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A CHARACTERIZATION OF 0-COMPLETENESS IN
PARTIAL METRIC SPACES

SUSHANTA KUMAR MOHANTA AND PRIYANKA BISWAS

Abstract. In this paper, we introduce the concept of p-point in a
partial metric space and extend Weston’s characterization of metric
completeness to partial metric spaces in terms of p-point. As a con-
sequence of this study, we obtain the celebrated Banach Contraction
Principle in the framework of 0-complete partial metric space.

1. Introduction

In 1994, Matthews [10] introduced the concept of partial metric
spaces as a part of the study of denotational semantics of dataflow
networks and proved the well known Banach Contraction Principle in
this setting. Complete partial metric space is a useful framework to
model several complex problems in theory of computation. The works
of [2, 3, 4, 5, 6, 7, 8, 17] are viable and have opened new avenues for
application in different fields of mathematics and applied sciences. It
is interesting to note that in partial metric spaces, self-distance of an
arbitrary point need not be equal to zero. Matthews [10] introduced
a class of open p-balls in partial metric spaces which generates a T0

topology on X.
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This will facilitate the initiation of open and closed sets, neigh-
bourhoods and other related notions in partial metric spaces. In
this work, we shall discuss some topological aspects of partial metric
spaces and prove Cantor’s intersection theorem, Urysohn’s lemma in
this setting. We also prove that every partial metric space is first
countable and hence continuity is equivalent to sequential continuity.

In 1977, Weston [20] has proved a completeness criterion of metric
spaces which has got some relation with the family of real valued
semicontinuous functions carried over the space. In fact, he had proved
a necessary and sufficient condition for the metric space (X, d) to be
complete in terms of the notion of d-point for lower semicontinuous
functions. Later on, several authors successfully characterized metric
completeness in terms of fixed point theory(see [11, 12, 13, 14, 15, 18,
19]). In this study, our main purpose is to introduce the concept of
p-point in partial metric spaces and extend Weston’s characterization
[20] of metric completeness to partial metric spaces in terms of p-
point. As a consequence of this study, we obtain the celebrated Banach
Contraction Principle in the framework of 0-complete partial metric
space.

2. Some Basic Concepts

In this section, we begin with some basic facts and properties of
partial metric spaces.

Definition 2.1. [10] A partial metric on a nonempty set X is a
function p : X ×X → R+ such that for all x, y, z ∈ X:

(p1) p(x, x) = p(y, y) = p(x, y) if and only if x = y,
(p2) p(x, x) ≤ p(x, y),
(p3) p(x, y) = p(y, x),
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

The pair (X, p) is called a partial metric space.

It is clear that if p(x, y) = 0, then from (p1) and (p2), it follows that
x = y. But if x = y, p(x, y) may not be 0. Moreover, it is valuable to
note that the axiom (p4) is stronger than triangle inequality.

Example 2.2. [10] Let X = [0,∞) and let p(x, y) = max {x, y},
for all x, y ∈ X. Then (X, p) is a partial metric space.

Example 2.3. [10] Let X = {[a, b] : a, b ∈ R, a ≤ b} and let
p([a, b], [c, d]) = max {b, d}−min {a, c}. Then (X, p) is a partial met-
ric space.
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Each partial metric p on X generates a T0 topology τp on X which
has as a base the family of open p-balls {Bp(x, ϵ) : x ∈ X, ϵ > 0},
where Bp(x, ϵ) = {y ∈ X : p(x, y) < p(x, x) + ϵ} for all x ∈ X and
ϵ > 0.

We now visualise the open balls in a particular case.

Example 2.4. Let X = [0, 1] and p(x, y) = max {x, y }, then p is
a partial metric on X. In this case, an open p-ball Bp(x, ϵ) is given by

Bp(x, ϵ) = { y ∈ X : p(x, y) < p(x, x) + ϵ }
= { y ∈ X : max {x, y } < x+ ϵ }
= { y ∈ X : y < x+ ϵ }
= [0, x+ ϵ).

Theorem 2.5. If U ∈ τp and x ∈ U , then there exists r > 0 such
that Bp(x, r) ⊆ U .

Proof. Since U is an open set containing x, there exists an open p-ball,
say Bp(y, ϵ) such that x ∈ Bp(y, ϵ) ⊆ U . Then p(x, y) < p(y, y) + ϵ.
Let us choose 0 < r < p(y, y)−p(x, y)+ ϵ and consider the open p-ball
Bp(x, r). Then it is easy to verify that Bp(x, r) ⊆ Bp(y, ϵ) ⊆ U . □

Remark 2.6. Let (X, p) be a partial metric space, (xn) be a
sequence in X and x ∈ X. Then (xn) converges to x with respect
to(w.r.t.) τp if and only if lim

n→∞
p(xn, x) = p(x, x).

Let xn → x w.r.t. τp and ϵ > 0. Then there exists a natural
number n0 such that xn ∈ Bp(x, ϵ) for all n ≥ n0. This gives that
p(xn, x) − p(x, x) < ϵ for all n ≥ n0. Since p(xn, x) − p(x, x) ≥ 0, it
follows that | p(xn, x) − p(x, x) |< ϵ for all n ≥ n0. This proves that
lim
n→∞

p(xn, x) = p(x, x).

Conversely, suppose that lim
n→∞

p(xn, x) = p(x, x). We shall show that

xn → x w.r.t. τp. Let U ∈ τp and x ∈ U . Then there exists ϵ > 0 such
that x ∈ Bp(x, ϵ) ⊆ U . By hypotheses, it follows that

lim
n→∞

(p(xn, x)− p(x, x)) = 0.

So, there exists n0 ∈ N such that p(xn, x)− p(x, x) < ϵ for all n ≥ n0.
This ensures that xn ∈ Bp(x, ϵ) for all n ≥ n0 and hence xn ∈ U for
all n ≥ n0. Therefore, (xn) converges to x w.r.t. τp on X.
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Definition 2.7. [10] Let (X, p) be a partial metric space and let
(xn) be a sequence in X. Then

(i) (xn) converges to a point x ∈ X if lim
n→∞

p(xn, x) = p(x, x). This

will be denoted as lim
n→∞

xn = x or xn → x(n → ∞).

(ii) (xn) is called a Cauchy sequence if lim
n,m→∞

p(xn, xm) exists and

is finite.
(iii) (X, p) is said to be complete if every Cauchy sequence (xn)

in X converges to a point x ∈ X such that p(x, x) =
lim

n,m→∞
p(xn, xm).

Definition 2.8. [16] A sequence (xn) in (X, p) is called 0-Cauchy
if

lim
n,m→∞

p(xn, xm) = 0.

The space (X, p) is said to be 0-complete if every 0-Cauchy sequence
in X converges to a point x ∈ X such that p(x, x) = 0.

Lemma 2.9. Let (X, p) be a partial metric space.

(a) (see [1, 9]) If p(xn, z) → p(z, z) = 0 as n → ∞, then p(xn, y) →
p(z, y) as n → ∞ for each y ∈ X.

(b) (see [16]) If (X, p) is complete, then it is 0-complete.

The converse assertion of (b) may not hold, in general. The following
example supports the above remark.

Example 2.10. [16] The space X = [0,∞) ∩ Q with the par-
tial metric p(x, y) = max {x, y} is 0-complete, but it is not complete.
Moreover, the sequence (xn) with xn = 1 for each n ∈ N is a Cauchy
sequence in (X, p), but it is not a 0-Cauchy sequence.

3. Some Topological Aspects

Theorem 3.1. Let (X, p) be a partial metric space with the topology
τp defined above and A be any nonempty subset of X. Then,

(i) A is closed if and only if for any sequence (xn) in A which
converges to x, we have x ∈ A;

(ii) for any x ∈ A and for any ϵ > 0, we have Bp(x, ϵ) ∩ A ̸= ∅.

Proof. (i) Suppose that A is a closed subset of X. Let (xn) be a
sequence in A such that xn → x as n → ∞. We shall show that
x ∈ A. If possible, suppose that x ̸∈ A. So x ∈ X \ A and X \ A
is open. Then there exists ϵ > 0 such that Bp(x, ϵ) ⊆ X \ A.
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Therefore, Bp(x, ϵ) ∩ A = ∅. Since xn → x as n → ∞, we have
lim
n→∞

p(xn, x) = p(x, x). So for ϵ > 0, there exists n0 ∈ N such that

p(xn, x) − p(x, x) < ϵ, for all n ≥ n0. This gives that xn ∈ Bp(x, ϵ),
for all n ≥ n0. Hence xn ∈ Bp(x, ϵ)∩A, for all n ≥ n0, which leads to
a contradiction with Bp(x, ϵ) ∩ A = ∅. So, x ∈ A.

Conversely, assume that the condition holds i.e., for any sequence
(xn) in A which converges to x, we have x ∈ A. Let us prove that
A is closed. In fact, we have to show that X \ A is open. So for
any x ∈ X \ A, we need to prove that there exists ϵ > 0 such that
Bp(x, ϵ) ⊆ X \ A i.e., Bp(x, ϵ) ∩ A = ∅. If possible, suppose that
for any ϵ > 0, we have Bp(x, ϵ) ∩ A ̸= ∅. So for any n ≥ 1, choose
xn ∈ Bp(x,

1
n
)∩A. Then xn ∈ A for all n ≥ 1 and p(xn, x)−p(x, x) < 1

n
for all n ≥ 1. Therefore, lim

n→∞
(p(xn, x)− p(x, x)) = 0. That is, xn → x

as n → ∞ in (X, p). Hence, by assumption x ∈ A, which is a
contradiction. So for any x ∈ X \ A, there exists ϵ > 0 such that
Bp(x, ϵ) ⊆ X \ A i.e., X \ A is open and hence A is closed in X.

(ii) It follows from definition that A is the smallest closed sub-
set which contains A. Set A∗ = {x ∈ X : for any ϵ > 0, ∃ a ∈
A such that p(x, a) < p(x, x)+ ϵ}. Obviously, A ⊆ A∗. Next we prove
that A∗ is closed. Let (xn) be a sequence in A∗ such that xn → x as
n → ∞. We have to prove that x ∈ A∗. Since xn → x as n → ∞, we
have lim

n→∞
p(xn, x) = p(x, x).

Let ϵ > 0 be given. Then there exists n0 ∈ N such that p(xn, x) −
p(x, x) < ϵ

2
, for all n ≥ n0. As xn ∈ A∗, there exists an ∈ A such that

p(xn, an) < p(xn, xn) +
ϵ
2
. Hence,

p(x, an) ≤ p(x, xn) + p(xn, an)− p(xn, xn)

<
ϵ

2
+

ϵ

2
+ p(x, x)

= ϵ+ p(x, x), for all n ≥ n0.

In particular, p(x, an0) < ϵ + p(x, x), which implies that x ∈ A∗.
Therefore, by part (i), it follows that A∗ is closed and contains A. The
definition of A assures that A ⊆ A∗, which implies the conclusion of
(ii). □

Theorem 3.2. Every closed subset of a complete partial metric
space is complete.
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Proof. Let (X, p) be a complete partial metric space and Y be a closed
subset of X. Let (yn) be a Cauchy sequence in (Y, pY ), where pY :
Y × Y → R+ is defined by pY (u, v) = p(u, v) for all u, v ∈ Y . Then
(yn) is also a Cauchy sequence in (X, p). As (X, p) is complete, there
exists x ∈ X such that yn → x as n → ∞. By applying Theorem
3.1, it follows that x ∈ Y . Thus (yn) converges in (Y, pY ). So, (Y, pY )
becomes a complete partial metric space. □

Remark 3.3. x ∈ A if and only if every open set U containing x
intersects A.

Definition 3.4. Let (X, p) be a partial metric space, A ⊆ X and
x ∈ X. Then p(x,A) is defined as follows:

p(x,A) = inf {p(x, a)− pxa : a ∈ A},

where pxa = min {p(x, x), p(a, a)}. Obviously, p(x,A) ≥ 0 and
p(x,A) = 0 if x ∈ A.

We now prove the following theorem.

Theorem 3.5. Let (X, p) be a partial metric space, A ⊆ X and
x ∈ X. If p(x,A) = 0 then x ∈ A.

Proof. Let p(x,A) = 0 and U ∈ τp, x ∈ U . Then there exists ϵ > 0
such that Bp(x, ϵ) ⊆ U . Since p(x,A) = 0, there exists xϵ ∈ A such
that p(x, xϵ)−pxxϵ < ϵ. This implies that p(x, xϵ)−p(x, x) ≤ p(x, xϵ)−
pxxϵ < ϵ. Therefore, xϵ ∈ Bp(x, ϵ) ⊆ U and xϵ ∈ A. Hence, U ∩A ̸= ∅.
The last theorem ensures that x ∈ A.

□

Next we prove the property of first countability of partial metric
spaces.

Theorem 3.6. Let (X, p) be a partial metric space and x ∈ X be
arbitrary. Then there exists a countable collection {Bn}∞n=1 of open
neighbourhoods of x such that for any neighbourhood U of x, there
exists m ∈ N with Bm ⊆ U .

Proof. For each n ∈ N, we consider Bn = Bp(x,
1
n
). Clearly, {Bn : n ∈

N} is a countable family of open p-balls centered at x. Let U be any
neighbourhood of x. Then there exists r > 0 such that Bp(x, r) ⊆
U . We choose m ∈ N such that 1

m
< r. Then, Bm = Bp(x,

1
m
) ⊆

Bp(x, r) ⊆ U . □
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Definition 3.7. Let (X, p) be a partial metric space and A ⊆ X.
The diameter of A, denoted by diam(A), is defined by

diam(A) = sup {p(x, y) : x, y ∈ A}.
Clearly, 0 ≤ diam(A) ≤ ∞. The subset A is said to be bounded if
diam(A) is finite. Otherwise, A is said to be unbounded.

It follows from the above definition that if A ⊆ B, then
diam(A) ≤ diam(B). Hence, it is worth mentioning that
diam(A) ≤ diam(A).

We now prove Cantor’s intersection theorem in partial metric
spaces.

Theorem 3.8. If a partial metric space (X, p) is 0-complete, then
every descending sequence (An) of nonempty closed sets with diam(An)

→ 0 as n → ∞, the intersection A =
∞⋂
n=1

An consists of exactly one

point.

Proof. Let (X, p) be a 0-complete partial metric space and let (An) be
a descending sequence of nonempty closed sets with diam(An) → 0
as n → ∞. As each An is nonempty, we choose a point xn ∈ An,
for each n ∈ N. We shall show that (xn) is 0-Cauchy in (X, p). For
m, n ∈ N with m > n, we have Am ⊆ An which gives that xm, xn ∈
An. Therefore,

p(xn, xm) ≤ diam(An) → 0 as n → ∞.

i.e., lim
n,m→∞

p(xn, xm) = 0.

This shows that (xn) is a 0-Cauchy sequence in (X, p). Then by
hypothesis, there exists x ∈ X such that xn → x with p(x, x) = 0

i.e., p(xn, x) → p(x, x) = 0 as n → ∞. We prove that x ∈
∞⋂
n=1

An.

Let U ∈ τp and x ∈ U . Then there exists ϵ > 0 such that
Bp(x, ϵ) ⊆ U . As lim

n→∞
p(xn, x) = p(x, x) = 0, there exists n0 ∈ N

such that p(xn, x) < ϵ = p(x, x) + ϵ, for all n ≥ n0. Therefore,
xn ∈ Bp(x, ϵ) ⊆ U , for all n ≥ n0. Again, xm ∈ An, for all m ≥ n as
xm ∈ Am ⊆ An, for all m ≥ n. So, U ∩ An ̸= ∅, for all n ∈ N. This

proves that x ∈ An = An, for all n, An being closed. Hence x ∈
∞⋂
n=1

An.
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Now, let y ∈
∞⋂
n=1

An with y ̸= x. Then for each n ∈ N, we have

x, y ∈ An. Therefore,

0 ≤ p(x, y) ≤ diam(An) → 0 as n → ∞
which gives that p(x, y) = 0 and hence x = y, a contradiction. This
proves that A contains exactly one point. □

Definition 3.9. Let (X, p1) and (Y, p2) be two partial metric spaces.
A function f : (X, p1) → (Y, p2) is said to be continuous at a point
a ∈ X, if corresponding to every ϵ > 0, ∃ δ > 0 such that

x ∈ Bp1(a, δ) implies f(x) ∈ Bp2(f(a), ϵ).

f is said to be continuous on X if it is continuous at each point of X.

Obviously, the concept of continuity of a real valued function on
a partial metric space turns out to be a special case of the above
definition by considering Y = R and p2(y, z) =| y−z | for all y, z ∈ R.
For such real valued functions on a partial metric space, we can prove
the following theorem, as exact duplicates of the corresponding proofs
for real valued continuous functions on a metric space.

Theorem 3.10. Let f and g be real valued functions on a partial
metric space (X, p). If f and g are continuous at a point a ∈ X and
g(x) ̸= 0 for all x ∈ X, then so are f ± g, fg, αf (for any α ∈
R) and f

g
.

Theorem 3.11. Let (X, p1) and (Y, p2) be two partial metric spaces.
Then a function f : (X, p1) → (Y, p2) is continuous at a point a ∈ X
if and only if for each sequence (xn) in X converging to a in (X, p1),
the sequence (f(xn)) in Y converges to f(a) in (Y, p2).

Proof. Suppose that f is continuous at a ∈ X. Then for a given ϵ > 0,
∃ δ > 0 such that

x ∈ Bp1(a, δ) implies f(x) ∈ Bp2(f(a), ϵ).

Since (xn) converges to a in (X, p1), we have lim
n→∞

p1(xn, a) =

p1(a, a). So, there exists n0 ∈ N such that p1(xn, a) < p1(a, a) + δ,
for all n ≥ n0. This shows that xn ∈ Bp1(a, δ), for all n ≥ n0. By
hypothesis, it follows that f(xn) ∈ Bp2(f(a), ϵ), for all n ≥ n0. Then
p2(f(xn), f(a)) < p2(f(a), f(a)) + ϵ, for all n ≥ n0. Consequently, it
follows that lim

n→∞
p2(f(xn), f(a)) = p2(f(a), f(a)). Therefore, (f(xn))
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converges to f(a) in (Y, p2).

Conversely, suppose the condition holds but f is not continuous at
a ∈ X. Then there exists ϵ > 0 such that for each δ > 0, ∃ xδ ∈ X
with xδ ∈ Bp1(a, δ) but f(xδ) ̸∈ Bp2(f(a), ϵ). In particular, for each
n ∈ N, ∃ xn ∈ X with xn ∈ Bp1(a,

1
n
) but f(xn) ̸∈ Bp2(f(a), ϵ). It

then follows that xn → a but p2(f(xn), f(a)) ≥ p2(f(a), f(a)) + ϵ,
for all n ∈ N i.e., (f(xn)) does not converge to f(a) in (Y, p2). This
contradicts the assumed hypothesis. □

We now present analogue of Urysohn’s lemma in partial metric
spaces.

Theorem 3.12. For any two nonempty disjoint closed subsets U, V
of a partial metric space (X, p), there exists a function f : X → R such
that f(U) = {0}, f(V ) = {1} and 0 ≤ f(x) ≤ 1 for all x ∈ X.

Proof. For A ⊆ X and x ∈ X, we use the notation pA(x) for the

function p(x,A). We now show that the function f(x) = pU (x)
pU (x)+pV (x)

is the desired function. If pU(x) + pV (x) = 0 for some x ∈ X, then
pU(x) = pV (x) = 0 and hence x ∈ U = U and x ∈ V = V , which
contradicts the fact that U ∩ V = ∅. Therefore, f is well defined.
Obviously, 0 ≤ f(x) ≤ 1 for all x ∈ X. Now, x ∈ U implies pU(x) =
0 implies f(x) = 0 and x ∈ V implies pV (x) = 0 implies f(x) =
1. □

4. A Characterization of 0-Completeness

Inspired by Weston [20], we now characterize 0-completeness via
lower semicontinuity, introduce a strict order “ ≪ ” and establish Ba-
nach Contraction Principle in the setting of 0-complete partial metric
spaces.

Definition 4.1. Let (X, p) be a partial metric space. A function
φ : X → R is called lower semicontinuous if, for each sequence (xn) ⊆
X converges to a point x ∈ X with p(x, x) = 0, we have

φ(x) ≤ lim inf
n→∞

φ(xn).

Definition 4.2. Let (X, p) be a partial metric space. A function
f : X → R is called uniformly continuous on X if for any ϵ > 0, there
exists δ > 0 such that

p(x, y) < δ implies | f(x)− f(y) |< ϵ.
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Definition 4.3. Let (X, p) be a partial metric space and h : X → R
be a function. A point x0 ∈ X is called a p-point for h if for every
point x ∈ X other than x0,

h(x0)− h(x) < p(x0, x).

Example 4.4. Let X = [0,∞) and let p(x, y) = max {x, y} be a
partial metric on X. Let h : X → R be defined by h(x) = 2x for all
x ∈ X. Then, h(0) − h(x) = −2x < p(0, x) for every x ∈ X with
x ̸= 0. Therefore, 0 is a p-point for h. But if g : X → R is defined by
g(x) = x

2
for all x ∈ X. Then every point of X is a p-point for g.

Example 4.5. Let X = [0, 1] be equipped with the partial metric
given as

p(x, y) =

 | x− y |, if x, y ∈ [0, 1),

1, if x = 1, or y = 1.

Let h : X → R be defined by h(x) = 1 − x for all x ∈ X. Then,
h(1)−h(x) = −h(x) < p(1, x) for every x ∈ X with x ̸= 1. Therefore,
1 is a p-point for h.

Theorem 4.6. If the partial metric space (X, p) is 0-complete then
any lower semicontinuous function h : X → R which is bounded below
has a p-point. If (X, p) is not 0-complete, then there is a uniformly
continuous function g : X → R which is bounded below but has no
p-point.

Proof. To prove the first part, we assume that (X, p) is 0-complete
and h : X → R is a lower semicontinuous function which is bounded
below. For any point x1 ∈ X, we construct a sequence (xn) in the
following way:

For each n ∈ N, let
cn = inf{h(x) : h(xn)− h(x) ≥ p(xn, x) > 0}

and let xn+1 be a point such that

(4.1) h(xn)− h(xn+1) ≥ p(xn, xn+1)

and

(4.2) h(xn+1) < cn + n−1.

In above construction, we assume that none of xn is a p-point for h.
In case, xn is a p-point for h, then we have nothing to prove. It follows
from condition (4.1) that the sequence (h(xn)) is nonincreasing in R.
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Also, it is bounded below. So, the sequence (h(xn)) is convergent.

For m ≥ n, we have

h(xn)− h(xm) = h(xn)− h(xn+1) + h(xn+1)− h(xn+2)

+ · · ·+ h(xm−1)− h(xm)

≥ p(xn, xn+1) + p(xn+1, xn+2) + · · ·+ p(xm−1, xm)

≥ p(xn, xm).(4.3)

Hence,

p(xn, xm) ≤ h(xn)− h(xm) → 0 as m, n → ∞.

This yields that the sequence (xn) is 0-Cauchy in (X, p). By 0-
completeness of X, it follows that the sequence (xn) converges to a
point x0 ∈ X such that p(x0, x0) = 0. From condition (4.3), it follows
that

(4.4) h(xm) ≤ h(xn)− p(xn, xm)

for all m ≥ n. By using condition (4.4), Lemma 2.9 and lower semi-
continuity of the function h, one can obtain that

h(x0) ≤ lim inf
m→∞

h(xm)

≤ lim inf
m→∞

[h(xn)− p(xn, xm)]

= h(xn)− p(xn, x0)

for all n ≥ 1.

Thus,

(4.5) h(xn)− h(x0) ≥ p(xn, x0)

for all n ≥ 1.

If x0 is not a p-point for h, then for some x(̸= x0) ∈ X, we have

(4.6) h(x0)− h(x) ≥ p(x0, x) > 0.

Using conditions (4.5) and (4.2), we obtain

(4.7) h(x) ≤ h(xn+1) + h(x)− h(x0) < cn + n−1 + h(x)− h(x0).

In view of condition (4.6), we can choose n so that condition (4.7)
gives that h(x) < cn.
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From conditions (4.5) and (4.6), it follows that

h(xn)− h(x) = h(xn)− h(x0) + h(x0)− h(x)

≥ p(xn, x0) + p(x0, x)

> 0,

which implies that h(xn) > h(x). So, xn ̸= x and therefore
p(xn, x) > 0.

Moreover,

h(xn)− h(x) ≥ p(xn, x0) + p(x0, x) > p(xn, x) > 0.

It now follows from the definition of cn that h(x) ≥ cn, which
contradicts the fact that h(x) < cn. Thus, x0 is a p-point for h.

Now suppose that (X, p) is not 0-complete. So there exists a
0-Cauchy sequence (xn) in X which does not converge to a point
x ∈ X such that p(x, x) = 0. We show that for any x ∈ X, the
sequence (2p(x, xn)) is Cauchy in R.

For x ∈ X, we have

p(x, xn) ≤ p(x, xm) + p(xm, xn)− p(xm, xm) ≤ p(x, xm) + p(xm, xn)

and so

p(x, xn)− p(x, xm) ≤ p(xm, xn).

Interchanging n and m, we obtain

p(x, xm)− p(x, xn) ≤ p(xm, xn).

Therefore,

(4.8) | p(x, xn)− p(x, xm) |≤ p(xm, xn).

As (xn) is 0-Cauchy, it follows from condition (4.8) that the sequence
(2p(x, xn)) is Cauchy in R. Let g(x) be its limit. Clearly, g(x) > 0
for every x ∈ X. Because g(x) = 0 for some x ∈ X implies that
lim
n→∞

p(x, xn) = 0. Then,

p(x, x) ≤ p(x, xn) + p(xn, x)− p(xn, xn)

≤ p(x, xn) + p(xn, x)

→ 0, as n → ∞,
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which gives that p(x, x) = 0. Therefore, lim
n→∞

p(x, xn) = p(x, x) = 0, a

contradiction.

Thus, the function g is bounded below. If x0 ∈ X, then

g(x0)− g(x) = lim
n→∞

2p(x0, xn)− lim
n→∞

2p(x, xn)

= lim
n→∞

[2p(x0, xn)− 2p(x, xn)]

≤ lim
n→∞

2p(x0, x)

= 2p(x0, x).

Interchanging x0 and x, we obtain

g(x)− g(x0) ≤ 2p(x0, x).

Thus,
| g(x0)− g(x) |≤ 2p(x0, x).

Let ϵ > 0 be a given real number. We choose δ = ϵ
2
such that

p(x0, x) < δ implies | g(x0)− g(x) |< ϵ.

So, g is uniformly continuous. Also,

1

2
[g(x0) + g(x)] =

1

2

[
lim
n→∞

2p(x0, xn) + lim
n→∞

2p(x, xn)
]
≥ p(x0, x).

Now,

g(x0)− g(x) =
1

2
[g(x0) + g(x)] +

1

2
[g(x0)− 3g(x)]

≥ p(x0, x) +
1

2
[g(x0)− 3g(x)] .(4.9)

The definition of g implies that g(xm) → 0 as m → ∞. Therefore,
3g(x) < g(x0) if x = xm and m is large. It now follows from condition
(4.9) that g(x0) − g(x) > p(x0, x) if x = xm and m is large. So, x0 is
not a p-point for g.

□

The following corollary is the result of Weston [20].

Corollary 4.7. If the metric space (X, d) is complete then any
lower semicontinuous function X → R which is bounded below has
a d-point. If (X, d) is not complete there is a uniformly continuous
function X → R which is bounded below but has no d-point.

Proof. The proof can be obtained from Theorem 4.6 by taking p =
d. □
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Remark 4.8. When p and h are given, a relation can be defined
on X as follows:

x ≪ y if and only if h(y)− h(x) ≥ p(x, y).

This relation “ ≪ ” is a strict order on X. In fact, “ ≪ ” is antisym-
metric, transitive and irreflexive.

Definition 4.9. A point x0 in (X, p) is said to be a minimal point
w.r.t. ≪ if and only if x ≪ x0 implies x = x0.

Remark 4.10. A point of X is a p-point for h if and only if it is
a minimal point w.r.t. ≪.

Proof. Let x0 ∈ X be a p-point for h. Then,

(4.10) h(x0)− h(x) < p(x, x0), for all x ∈ X and x ̸= x0.

Now x ≪ x0 implies that h(x0) − h(x) ≥ p(x, x0). This gives that
x = x0. Because if x ̸= x0, then by condition (4.10) it follows that
h(x0) − h(x) < p(x, x0), a contradiction. Therefore, x0 is a minimal
point w.r.t. ≪.

Conversely, let x0 be a minimal point w.r.t. ≪. Then x ≪ x0

implies that x = x0. That is, x ≪ x0 does not hold for all x ∈ X with
x ̸= x0. Therefore, h(x0)− h(x) < p(x, x0) for all x ∈ X with x ̸= x0.
This gives that x0 is a p-point for h. □

Remark 4.11. If a function f : X → X is such that it may be
possible to choose p and h so that the relation ≪ has the property that
fx ̸= x implies fx ≪ x, then any p-point for h is a fixed point for f .

Proof. Let x0 ∈ X be a p-point for h. Then,

(4.11) h(x0)− h(x) < p(x, x0), for all x ∈ X and x ̸= x0.

If fx0 ̸= x0, then by hypothesis fx0 ≪ x0 which implies that

h(x0)− h(fx0) ≥ p(fx0, x0),

which contradicts the condition (4.11). So, it must be the case that
fx0 = x0. This shows that x0 is a fixed point of f . □

We now apply Theorem 4.6 and Remark 4.11 to prove Banach Con-
traction Principle in 0-complete partial metric spaces .

Theorem 4.12. Let (X, p) be a 0-complete partial metric space and
let f : X → X be a mapping satisfying the following condition:

(4.12) p(fx, fy) ≤ α p(x, y)
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for all x, y ∈ X, where 0 ≤ α < 1 is a constant. Then f has a unique
fixed point u in X and p(u, u) = 0.

Proof. Let h(x) = β p(fx, x), where β = 1
1−α

> 0 and x ∈ X. We first
show that h : X → R is a lower semicontinuous function. Let yn → y
in (X, p) with p(y, y) = 0. Then, lim

n→∞
p(y, yn) = p(y, y) = 0. We have

to show that

h(y) ≤ lim inf
n→∞

h(yn).

By using condition (4.12), we have

h(y) = β p(fy, y) ≤ β [p(fy, yn) + p(yn, y)− p(yn, yn)]

≤ β [p(fy, yn) + p(yn, y)]

≤ β [p(fy, fyn) + p(fyn, yn)− p(fyn, fyn) + p(yn, y)]

≤ β [p(fy, fyn) + p(fyn, yn) + p(yn, y)]

≤ β [α p(y, yn) + p(fyn, yn) + p(yn, y)]

= β(α + 1) p(y, yn) + h(yn).

This gives that,

h(y) ≤ lim inf
n→∞

h(yn).

Thus, h is a lower semicontinuous function on a 0-complete partial
metric space (X, p) which is also bounded below. Therefore, Theorem
4.6 ensures the existence of a p-point u(say) for h.

We now show that fx ̸= x implies fx ≪ x.

Let fx ̸= x. By using condition (4.12), we obtain

h(x)− h(fx) = β [p(fx, x)− p(f 2x, fx)]

≥ β [p(fx, x)− α p(fx, x)]

= β (1− α) p(fx, x)]

= p(fx, x).

Thus f satisfies the condition that fx ̸= x implies fx ≪ x. By
applying Remark 4.11, it follows that the p-point u for h is a fixed
point for f in X.

For uniqueness, let v ∈ X be another fixed point of f . Then, by
condition (4.12), we get

p(u, v) = p(fu, fv) ≤ α p(u, v).



104 S. K. MOHANTA AND PRIYANKA BISWAS

Since 0 ≤ α < 1, it follows that p(u, v) = 0 and hence u = v.

Moreover, p(u, u) = p(fu, fu) ≤ α p(u, u) gives that p(u, u) = 0.
□

Remark 4.13. In view of Lemma 2.9 and Example 2.10, it follows
that every complete partial metric space is 0-complete but the converse
may not hold, in general. Thus the results of this section are obtained
under the weaker assumption that the given partial metric space is
0-complete.
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common fixed point on partial metric spaces, Appl. Math. Lett., 24,
(2011), 1900-1904.

[2] I. Altun and O. Acar, Fixed point theorems for weak contractions in
the sense of Berinde on partial metric spaces, Topol. Appl., 159, (2012),
2642-2648.

[3] I. Altun, F. Sola and H. Simsek, Generalized contractions on partial
metric spaces, Topol. Appl., 157, (2010), 2778-2785.

[4] H. Aydi, M. Abbas and C. Vetro, Partial Hausdorff metric and Nadler’s
fixed point theorem on partial metric spaces, Topo. Appl., 159, (2012),
3234-3242.

[5] M. Bukatin, R. Kopperman, S. Matthews and H. Pajoohesh, Partial metric
spaces, Am. Math. Mon., 116, (2009), 708-718.
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