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A COMMON FIXED POINT APPROACH FROM
NON-ARCHIMEDEAN MENGER SPACES TO

MODULAR METRIC SPACES VIA SIMULATION
FUNCTION

BHAVANA DESHPANDE

Abstract. In this paper, we prove common fixed point theorems on
non-Archimedean Menger spaces by using the concept of simulation
function. We also deduce some consequences in modular metric spaces.

1. Introduction and preliminaries

Recently, the notion of simulation function was introduced by [8].
This definition of simulation function was revised in [10] and [12].

Definition 1. ([10], [12]). A mapping ζ: [0,∞) × [0,∞) → R is a
simulation function if it satisfies the following conditions:

(ζ1) ζ(t, s) < s− t for all t, s > 0.
(ζ2) If {tn}, {sn}are sequences in (0,∞) such that
limn→∞ tn = limn→∞ sn > 0
and tn < sn for all n ∈ N then lim supn→∞ ζ(tn, sn) < 0.

————————————————
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The set of all simulation functions is denoted by Z.
For examples of simulation functions one can refer to [3], [8], [10],

[11] [13], [17].
It is clear from (ζ1) that ζ(t, t) < 0 when t > 0.
Last more than half a century saw a tremendous growth in the field

of fixed point theory and its applications to study the
existence and uniqueness of common fixed point for different metric

structure spaces especially where the probabilistic situations arises
such as probabilistic metric spaces. The concept of probabilistic metric
space plays a very important role where the distance between the two
points are unknown but the probabilities of the possible values of the
distance are known.

For terminologies, notations and properties of probabilistic metric
spaces, we refer to [5], [6], [9], [15], [16].

Definition 2. Let R denote the set of reals and R+ denote the set of
the non-negative reals. A mapping F : R → R+ is called a distribution
function if it is non- decreasing and left continuous with inft∈RF (t) =
0 and supt∈R F (t) = 1. We will denote by D the set of all distribution
functions.

Definition 3. Let X be any nonempty set. An ordered pair (X,F ) is
called a probabilistic metric space(briefly a PM-space) if F is a map-
ping from X × X → D satisfying the following conditions (where we
denote Fp, q the distribution function F (p, q) for (p, q) ∈ X ×X) such
that

(P1)Fp,q(t) = 1 for every t > 0 if and only if p = q,
(P2)Fp,q(0) = 0 for every p, q ∈ X,
(P3)Fp,q(t) = Fq,p(t) for every p, q ∈ X,
(P4)Fp,q(t1) = 1 an y
(P5) Fp,q(t1) = 1 and Fq,r(t2) = 1 then Fp,r(max{t1, t2}) = 1 for all

p, q, r ∈ X and t1, t2 > 0
Then (X,F ) is called a non-Archimedean probabilistic metric

space(briefly a N. A. PM-space) .

In metric space (X, d) the metric d induces a mapping F : X×X →
D such that F (p, q)(t) = Fp,q(t) = H(t − d(p, q)) for every p, q ∈ X
and x ∈ R, where H is the distributive function defined by

H(x) =

{
0 x ≤ 0
1 x > 0
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Definition 4. A function ∆ : [0, 1] × [0, 1] → [0, 1] is called a T−
norm if it satisfies the following conditions:

(t1) ∆(a, 1) = a for every a ∈ [0, 1] and ∆(0, 0) = 0,
(t2) ∆(a, b) = ∆(b, a) for every a, b ∈ [0, 1],
(t3) If c ≥ a and d ≥ b then ∆(c, d) ≥ ∆(a, b),for every a, b, c ∈

[0, 1],
(t4) ∆(∆(a, b), c) = ∆(a,∆(b, c)) for every a, b, c ∈ [0, 1].

Definition 5. A Menger space is a triple (X,F,∆), where (X,F ) is
a PM-space and ∆ is a T -norm satisfying the following condition:
(P6)Fp,q(t1 + t2) ≥ ∆(Fp,q(t1), Fq,r(t2)) for every p, q, r ∈ X and t1,

t2 ≥ 0.
If we replace (P6) by
(P7)Fp,r(max{t1, t2}) ≥ ∆(Fp,q(t1), Fq,r(t2)) for everyp, q, r ∈ X

and t1, t2 ≥ 0
Then (X,F,∆) is called N. A. Menger space.

Note: We observe that a Menger space (X,F,∆) is non
Archimedean if and only if

Fp,r(t) ≥ ∆(Fp,q(t), Fq,r(t)).

An important T -norm is the T -norm ∆(a, b) = min{a, b} for all
a, b ∈ [0, 1] and this is the unique T -norm such that ∆(a, a) ≥ a for
every a ∈ [0, 1].Indeed if it satisfies this condition, we have

min{a, b} ≤ ∆(min{a, b}, min{a, b} ) ≤ ∆(a, b)
≤ ∆(min{a, b},1 ) = min {a, b}

Therefore ∆ = min.

In the sequel, we need the following definitions due to [14].

Definition 6. Let (X,F,∆) be a Menger space with continuous T-
norm ∆. A sequence {xn} of points in X is said to be convergent to
a point x ∈ X if for every t > 0

limn→ ∞Fxn,x(t) = 1.

Definition 7. Let (X,F,∆) be a Menger space with continuous T-
norm ∆. A sequence {xn} of points in X is said to be Cauchy sequence
if for every t > 0 and λ > 0, there exists an integer N = N(t, λ) > 0
such that Fxn,xm(t) > 1− λ for all m,n > N.
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Definition 8. A Menger space (X,F,∆) with the continuous T-norm
∆ is said to be complete if every Cauchy sequence in X converges to
a point in X.

Definition 9. [18]. Let (X,F,∆) be a Menger space. The probabilistic
metric F is said to be triangular if it satisfies the condition

1

Fp,q(t)
− 1 ≤ (

1

Fp,r(t)
− 1) + (

1

Fr,q(t)
− 1)

for every p, q, r ∈ X and each t > 0.

Definition 10. [7].Two self maps A and B on a set X are said to be
weakly compatible if they commute at their coincidence point.

2. Common fixed point via simulation function on N. A.
Menger spaces

Theorem 11. Let (X, F, ∆) be a N. A. Menger space with F trian-
gular and let A, B : X → X be two given mappings. Assume that
there exists ζ ∈ Z such that

(1) ζ(
1

FAx, Ay(t)
− 1,

1

FBx, By(t)
− 1) ≥ 0 for all x, y ∈ X

If AX ⊆ BX and AX or BX is a complete subset of X. Then A
and B have unique coincidence point in X. Moreover if A and B are
weakly compatible then A and B have a unique common fixed point
in X.

Proof. First of all we will prove that if coincidence point of A and B
exists then it is unique.

Suppose that v1 and v2 are two distinct coincidence points of A and
B.Then then there exists two distinct points u1, u2 ∈ X such that

Au1 = Bu1 = v1 ̸= v2 = Au2 = Bu2.

It follows by( 1) that

0 ≤ ζ(
1

FAu1, Au2(t)
− 1,

1

FBu1, Bu2(t)
− 1)

= ζ(
1

Fv1,v2(t)
− 1,

1

Fv1,v2(t)
− 1)

< 0,
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but this is a contradiction. Thus we have v1 =
v2.

Let x0 ∈ X be arbitrary. We have AX ⊆ BX therefore there exists
x1 ∈ X such that Ax0 = Bx1 continuing this process, we construct a
sequence {xn} such that

Axn = Bxn+1 for all n ∈ N

Let Axn = Bxn+1 = yn.If yn = yn+1 for some n ∈ N then Bxn+1 =
yn = yn+1 = Axn+1.

Thus xn+1 is the unique coincidence point of A and B. Therefore
let us suppose that yn ̸= yn+1 for all n ∈ N.Hence we have

0 ≤ ζ(
1

FAxn, Axn+1(t)
− 1,

1

FBxn, Bxn+1(t)
− 1)

= ζ(
1

Fyn, yn+1(t)
− 1,

1

Fyn−1, yn(t)
− 1)

< Syn−1, yn(t)− Syn, yn+1(t)(2)

where S(yn−1, yn, t) =
1

Fyn−1, yn (t)
− 1.

Therefore {S(yn−1, yn, t)} is a decreasing sequence of positive real
numbers. Thus there exists z ≥ 0 such that

(3) lim
n→∞

S(yn−1, yn, t) = z

Suppose z > 0.Then by (2) and (ζ2) it follows that

0 ≤ lim
n→∞

sup ζ(S(yn, yn+1, t), S(yn−1, yn, t)) < 0

where tn = S(yn, yn+1, t) < S(yn−1, yn, t) = sn and tn, sn → z > 0.
Clearly this is a contradiction and so z = 0.By (3) we obtain

(4) lim
n→∞

Fyn−1, yn(t) = 1

Now we prove that the sequence {yn} is Cauchy. Suppose to the
contrary that {yn} is not a Cauchy sequence in X, therefore for some
t0 > 0 we do not have limm,n→∞ inf Fym,yn(t0) = 1.

It follows that there exists 0 < ϵ < 1and two sub sequences {ymk
}

and {ynk
} of {yn}such that nk is the smallest index for which nk >
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mk ≥ k and

(5) Fymk
, ynk

(t0) ≤ 1− ϵ

and

(6) Fymk
, ynk−1

(t0)̇ > 1− ϵ

Now we have

1− ϵ ≥ Fymk
, ynk

(t0)

≥ ∆(Fymk
, ynk−1

(t0)̇, Fynk−1
, ynk

(t0))

> ∆(1− ϵ, Fynk−1
, ynk

(t0))

Letting k → ∞ and using (4), we get

(7) lim
k→∞

Fymk
, ynk

(t0) = 1− ϵ

By the same reasoning as above, we obtain

1− ϵ ≥ Fymk
, ynk

(t0)

≥ ∆(Fymk
, ymk−1

(t0), ∆(Fymk−1
, ynk−1

(t0), Fynk−1
, ynk

(t0)))

and

Fymk−1
, ynk−1

(t0) ≥ ∆(Fymk−1,
ymk

(t0),∆(Fymk
,ynk

(t0), Fynk
,ynk−1

(t0)))

By letting k → ∞ and using (4) and (7), we obtain

(8) lim
k→∞

Fymk−1
, ynk−1

(t0) = 1− ∈

Using (7) and (8), we obtain

lim
k→∞

S(ymk
, ynk

, t0) = lim
k→∞

1

Fymk
, ynk

(t0)
− 1

= lim
k→∞

1− Fymk
, ynk

(t0)

Fymk
, ynk

(t0)

=
1− (1− ϵ)

1− ϵ

=
ϵ

1− ϵ
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and

lim
k→∞

S(ymk−1
, ynk−1

, t0) =
ϵ

1− ϵ
Let

tk = S(ymk
, ynk

, to)

sk = S(ymk−1
, ynk−1

, to).

Thus by using (1) and (ζ2), we have

0 ≤ lim
k→∞

sup ζ(S(ymk
, ynk

, t0), S(ymk−1
, ynk−1

, t0)) < 0.

The above inequality is not true and hence {yn} is a Cauchy se-
quence in X.

Now since AX orBX is a complete subset ofX therefore there exists
u ∈ X such that yn → Bu as n → ∞. If there exists a subsequence
{ynk

} of {yn} such that ynk
= Au then letting k → ∞ we get Au = Bu

and hence the claim. So we suppose that ynk
̸= Au for all n ∈ N.

Since yn−1 ̸= yn there exists a subsequence {ynk
} of {yn} such that

ynk
̸= Bu for k ∈ N.Using (1) we have

0 ≤ ζ(
1

FAxnk+1
, Au(t)

− 1,
1

FBxnk+1
, Bu(t)

− 1)

= ζ(S(ynk+1
, Au, t), S(ynk

, Bu, t))

< S(ynk
, Bu, t)− S(ynk+1,

Au, t).

This shows that ynk+1
→ Au and hence Au = Bu is a unique co-

incidence point of A and B. If A and B are weakly compatible then
by using well known result due to [7] we can prove the existence of
unique common fixed point of A and B.

Theorem 12. Let (X,F,∆) be a N. A. Menger space with F trian-
gular and A,B : X → X be two given mappings. Suppose that there
exists ζ ∈ Z and a function ϕ : [0,∞) → [0,∞) such that

(9) ζ(
1

FAx, Ay(t)
− 1, ϕ(

1

FBx, By(t)
− 1) ≥ 0 for all x, y ∈ X

(10) 0 < ϕ(t) ≤ t for all t ∈ (0,+∞) and ϕ(0) = 0
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If AX ⊆ BX and AX or BX is a complete subset of X.Then A
and B have unique coincidence point in X. Moreover if A and B are
weakly compatible then A and B have a unique common fixed point
in X.

Proof. First of all we will prove that if A and B have at most one
coincidence point.

Let v1 and v2 be two coincidence points of A and B. Suppose that
v1 and v2 are distinct. Then there exists two points u1, u2 ∈ X such
that

Au1 = Bu1 = v1 ̸= v2 = Au2 = Bu2

then by (9) we have

0 ≤ ζ(
1

FAu1, Au2(t)
− 1, ϕ(

1

FBu1, Bu2(t)
− 1))

< ϕ(
1

Fv1,v2(t)
− 1)− 1

Fv1,v2(t)
− 1)

≤ 0,

but this is a contradiction. Thus we have v1 = v2.
Let x0 ∈ X be arbitrary. Since AX ⊆ BX therefore there exists

x1 ∈ X such that Ax0 = Bx1 continuing this process, we obtain

Axn = Bxn+1 for all n ∈ N

Let Axn = Bxn+1 = yn.If yn = yn+1 for some n ∈ N then Bxn+1 =
yn = yn+1 = Axn+1.

Thus xn+1 is the unique coincidence point of A and B. Therefore
let us suppose that yn ̸= yn+1 for all n ∈ N.Hence we have

0 ≤ ζ(
1

FAxn, Axn+1(t)
− 1, ϕ(

1

FBxn, Bxn+1(t)
− 1)

= ζ(
1

Fyn, yn+1(t)
− 1, ϕ(

1

Fyn−1,yn(t)
− 1)

< ϕ(
1

Fyn−1, yn(t)
− 1), (

1

Fyn, yn+1(t)
− 1)

= S(yn−1, yn,t)− S(yn, yn+1,t) for all n ∈ N(11)
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where S(yn−1, yn, t) =
1

Fyn−1, yn (t)
− 1.

Therefore { S(yn−1, yn, t)} is a decreasing sequence of positive real
numbers. Thus there exists z ≥ 0 such that

(12) lim
n→∞

S(yn−1, yn, t) = z

Suppose z > 0 then

0 ≤ lim
n→∞

sup ζ(S(yn, yn+1, t), ϕ(S(yn−1, yn, t)) < 0

where tn = S(yn, yn+1, t), sn = ϕ(S(yn−1, yn, t)) < S(yn−1, yn, t),
and tn < sn, tn, sn → z > 0.
This is a contradiction. Thus we have

lim
n→∞

S(yn−1, yn, t) = 0

By (12) we obtain

(13) lim
n→∞

Fyn, yn+1(t) = 1

Now we claim that the sequence {yn} is Cauchy sequence in
X.Suppose to the contrary that {yn} is not a Cauchy sequence in
X, therefore limm,n→∞ inf Fym, yn(t0) < 1 for some t0 > 0.
Then there exists 0 < ϵ < 1 and two sub sequences {ymk

} and {ynk
}

of {yn} such that nk is the smallest index for which nk > mk ≥ k and

(14) Fymk
, ynk

(t0) ≤ 1− ϵ

and

(15) Fymk
, ynk−1

(t0)̇ > 1− ϵ

Now we have

1− ϵ ≥ Fymk
, ynk

(t0)

≥ ∆(Fymk
, ynk−1

(t0)̇, Fynk−1
, ynk

(t0))

≥ ∆(1− ϵ, Fynk−1
, ynk

(t0))

Letting k → ∞ and using (13), we get

(16) lim
k→∞

Fymk
, ynk

(t0) = 1− ϵ

By the same reasoning as above, we obtain
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1− ϵ ≥ Fymk
, ynk

(t0)

≥ ∆(Fymk
, ymk−1

(t0), Fymk−1
, ynk−1

(t0), Fynk−1
, ynk

(t0)

and

Fymk−1
, ynk−1

(t0) ≥ ∆(Fymk−1,
ymk

(t0), ∆(Fymk
, ynk

(t0), Fynk
, ynk−1

(t0)))

From the last inequality, by letting k → ∞ and using (13), (16) we
get

(17) lim
k→∞

Fymk−1
, ynk−1

(t0) = 1− ϵ

By letting k → ∞ and using (16) and (17) we obtain

lim
k→∞

S(ymk
, ynk

, t0) = lim
k→∞

1

Fymk
, ynk

(t0)
− 1

= lim
k→∞

1− Fymk
, ynk

(t0)

Fymk
, ynk

(t0)

=
1− (1− ϵ)

1− ϵ

=
ϵ

1− ϵ

and
lim
k→∞

S(ymk−1
, ynk−1

, t0) =
ϵ

1− ϵ
Let

tk = S(ymk
, ynk

, t0)

sk = ϕ(S(ymk−1
, ynk−1

, t0)) < S(ymk−1
, ynk−1

t0)

By (9), we have

0 ≤ ζ(
1

FAxmk
, Aynk

(t0)
− 1, ϕ(

1

FBxmk
,Bxnk

(t0)
− 1)

= ζ(
1

Fymk
, ynk

(t0)
− 1, ϕ(

1

Fymk−1
, ynk−1,

(t0)
− 1)

= ζ(S(ymk
, ynk

, t0), ϕ(S((ymk−1
, ynk−1,

t0))

< ϕ(S(ymk−1
, ynk−1

, t0)− S(ymk,ynk
, t0)(18)

→ 0 as k → ∞
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From (18) we deduce that

lim
k→∞

sup ζ(S(ymk
, ynk

, t0), ϕ(S(ymk−1
, ynk−1

, t0)) = 0.

Clearly this is a contradiction to (ζ2) and hence we conclude that
{yn} is a Cauchy sequence in X. Now since AX or BX is a complete
subset ofX therefore there exists u ∈ X such that yn → Bu as n → ∞.
If there exists a subsequence {ynk

} of {yn} such that ynk
= Au then

letting k → ∞ we get Au = Bu and hence the claim. So we suppose
that ynk

̸= Au for all n ∈ N.
Since yn−1 ̸= yn there exists a subsequence {ynk

} of {yn} such that
ynk

̸= Bu for k ∈ N.Using (9) we have

0 ≤ ζ(
1

FAxnk+1
, Au(t)

− 1, ϕ(
1

FBxnk+1
, Bu(t)

− 1)

= ζ(S(ynk+1
, Au, t), ϕ(S(ynk

, Bu, t)))

< ϕ(S(ynk
, Bu, t)− S(ynk+1,

Au, t)).

< S(ynk
, Bu, t)− S(ynk+1

, Au, t) for all n ∈ N

This shows that ynk+1
→ Au and hence Au = Bu is a unique co-

incidence point of A and B. If A and B are weakly compatible then
by using well known result due to [7] we can prove the existence of
unique common fixed point of A and B.

Theorem 13. Let (X,F, ∆) be a N. A. Menger space and A,B : X →
X be two given mappings. Suppose there exists ζ ∈ Z and a function
k ∈ (0, 1

2
) such that for all x, y ∈ X

(19)

ζ(
1

FAx, Ay(t)
−1, kmax { 1

FBx, By(t)
−1,

1

FBx, Ax(t)
−1,

1

FBy, Ay(t)
−1,

1

FBx, Ay(t)
−1}) ≥ 0

If AX ⊆ BX and AX or BX is a complete subset of X. Then A
and B have unique coincidence point in X. Moreover if A and B are
weakly compatible then A and B have a unique common fixed point
in X.

Corollary 14. If in (19) we put
Bx = x for all x ∈ X then A : X → X has a unique fixed point in

(X,F, ∆).



86 B. DESHPANDE

3. Extended approach to a modular metric space

Definition 15. [1] [2]. Let ω : (0,∞)×X×X → [0,∞) be a function
satisfying the following conditions for all λ, µ > 0 and x, , y, z ∈ X
(i) x = y if and only if ω(λ, x, y) = 0 for all λ > 0.
(ii) ω(λ, x, y) = ω(λ, y, x)
(iii)ω(λ+ µ, x, y) ≤ ω(λ, x, y) + ω(µ, z, y).
Then ω is called a modular metric on X. If we replace (i) by
(iv) ω(λ, x, x) = 0 for all λ > 0,
then ω is called pseudo modular metric on X. If we replace (iii) by
(v) ω(λ, x, y) ≤ ω(λ, x, z) + ω(λ, z, y) for all λ > 0 and x, y, z ∈ X
Then ω is called non-Archimedean. Moreover ω is called convex if

the following inequality is satisfied for all λ, µ > 0 and x, , y, z ∈ X
(vi) ω(λ+ µ, x, z) ≤ λ

λ+µ
ω(λ, x, z) + µ

λ+µ
ω(µ, z, y).

Remark 16. (i) A metric on a set X is a finite distance between any
two points of X while a modular on a same set X is a way to consider a
nonnegative ”field of velocities” precisely an average velocity ω(λ, x, y)
is associated to each λ > 0, ω(λ, x, y) that is one takes time λ to move
from x to y

(ii)[4]. Let (X,F, ∆) be a triangular N. A. Menger space. Define a
function ω : (0,∞)×X ×X → [0,∞) as

(20) ω(λ, x, y) =
1

Fx, y(λ)
− 1

for all x, y ∈ X and λ > 0.Then ωλ is a modular metric on X.

Definition 17. Let Xω be a modular metric space. Then
(i) {xn} in Xω is called ω−convergent to x ∈ Xω,if ω(λ, xn, x) → 0

as n → ∞ for all λ > 0. In this case we say x is the ω−limit of {xn}.
(ii) {xn} in Xω is called ω−Cauchy if ω(λ, xn, xm) → 0 as m,m →

∞ for all λ > 0.
(iii) A subset Y of Xω is called ω−complete if any ω−Cauchy se-

quence in Y is a ω−convergent sequence and it’s ω−limit is in Y.
Now we state two existence results for unique fixed point in the set-

ting of modular space. Clearly these results are modular counterparts
of Theorem ?? and Theorem 16.

Theorem 18. Let Xω be a non-Archimedean modular metric space
and let A,B : X → X be two given mappings. Let there exists ζ ∈ Z
such that
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(21)
ζ(ω(λ,Ax,Ay),ω(λ,Bx,By)) ≥ 0forallx, y ∈ X and for all λ > 0

If AX ⊆ BX and AX or BX is a complete subset of X. Then A
and B have unique coincidence point in X. Moreover if A and B are
weakly compatible then A and B have a unique common fixed point
in X.

Theorem 19. Let Xω be a non-Archimedean modular metric space
and let A,B : X → X be two given mappings. Suppose there exists
ζ ∈ Z and a function ϕ : [0,∞) → [0,∞) such that

ζ(ω(λ,Ax,Ay),ϕ(ω(λ,Bx,By)) ≥ 0forallx, y ∈ X and for all λ > 0

0 < ϕ(t) ≤ t for all t ∈ (0,∞) and ϕ(0) = 0

If AX ⊆ BX and AX or BX is a complete subset of X. Then A
and B have unique coincidence point in X. Moreover if A and B are
weakly compatible then A and B have a unique common fixed point
in X.

The proofs of Theorem 18 and Theorem 19 are established by ap-
plying Theorem 11 and Theorem 12. We give outline of the proof of
Theorem 18.

Proof. Let F be a probabilistic metric induced by ω and defined by
( 20). It follows that the triple (X,F, ∆) is N. A. Menger space.
Then by (21) we have

ζ(
1

FAx, Ay(λ)
−1+

1

FBx, By(λ)
−1) ≥ 0

for all x, y ∈ Xω and for all λ > 0.Therefore, we apply Theorem 11
to conclude that A and B have a unique common fixed point in X.
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