23], preopen [20], semi-open [17]
and β–open [21]. By combining the concepts of δ–closedness and g–
closedness, Dontchev and Ganster [4] proposed a new class of gener-
alised closed sets called δ–generalized–closed sets and also introduced
the notation of T3/4–spaces as the spaces where every δ–generalized–
closed set is δ–closed. Dontchev et al. [5] also introduced and studied
generalized δ–closed sets in topological spaces. Park et al. [26] pro-
pounded and investigated the concept of δ–generalized–semi–closed
sets. Benchalli [3] introduced the notion of δ generalized preclosed
(briefly, δgp–closed) sets.

The purpose of the present paper is to define a new class of
generalized–closed sets called δ–β–generalized–closed (briefly δβg–
closed) sets. In the section 2, we put some basic definitions and re-
sults which are used to carry out our work. In section 3, we define
δβg–closed sets and study some basic properties and its relation with
some already existing closed sets in topological spaces. Subsequently
we define and investigate δβg–open sets. In section 4, we introduce
and study δβg–continuous functions. In section 5, we initiate and ex-
plore the notions of δβ–quotient maps and δβg–quotient maps by using
δβg–closed sets and δβg–open sets. In the last section, we introduce
and study the notions of δβg–regular and δβg–normal spaces.

1.1. Preliminaries. Throughout this paper, spaces always mean
topological spaces on which no separation axioms are assumed un-
less explicitly stated. The function f : (X, τ) → (Y, σ) denotes a
single valued function of a space (X, τ) into a space (Y, σ). Let A be
a subset of a space (X, τ). The closure of A and the interior of A are
denoted by Cl(A) and Int(A), respectively. O(X) and C(X) denote
collection of open subsets of X and collection of closed subsets of X,
respectively.

Here we recall the following known definitions and properties.
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The δ–interior [29] of a subset A of a space X is the union of all
regular open subsets of X contained in A and is denoted by Intδ(A).
The subset A is said to be δ–open [29] if A = Intδ(A). i.e., a set is
δ–open if it is the union of regular open sets. The complement of a
δ–open set is said to be δ–closed. Alternatively, a subset A of (X, τ)
is said to be δ–closed [29] if A = Clδ(A), where Clδ(A) = {x ∈ X :
Int(Cl(U)) ∩ A 6= φ, U ∈ τ and x ∈ U }. The family of δ–open sets
forms a topology on X and it is denoted by τδ.

Definition 1. Let (X, τ) be a topological space. A subset A of X is
said to be

(1) preopen [20] if A ⊆ Int(Cl(A)).
(2) semi–open[17] if A ⊆ Cl(Int(A)).
(3) α–open [23] if A ⊆ Int(Cl(Int(A)).
(4) β–open [21] if A ⊆ Cl(Int(Cl(A))).
(5) δ–semiopen [26] if A ⊆ Cl(Intδ(A)).
(6) δ–β–open [12] if A ⊆ Cl(Int(Clδ(A))).

The complement of semi–open sets (resp. α–open sets, preopen
sets, β–open sets, δ–semiopen sets and δ–β–open) are called semi–
closed sets [17](resp. α–closed sets [23], preclosed sets [20], β–closed
sets [21], δ–β–closed [12] and δ–semiclosed [26]).

Definition 2. Let (X, τ) be a topological space and A a subset of X.

(1) The union of all δ–β–open (resp. δ–semiopen, preopen [20])
sets contained in A is called the δ–β–interior (resp. δ–
semiinterior, preinterior [20])of A and is denoted by βIntδ(A)
[12] (resp. sIntδ(A) [25], pInt(A) [20]).

(2) The intersection of all δ–β–closed (resp. δ–semiclosed, pre-
closed [20]) sets containing A is called the δ–β–closure [12]
(resp. δ–semiclosure [26], preclosure [20] ) of A and is denoted
by βClδ(A) (resp. sClδ(A), pCl(A) [20]).

Lemma 3. [12] For a subset A of a topological space (X, τ), the fol-
lowing properties hold:

(1) sIntδ(A) = A ∩ Cl(Intδ(A)); sClδ(A) = A ∪ Int(Clδ(A)),

(2) βIntδ(A) = A ∩ Cl(Int(Clδ(A))); βClδ(A) = A ∪
Int(Cl(Intδ(A))).
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Definition 4. Let (X, τ) be a topological space. A subset A of X is
said to be

(1) g–closed [18] if Cl(A) ⊂ U whenever A ⊂ U and U is open in
X.

(2) δ–generalized closed (briefly δg–closed) [4] if Clδ(A) ⊂ U when-
ever A ⊂ U and U is open in X.

(3) generalized δ–closed (briefly gδ–closed) [5] if Cl(A) ⊂ U when-
ever A ⊂ U and U is δ–open in X.

(4) δ–generalized–semi–closed (briefly δgs–closed) [27] if

sClδ(A) ⊂ U whenever A ⊂ U and U is δ–open in X.
(5) δ generalized preclosed (briefly, δgp–closed)[3] if pCl(A) ⊆ U

whenever A ⊂ U and U is δ–open in X.

The complement of a g–closed [18] (resp. δg-closed [4], gδ–closed
[5], δgs–closed [27], δgp–closed [3]) set is said to be g–open (resp. δ–
generalized–open, generalized δ–open, δ–generalized–semiopen, δgp–
open).

Definition 5. A function f : (X, τ)→ (Y, σ) is to said to be

(1) g–continuous [2] if the preimage of every open set in (Y, σ) is
g–open in (X, τ).

(2) δ–continuous function [24] if the preimage of every regular open
set in Y is δ–open in X. δ–generalized–continuous [4] if the
preimage of every open set of (Y, σ) is δ–generalized–open in
(X, τ).

(3) generalized δ–continuous (briefly gδ–continuous ) [5] if the
preimage of every open set of (Y, σ) is generalized δ–open
(briefly gδ–open) in (X, τ).

(4) δ–generalized–semi–continuous (briefly δgs–continuous ) [27]
if the preimage of every open set of (Y, σ) is δ–generalized–
semi–open (briefly δgs–open) in (X, τ).

(5) δ–generalized–semi–irresolute [27] if the preimage of every δ–
generalized–semi–open (briefly δgs–open) set of (Y, σ) is δ–
generalized–semi–open (briefly δgs–open) in (X, τ).

(6) δ–β–continuous [12] if the preimage of every open set of (Y, σ)
is δ–β–open in (X, τ).

(7) δ–β–irresolute [1] if the preimage of every δ–β–open set of
(Y, σ) is δ–β–open in (X, τ).
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2. Main Results

2.1. δ–β–Generalized Closed Sets.

Definition 6. A subset A of a space (X, τ) is said to be δ–β–
generalized–closed (δβg–closed) if βClδ(A) ⊂ U whenever A ⊂ U and
U is δ–open in X. The family of all δβg–closed sets in a topological
space X is denoted by δβGC(X) .

Theorem 7. Every generalized δ–closed set is δβg–closed but not con-
versely.

Proof. Let A be any subset of a space X. Suppose A is a generalized
δ–closed set and U is any δ–open set containing A in X. Then Cl(A) ⊂
U . Since βClδ(A) ⊂ Cl(A), thus we have βClδ(A) ⊂ U and hence A
is δβg–closed. �

Example 8. Let X = {a, b, c, d} and τ = {X,φ, {a}, {c}, {d}, {a, d},
{a, c}, {c, d}, {a, c, d}}. Then (X, τ) is a topological space and A =
{a, d} is δβg–closed but it is not generalized δ–closed.

Theorem 9. Every δ–generalized semiclosed set is δβg–closed but the
converse is not true.

Proof. Let A be any δ–generalized–semiclosed subset of the space X
and U be any δ–open set containing A. Since A is δ–generalized–
semiclosed, sClδ(A) ⊂ U . Since βClδ(A) ⊂ sClδ(A), βClδ(A) ⊂ U
and hence A is δβg–closed. �

Example 10. Let X = {a, b, c, d} and τ = {X, φ, {a}, {b}, {a, b},
{b, d}, {a, b, d}}. Then (X, τ) is a topological space and A = {a, d} is
δβg–closed but it is not δ–generalized semiclosed.

Theorem 11. Every δ–generalized preclosed set is δβg–closed but the
converse is not true.

Proof. Let A be any δ–generalized–preclosed subset of the space X
and U be any δ–open set containing A. Since A is δ–generalized–
preclosed, pCl(A) ⊂ U . Since βClδ(A) ⊂ pCl(A), βClδ(A) ⊂ U and
hence A is δβg–closed. �

Example 12. Consider the Example 10, let X = {a, b, c, d} and
τ = {X,φ, {a}, {b}, {a, b}, {b, d}, {a, b, d}}. Then (X, τ)be a topo-
logical space. Let A = {a, d} which is δ–β–generalized–closed but it
is not δ–generalized preclosed.
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Theorem 13. Every δ–β–closed set is δβg–closed but not conversely.

Proof. Let A be a δ–β–closed subset of a space X and U be any δ–
open set containing A. Since A is δ–β–closed, βClδ(A) = A and hence

βClδ(A) ⊂ U . Therefore A is δβg–closed. �

Example 14. Let X = {a, b, c, d} and τ = {X,φ, {a}, {c}, {a, c},
{a, b, c}, {a, c, d}}. Then (X, τ) is a topological space and A = {a, c, d}
is δβg–closed but it is not δ–β–closed.

Theorem 15. Let A be a δβg–closed subset of a topological space
(X, τ). Then βClδ(A) \ A does not contain any non–empty δ–closed
set.

Proof. Let A be any δβg–closed set in (X, τ) and suppose G is any
δ–closed set contained in βClδ(A) \ A. Then Gc is a δ–open set in
(X, τ) such that A ⊂ Gc. Since A is δβg–closed, βClδ(A) ⊂ Gc. This
implies that G ⊂ (βClδ(A))c. We already have G ⊂ (βClδ(A) \ A). It
follows that G ⊂ (βClδ(A))c ∩ (βClδ(A) \ A) = φ �

Theorem 16. If A is a δ–open and δβg–closed subset of a topological
space (X, τ), then A is δ–β–closed.

Proof. Since A is δ–open and δβg–closed, we have βClδ(A) ⊂ A and
therefore βClδ(A) = A. Hence A is δ–β–closed. �

Theorem 17. Let A be a δβg–closed subset of a space (X, τ). Then
A is δ–β–closed if and only if βClδ(A) \ A is δ–closed.

Proof. Let A be any δ–β–closed set, then we have βClδ(A) = A.
Therefore βClδ(A) \A = φ, which is δ–closed.
Conversely, assume that βClδ(A) \A is δ–closed. Now A is δβg–closed
and βClδ(A) \ A is δ–closed, then by Theorem 15 βClδ(A)\A = φ i.e.

βClδ(A) = A. This shows that A is δ–β–closed. �

Theorem 18. Let A be a δβg–closed subset of a topological space
(X, τ) and suppose A ⊆ B ⊆ βClδ(A), then B is δβg–closed.

Proof. Let U be any δ–open set in X such that B ⊆ U , then A ⊆
B ⊆ U . Since A is δβg–closed, βClδ(A) ⊆ U . Since B ⊆ βClδ(A),

βClδ(B) ⊆ βClδ(βClδ(A)) = βClδ(A) ⊆ U and βClδ(B) ⊆ U . This
implies that B is δβg–closed in X. �

Remark 19. (1) The union of two δβg–closed sets need not be
δβg–closed.
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(2) The intersection of two δβg–closed sets need not be δβg–closed.

Example 20. Let (X, τ) be a topological spaces in the Example 8.

(1) Let A = {c} and B = {d}. Then A and B are δβg–closed sets
but their union A ∪B is not δβg–closed in X.

(2) Let A = {b, c, d} and B = {a, c, d}. Then A and B are δβg–
closed sets but their intersection A ∩ B is not δβg–closed in
X.

Theorem 21. The intersection of a δβg–closed set and a δ–closed set
is δ–β–closed.

Proof. Let A be any δβg–closed set and G be any δ–closed set. Sup-
pose V is a δ–open set such that A∩G ⊆ V , then A ⊆ (V ∪ (X \G)).
Since A is δβg–closed, βClδ(A) ⊆ V ∪ (X \ G). Since every δ–closed
set is δ–β–closed, βClδ(A ∩ G) ⊆ βClδ(A) ∩ βClδ(G) = βClδ(A) ∩G
⊆ (V ∪ (X \G)) ∩G = (V ∩G) ∪ φ ⊂ V . This proves the result. �

Definition 22. Let A be a subset of a topological space (X, τ) . The
δ–β–generalized–closure of A (briefly δβg–closure) is defined as the
intersection of all δβg–closed sets containing A and is denoted by δβg–
Cl(A).

Theorem 23. For the δβg–closure of a set A in a topological space
(X, τ), the following properties hold:

(1) If A is δβg–closed, then A =δβg–Cl(A).
(2) If A ⊂ B ⊂ X, then δβg–Cl(A) ⊂ δβg–Cl(B).
(3) δβg–Cl(A) ∪ δβg–Cl(B) ⊂ δβg–Cl(A ∪B).
(4) x ∈ δβg–Cl(A) if and only if A∩U 6= φ for every U ∈δβGO(X)

containing x.
(5) δβg–Cl(δβg–Cl(A))= δβg–Cl(A).

Proof. The proof is obvious. �

Remark 24. (1) The union of two δβg–closed sets need not be
δβg–closed.

(2) The intersection of two δβg–closed sets need not be δβg–closed.

Example 25. Let (X, τ) be a topological spaces in the Example 8.

(1) Let A = {c} and B = {d}. Then A and B are δβg–closed sets
but their union A ∪B is not δβg–closed in X.
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(2) Let A = {b, c, d} and B = {a, c, d}. Then A and B are δβg–
closed sets but their intersection A ∩ B is not δβg–closed in
X.

Theorem 26. The intersection of a δβg–closed set and a δ–closed set
is δ–β–closed.

Proof. Let A be any δβg–closed set and G be any δ–closed set. Sup-
pose V is a δ–open set such that A∩G ⊆ V , then A ⊆ (V ∪ (X \G)).
Since A is δβg–closed, βClδ(A) ⊆ V ∪ (X \ G). Since every δ–closed
set is δ–β–closed, βClδ(A ∩ G) ⊆ βClδ(A) ∩ βClδ(G) = βClδ(A) ∩G
⊆ (V ∪ (X \G)) ∩G = (V ∩G) ∪ φ ⊂ V . This proves the result. �

Definition 27. Let A be a subset of a topological space (X, τ) . The
δ–β–generalized–closure of A (briefly δβg–closure) is defined as the
intersection of all δβg–closed sets containing A and is denoted by δβg–
Cl(A).

Theorem 28. For the δβg–closure of a set A in a topological space
(X, τ), the following properties hold:

(1) If A is δβg–closed, then A =δβg–Cl(A).
(2) If A ⊂ B ⊂ X, then δβg–Cl(A) ⊂ δβg–Cl(B).
(3) δβg–Cl(A) ∪ δβg–Cl(B) ⊂ δβg–Cl(A ∪B).
(4) x ∈ δβg–Cl(A) if and only if A∩U 6= φ for every U ∈δβGO(X)

containing x.
(5) δβg–Cl(δβg–Cl(A))= δβg–Cl(A).

Proof. The proof is obvious. �

Remark 29. Since every δ–open set is δ–β–open, βClδ(A) ⊆ δ–Cl(A),
for any subset A of X.

Theorem 30. If A and B are δβg–closed sets such that δ–Cl(A) ⊆
βClδ(A) and δ–Cl(B) ⊆ βClδ(B). Then A ∪B is δβg–closed.

Proof. Let V be any δ–open set such that A ∪ B ⊆ V . Then A ⊆ V
and B ⊆ V . Since A and B are both δβg–closed, βClδ(A) ⊆ V and

βClδ(B) ⊆ V . By assumption δ–Cl(A) ⊆ βClδ(A) and δ–Cl(B) ⊆
βClδ(B). Since every δ–open set is δ–β–open. Therefore δ–Cl(A∪B)
= δ–Cl(A) ∪ δ–Cl(B) = βClδ(A) ∪ βClδ(B) ⊆ V ∪ V = V . Since

βClδ(A ∪B) ⊂ δ–Cl(A ∪B) ⊆ V , A ∪B is δβg–closed. �

Definition 31. A space (X, τ) is called a Tδβ3/4–space if every δβg–
closed set is δ–β–closed.
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Theorem 32. For a topological space (X, τ), the following properties
are equivalent:

(1) (X, τ) is a Tδβ3/4–space.
(2) Every singleton {x} is either δ–β–open or δ–closed.

Proof. (1) ⇒ (2). Let x ∈ X and suppose {x} is not δ–closed. Then
X \ {x} is not δ–open. Thus X \ {x} is δβg–closed. Since (X, τ) is a
Tδβ3/4–space, X \ {x} is δ–β–closed i.e. {x} is δ–β–open in (X, τ).

(2)⇒ (1). Let A be a δβg–closed set in (X, τ) and suppose
x ∈β Clδ(A). Since {x} is either δ–β–open or δ–closed, we have fol-
lowing two cases:
Case(i): Let {x} be δ–β–open and suppose x /∈ A. Then A ⊂ X \ {x}
and X \ {x} is δ–β–closed. Therefore x /∈β Clδ(A). Therefore

βClδ(A) ⊂ A. Since A ⊂β Clδ(A), βClδ(A) = A and hence A is
δ–β–closed.
Case(ii): Let {x} be δ–closed and suppose that x /∈ A. Then A ⊂
X\{x} andX\{x} is δ-open. SinceA is δβg–closed, βClδ(A) ⊂ X\{x}
and hence x /∈β Clδ(A). Therefore, βClδ(A) ⊂ A. Since A ⊂β Clδ(A),

βClδ(A) = A and hence A is δ-β-closed.
From above two cases, it follows that every δβg–closed set is δ–β–

closed. Therefore the space (X, τ) is a Tδβ3/4–space. �

2.2. δ–β–Generalized Open Sets.

Definition 33. A subset A of X is said to be δβg–open if its comple-
ment is δβg–closed.

Theorem 34. Let A be any subset of a space (X, τ). Then A is δβg–
open if and only if G ⊂β Intδ(A) whenever G is δ–closed and G ⊂ A.

Proof. Necessity. Let A be a δβg–open set with G ⊂ A, where G is
a δ–closed set. Then X \ A is a δβg–closed set contained in X \ G,
where X \G is a δ–open set. Hence βClδ(X \A) ⊂(X \G) and hence
X \β Intδ(A)⊂(X \G). Thus G ⊂β Intδ(A).
Sufficiency. Let X \A ⊂ V and V be δ–open in X. Then X \ V ⊂ A
and X\V is δ–closed. Thus X\V ⊂β Intδ(A) and hence βClδ(X\A) =
X \β Intδ(A) ⊂ V . Therefore X \ A is a δβg–closed set and hence A
is δβg–open. �

Theorem 35. If A is δβg–open and B is any set in X such that

βIntδ(A) ⊆ B ⊂ A, then B is δβg–open in X.
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Proof. Its proof follows from the Definition 33 and from Theorem 18.
�

Theorem 36. If A is δβg–open and B is any set in X such that

βIntδ(A) ⊆ B ⊂ A, then A ∩B is δβg–open in X.

Proof. Suppose A is δβg–open and βIntδ(A) ⊆ B, then A∩ βIntδ(A)
⊆ A ∩ B ⊆ A. Since βIntδ(A) ⊆ A, we have βIntδ(A) ⊆ A ∩ B ⊆ A.
Therefore by Theorem 35 A ∩B is δβg–open. �

Definition 37. Let A be a subset of a topological space (X, τ) . The
δ–β–generalized–interior of A is defined as the union of all δβg–open
sets contained in A and is denoted by δβg–Int(A).

Theorem 38. For the δβg–interior of a set A in a topological space
(X, τ), the following properties hold:

(1) If A is δβg–open, then A =δβg–Int(A).
(2) If A ⊂ B ⊂ X, then δβg–Int(A) ⊂ δβg–Int(B).
(3) δβg–Int(δβg–Int(A)) = δβg–Int(A).
(4) δβg–Int(A) ∪ δβg–Int(B) ⊆ δβg–Int(A ∪B).

Proof. Proof above is obvious. �

Theorem 39. Let A be any subset of a space (X, τ). If A is δβg–open,
then V = X, whenever V is δ–open and βIntδ(A) ∪ (X \ A) ⊂ V .

Proof. Let V be a δ–open set in X and βIntδ(A)∪(X \A) ⊂ V . Then,
we have

X \ V ⊂ X\ [βIntδ(A)) ∪ (X \ A] = (X \β Intδ(A)) ∩ (X \ (X \ A))
= βClδ(X \ A) \ (X \ A).

Since X \ V is δ–closed and X \ A is δβg–closed, by Theorem 15
X \ V = φ and hence V = X. �

2.3. δ–β–Generalized–Continuous and δ–β–Generalized–
Irresolute Functions.

Definition 40. A function f : (X, τ) → (Y, σ) is said to be δ–β–
generalized–continuous(briefly δβg–continuous) if the inverse image
of each open set in Y is δβg–open in X.

Theorem 41. (1) Every δgs–continuous function is δβg–
continuous.

(2) Every gδ–continuous function is δβg–continuous.
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(3) Every δ–β–continuous function is δβg–continuous.

Proof. The proofs of (1),(2) and (3) are obvious by Theorems 7, 9 and
13, respectively. �

Remark 42. The converse of (1) and (2) of the above Theorem 41
need not be true in general as shown by the following examples 43 and
44, respectively.

Example 43. Let X = {a, b, c, d}, τ = {X,φ, {a}, {c}, {a, c}, {a, b},
{a, b, c}, {a, c, d}}, then (X, τ) is a topological space. Let Y =
{1, 2, 3, 4}, σ = {Y, φ, {2, 3}, {2}, {2, 4}, {2, 3, 4}}, then (Y, σ) is a
topological space.
Let f : (X, τ) → (Y, σ) be a function defined as f(a) = 3, f(c) = 1,
f(b) = 2, f(d) = 4, then f is δβg–continuous, since the preimage of
every open set in Y is δβg–open in X. But f is not δgs–continuous,
since the preimage of an open set A = {2, 4} in Y is {b, d}, which is
δβg–open, but this is not δgs–open in X.

Example 44. Let X = {a, b, c, d}, τ = {X,φ, {a, b}, {d}, {a, b, d}},
then (X, τ) is a topological space. Let Y = {1, 2, 3, 4},
σ = {Y, φ, {1}, {2}, {1, 2}, {2, 4}, {1, 2, 4}} then (Y, σ) is a topo-
logical space.
Let f : (X, τ) → (Y, σ) be a function defined as f(a) = 2, f(c) = 4,
f(b) = 1, f(d) = 3, then f is δβg–continuous, since the preimage of
every open set in Y is δβg–open in X. But f is not gδ–continuous,
since the preimage of an open set A = {2, 4} in Y is {a, c}, which is
δβg–open in X. But {a, c} is not gδ–open in X.

Remark 45. The converse of (3) of the above Theorem 41 need not
be true in general as shown by the following example.

Example 46. Let X = {a, b, c, d}, τ = {X,φ, {a}, {a, b}, {b},
{a, b, c}}, then (X, τ) is a topological space. Let Y = {1, 2, 3, 4},
σ = {Y, φ, {2}, {4}, {2, 4}, {2, 3, 4}} then (Y, σ) is a topological space.
Let f : (X, τ) → (Y, σ) be a function defined as f(a) = 1, f(b) = 2,
f(c) = 4, f(d) = 3, then f is δβg–continuous, since the preimage of
every open set in Y is δβg–open in X. But f is not δ–β–continuous,
since the preimage of an open set A = {4} in Y is {c}, which is
δβg–open in X. But {c} is not δ–β–open in X.
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Theorem 47. Let f : (X, τ)→ (Y, σ) be a function from a topological
space X into a topological space Y .

(1) The following statements are equivalent
(i) f is δβg–continuous.

(ii) The inverse image of each closed set in Y is δβg–closed
in X.

(2) If f : (X, τ) → (Y, σ) is δβg–continuous, then the following
properties hold:
(i) For each p ∈ X and each open set O in Y with f(p) ∈ O,

there exist a δβg–open set B in X such that p ∈ B and
f(B) ⊆ O.

(ii) For every subset A of X, f(δβg–Cl(A)) ⊆ Cl(f(A)).

Proof. (1) (i) ⇔ (ii). This is direct from the Definition 33 and
Definition 40 .

(2) (i) Since f is δβg–continuous, for each p ∈ X and each open
set O in Y with f(p) ∈ O, p ∈ f−1(O) ∈ δβGO(X). Let
B = f−1(O), then we have p ∈ B and f(B) ⊆ O.

(ii) Let A be any subset of X, then Cl(f(A)) is closed in Y.
Since f is δβg–continuous, f−1(Cl(f(A)) is δβg–closed in
X. Since A ⊂ f−1(f(A)) ⊆ f−1(Cl(f(A)), it follows that
δβg–Cl(A) ⊆ δβg–Cl(f−1(Cl(f(A)))) = f−1(Cl(f(A)).
Hence f(δβg–Cl(A)) ⊆ Cl(f(A)).

�

Theorem 48. For a function f : (X, τ)→ (Y, σ), the following state-
ments are equivalent:

(1) For every subset A of X, f(δβg–Cl(A)) ⊆ Cl(f(A)).
(2) For each subset B of Y , δβg–Cl(f−1(B))⊆ f−1(Cl(B)).
(3) For each subset A of Y , f−1(Int(B)) ⊆ δβg–Int(f−1(B).

Proof. (1) ⇒ (2). Let B be any subset of Y . By (1), f (δβg–
Cl(f−1(B))) ⊆ Cl(f(f−1(B))) ⊆ Cl(B) and hence δβg–Cl(f−1(B))
⊆ f−1(Cl(B)).

(2)⇒ (3). Let B be any subset of Y . By (2), δβg–Cl(f−1(Y \ B))
⊆ f−1(Cl(Y \B)).

This implies that δβg–Cl(X \f−1(B)) ⊆ f−1(Y \Int(B)) and hence
X\ (δβg–Int(f−1(B)) ⊆ X \ f−1(Int(B)). Therefore, f−1(Int(B)) ⊆
(δβg–Int(f−1(B)).
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(3)⇒ (1). Let A be any subset of X. By (3), we have

f−1(Int(Y \ f(A))) ⊆ δβg–Int(f−1(Y \ f(A)),
f−1(Y \ Cl(f(A)) ⊆ δβg–Int(X \ f−1(f(A)) and

X \ f−1(Cl(f(A))) ⊆ δβg–Int(X \ A) = X\ δβg–Cl(A).

Therefore, δβg–Cl(A) ⊆ f−1(Cl(f(A))) and hence f(δβg–Cl(A)) ⊆
Cl(f(A)). �

Definition 49. A function f : (X, τ)→ (Y, σ) is said to be

(1) δβg–irresolute if f−1(V ) ∈ δβGO(X) for each V ∈ δβGO(Y ).
(2) δβg–preserving if f(U) ∈ δβGO(Y ) for each U ∈ δβGO(X).

Theorem 50. Let f : (X, τ)→ (Y, σ) and g : (Y, σ)→ (Z, η) be any
two functions. Then the following properties hold:

(1) If f : (X, τ) → (Y, σ) is δβg–continuous and g : (Y, σ) →
(Z, η) is continuous, then g ◦ f : (X, τ) → (Z, η) is δβg–
continuous.

(2) If f : (X, τ)→ (Y, σ) is δβg–irresolute and g : (Y, σ)→ (Z, η)
is δβg–continuous, then g ◦ f : (X, τ) → (Z, η) is δβg–
continuous.

(3) If f : (X, τ)→ (Y, σ) is δβg–irresolute and g : (Y, σ)→ (Z, η)
is δβg–irresolute, then g◦f : (X, τ)→ (Z, η) is δβg–irresolute.

Proof. (1) The proof is obvious.
(2) Let V be any open set in (Z, η). Since g is δβg–continuous,

f−1(V ) is δβg–open in (Y, σ). Since f is δβg–irresolute,
f−1(g−1(V )) = (g ◦ f)−1(V ) is δβg–open in (X, τ).
It follows that g ◦ f : (X, τ)→ (Z, η) is δβg–continuous.

(3) The proof is obvious.
�

2.4. δ–β–Quotient and δβg–Quotient Maps.

Definition 51. A surjective map f : (X, τ)→ (Y, σ) is called a δ–β–
quotient map provided a subset V of Y is open (resp. closed) in (Y, σ)
if and only if f−1(V ) is δ–β–open (resp. δ–β–closed) in (X, τ).

Definition 52. A surjective map f : (X, τ)→ (Y, σ) is called a δβg–
quotient map provided a subset V of Y is open (resp. closed) in (Y, σ)
if and only if f−1(V ) is δβg–open (resp. δβg–closed) in (X, τ).
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Remark 53. Every δ–β–quotient map is δ–β–continuous and every
δβg–quotient map is δβg–continuous. But the converse of these need
not be true in general.

Example 54. Let X = {a, b, c, d}, τ = {X,φ, {b}, {d}, {c}, {b, d},
{b, c}, {c, d}, {b, c, d}}, then (X, τ) is a topological space. Let Y =
{w, x, y, z} and σ = {Y, φ, {w}, {x, y}, {w, x, y}} then (Y, σ) is a topo-
logical space.
Let f : (X, τ) → (Y, σ) be a function defined by f(a) = y, f(b) = z,
f(c) = w, f(d) = x. Then f is δ–β–continuous and hence δβg–
continuous, but it is neither δ–β–quotient nor δβg–quotient. Because
f−1(z) = b is δ–β–open and therefore δβg–open in (X, τ), but z is not
open in (Y, σ).

Theorem 55. If f : (X, τ) → (Y, σ) is a δ–β–quotient map and
g : (Y, σ) → (Z, η) is a quotient map, then g ◦ f : (X, τ) → (Z, η) is
δ–β–quotient.

Proof. Since g is quotient map, U is an open set of Z if and only if
g−1(U) is open in Y . Since g−1(U) is open in Y and f is δ–β–quotient,
we have f−1(g−1(U)) = (g ◦ f)−1(U) is δ–β–open in X if and only if
g−1(U) is open in Y . Therefore U is open in Z if and only (g◦f)−1(U)
is δ–β–open in X. This shows that g ◦ f is δ–β–quotient. �

Theorem 56. Let p : (X, τ) → (Y, σ) be a δ–β–quotient map. Let
(Z, η) be a space and g : (X, τ)→ (Z, η) be a map that is constant on
the set p−1({y}) for each y ∈ Y . Then g induces a map f : (Y, σ) →
(Z, η) such that f ◦ p = g. For the induced map f, the following
properties hold:

(1) f is continuous if and only if g is δ–β–continuous,
(2) f is a quotient map if and only if g is a δ–β–quotient map.

Proof. Suppose for each element y ∈ Y , p−1({y}) ⊆ X. Since g is a
constant map on the set p−1({y}) for y ∈ Y , g(p−1({y})) is one point
set in Z and let g(p−1({y})) = f(y)(say). Then a map f : (Y, σ) →
(Z, η) is defined such that for each x ∈ X, f(p(x)) = g(x).

(1) Let f be continuous. Then, since p is a δ-β-quotient map, the
map g = f ◦ p is δ–β–continuous. Conversely, suppose that g is δ–β–
continuous. Then, for any open set U in Z, g−1(U) is δ–β–open in X.
Therefore g−1(U) = p−1(f−1(U)) is again δ–β–open in X. Since p is
a δ–β–quotient map, f−1(U) is open in Y and hence f is continuous.



ON δ–β–GENERALIZED CLOSED SETS IN TOPOLOGICAL SPACES 179

(2) Suppose f is a quotient map, then by Theorem 55, g = f ◦p is δ–
β–quotient. Conversely, suppose g is δ–β–quotient and therefore it is
surjective. Then it follows that f is also surjective. Let U be any open
set of Z. Since p is a δ–β–quotient map, then the set p−1(f−1(U)) is δ–
β–open in X if and only if f−1(U) is open in Y . Since p−1(f−1(U)) =
g−1(U), therefore g−1(U) is δ–β–open in X. Since g is a δ–β–quotient
map, U is open in Z. Thus U is open in Z if and only if f−1(U) is
open in Y . This shows that f is a quotient map. �

Corollary 57. Let p : (X, τ)→ (Y, σ) be a δβg–quotient map. Under
the same assumption with Theorem 56, for the induced map f, the
following properties hold:

(1) f is continuous if and only if g is δβg–continuous,
(2) f is a quotient map if and only if g is a δβg–quotient map.

Proof. It is obvious. �

Theorem 58. Let X, Y and Z is a topological spaces. If
f : (X, τ)→ (Y, σ) is δβg–preserving δβg–irresolute surjection and
g : (Y, σ)→ (Z, η) is a δβg–quotient map, then their composition
g ◦ f : (X, τ)→ (Z, η) is δβg–quotient.

Proof. Let U is an open set in (Z, η). Then g−1(U) is δβg–open in
(Y, σ), since g is δβg–quotient. Since f is δβg–irresolute, f−1(g−1(U))
= (g ◦ f)−1(U) is δβg–open in (X, τ). It implies that g ◦ f is δβg–
continuous. Assume that f−1(g−1(U)) is δβg–open in (X, τ) for a set
U in (Z, η). Since f is δβg–preserving, f(f−1(g−1(U))) is δβg–open
in (Y, σ). Since f is surjective, f(f−1(g−1(U)))= g−1(U) is δβg–open
in (Y, σ). Since g is δβg–quotient, g(g−1(U)) i.e. U is open in (Z, η).
Hence g ◦ f is δβg–quotient. �

2.5. δβg–Regular and δβg–Normal spaces.

Definition 59. A topological space (X, τ) is said to be δβg–regular if
for every δβg–closed set G and every point x /∈ G, there exists disjoint
δ–β–open sets U and V such that G ⊆ U and x ∈ V .

Theorem 60. For a space (X, τ) the following are equivalent:

(1) (X, τ) is δβg–regular.
(2) For every x ∈ X and every δβg–open set P containing x, there

exists a δ–β–open set Q such that x ∈ Q ⊂ βClδ(Q) ⊂ P .
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(3) Every δβg–closed set G and every point x /∈ G, there exists a
δ–β–open set P containing ’x’ such that βClδ(P ) ∩G = φ.

Proof. (1)⇒ (2). Assume that (X, τ) be a δβg–regular space. Let P
be a δβg–open set containing a point x ∈ X. Since X\P is δβg–closed
and x /∈ X \ P , by the hypothesis, there exist δ–β–open sets R and S
such that X\ P ⊆ R , x ∈ Q and R∩Q = φ. Now, R∩Q = φ implies
that x ∈ Q ⊂ X \ R ⊂ P and hence we obtain x ∈ Q ⊂ βClδ(Q) ⊂
X \R ⊂ P .
(2) ⇒ (3). Let x ∈ X and G be a δβg–closed set such that x /∈ G.
Then x ∈ (X \ G) and (X \ G) is δβg–open in X. By hypothesis,
there exists a δ–β–open subset P of X such that x ∈ P ⊂ βClδ(P ) ⊂
(X \G), which implies that βClδ(P ) ∩G = φ.
(3)⇒ (1). Let x ∈ X and P be a δβg–open set not containing x. By
(iii), (X \ P ) is δ–closed set and x /∈ (X \ P ). Therefore, there exists
a δ–β–open set R with x ∈ R such that βClδ(R) ∩P = φ. Let V =X\
βClδ(R). Then R and V are δ–β–open sets such that x ∈ R, P ⊂ V
and R∩ V ⊂ R ∩(X\R) = φ. It follows that (X, τ) is δβg–regular. �

Theorem 61. If f : (X, τ)→ (Y, σ) is a δ–β–continuous injection of
a topological space X into a regular space Y. If the image of δβg–closed
set in X is closed, then X is δβg–regular.

Proof. Let x ∈ X and suppose A be any δβg–closed set not containing
x in X. Then by assumption, A is closed in X. Since f is closed map,
f(A) is a closed set in Y not containing f(x). Since Y is regular,
there exist disjoint open sets P and Q in Y such that f(x) ∈ P and
f(A) ⊆ Q. Since f is δ–β–continuous, f−1(P ) and f−1(Q) are disjoint
δ–β–open sets in X containing x and A respectively. Hence X is
δβg–regular. �

Definition 62. A topological space (X, τ) is said to be δβg–normal if
for every pair of disjoint δβg–closed subsets F and G of X, there exist
disjoint δ–β–open subsets U and V of X such that F ⊆ U and G ⊆ V .

Theorem 63. For a topological space (X, τ), the following are equiv-
alent:

(1) X is δβg–normal.
(2) For every pair of δβg–open subsets U and V of X with U ∪

V = X, there exist δ–β–closed subsets F and G of X such that
F ⊆ U , G ⊆ V and F ∪G = X.
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(3) For every δβg–closed set M and every δβg–open set N in X
such that M ⊆ N , there exists a δ–β–open subset V of X such
that M ⊆ V ⊆ βClδ(V ) ⊆ N .

(4) For every pair of disjoint δβg–closed subsets M and N of X,
there exists a δ–β–open subset V of X such that M ⊆ V and

βClδ(V ) ∩N = φ.
(5) For every pair of disjoint δβg–closed subsets M and N of X,

there exist δ–β–open subsets U and V of X such that M ⊆ U ,
N ⊆ V and βClδ(U) ∩ βClδ(V ) = φ.

Proof. (1)⇒ (2). Let U and V be any pair of δβg–open subsets of a
δβg–normal space X with U ∪ V = X. Then X \ U and X \ V are
disjoint δβg–closed subsets of X. According to the assumption, there
exist disjoint δ–β–open subsets P and Q of X such that X \ U ⊆ P
and X \ V ⊆ Q. Let F = X \ P and G = X \Q. Then, F and G are
δ–β–closed subsets in X such that F ⊂ U , G ⊂ V and F ∪G = X.

(2) ⇒ (3). Let M be a δβg–closed set and N be a δβg–open set
in X such that M ⊂ N . Then X \M and N are δβg–open subsets
of X such that (X \M) ∪ N = X. By assumption, there exist δ–β–
closed subsets F and G of X such that F ⊆ (X \M), G ⊆ N with
F ∪ G = X. Therefore, we have M ⊆ (X \ F ) ⊆ G ⊆ N . Let V=
X \ F . Then V is a δ–β–open subset of X. Since G is δ–β–closed in
X, βClδ(V ) ⊆ G. It follows that M ⊆ V ⊆ βClδ(V ) ⊆ N .

(3)⇒ (4). Let M and N be disjoint δβg–closed subsets of X. Then
M ⊆ X \ N , where X \ N is δβg–open. By assumption, there exists
a δ–β–open subset V of X such that M ⊆ V ⊆ βClδ(V ) ⊆ X \ N .
Hence βClδ(V ) ∩N = φ.

(4) ⇒ (5). Let M and N be any disjoint δβg–closed subsets of
X. By assumption there exists a δ–β–open set U containing M with

βClδ(U) ∩N= φ. Since βClδ(U) is δ–β–closed, then it is δβg–closed.
Therefore βClδ(U) and N are disjoint δβg–closed subsets of X. Again
by assumption, there exists a δ–β–open set V in X such that N ⊆ V
and βClδ(U) ∩ βClδ(V ) = φ.

(5) ⇒ (1). Let M and N be any disjoint δβg–closed subsets of X.
By hypothesis, there exist δ–β–open sets U and V such that M ⊆ U ,
N ⊆ V and βClδ(U) ∩ βClδ(V ) = φ. Thus, we have U ∩ V = φ and
hence X is δβg–normal. �
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