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CHARACTERIZATIONS OF COUNTABLY
ρI-COMPACT IDEAL TOPOLOGICAL SPACES

SUMIT MITTAL, B. K. TYAGI

Abstract. The concept of countably ρI-compactness is introduced
and several characterizations of this notion are obtained. It is shown
that an ideal space (X, τ, I) is countably ρI-compact if and only if
every countable locally finite modulo I, I ∈ I, family of non-ideal sets
is finite.

1. Introduction

The concept of countably compact topological spaces was intro-
duced by Fréchet in 1906. Several characterizations of this notion are
well known now. Newcomb [10] generalized the concept of compact
and countably compact spaces with respect to an ideal in a topological
space and called these spaces compact modulo an ideal or I-compact
and countably compact modulo an ideal or countably I-compact re-
spectively. These notions were also further studied by Hamlett, Jan-
covic and Rose [3, 4]. In this paper, we introduced the concept of
countably ρI-compact spaces using open I-covers which is stronger
than the concept of countably I-compact spaces. Then we obtain
some characterizations of this notion. Motivated by Bacon [1] we give
a sufficient condition for a countably ρI-compact topological space to
be ρI-compact space.
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This paper is organised as follows. Section 2 contains preliminaries.
In Section 3, the notion of countably ρI-compact spaces is introduced
and some basic properties and characterizations are obtained. The
behavior of these spaces under certain kind of mappings is also in-
vestigated. In Section 4, further characterizations of these spaces are
given.

2. Preliminaries

An ideal on a set X is a nonempty collection I of subsets of X such
that

(1) if A ∈ I and B ∈ I, then A ∪B ∈ I.
(2) if B ∈ I and A ⊆ B ⊆ X, then A ∈ I.
If the collection I is also closed under countable unions, that is

“countable additive”, then I is called a σ-ideal.
If X is a set and B ⊆ X, then the collection P(B) = {A ⊆ X : A ⊆

B} is an ideal on X. Some other examples are If = {A ⊆ X : A is
finite} and Ic = {A ⊆ X : A is countable}. We denote a topological
space (X, τ) with an ideal I defined on X by (X, τ, I) and call it an
ideal space. If (X, τ) is a topological space then it is clear that the
collections N (τ) of nowhere dense subsets of X and M(τ) of first
category (meager) subsets of X are both ideals on X.

A subset A of a space (X, τ) is said to be g-closed [9] if A ⊆ U
whenever A ⊆ U for every U ∈ τ . It is clear that every closed set is
g-closed.
Given an ideal space (X, τ, I) and (Y, β) a topological space, for

any function f : X → Y , the collection J = {B ⊆ Y | f−1(B) ∈ I}
is an ideal on Y . Moreover if f is a bijection, then the collection
f(I) = {f(I) : I ∈ I} is also an ideal on Y . We will use these ideals
later in Section 3.

Recall that a subset A of an ideal space (X, τ, I) is said to be count-
ably I-compact [4] if for any countable open cover {Vα}α∈ω of A, there
exists a finite set ω0 ⊂ ω such that A \ ∪α∈ω0Vα ∈ I. The ideal
space (X, τ, I) is said to be countably I-compact if X is countably I-
compact. Clearly (X, τ) is countably compact if and only if (X, τ, {∅})
is countably {∅}-compact and that if (X, τ) is countably compact then
(X, τ, I) is countably I-compact for I = {∅}.

In an ideal space (X, τ, I), a family U of open subsets of X is said
to be an open I-cover if X \ ∪U ∈ I. Note that every open cover is
an open I-cover for every ideal I on X. Nestor [12] introduced the
concept of ρI-compact spaces.
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Definition 1. An ideal space (X, τ, I) is said to be ρI-compact if for
any open I-cover {Uα}, there exists a finite I-subcover, that is, a finite
subcollection {Uαi

: i = 1, 2, . . . ,m} such that X \ ∪m
i=1Uαi

∈ I.
In Section 4, we generalized the notion of I-paracompact spaces to

characterize the countably ρI-compact spaces.

Definition 2. [5] An ideal space (X, τ, I) is said to be I-paracompact
or paracompact with respect to an ideal if every open cover U of X has
a locally finite open refinement V such that X \ ∪V ∈ I.

If (X, τ) is a topological space and A ⊆ X, then A will denote the
closure of A in (X, τ).

3. Countably ρI-compact spaces

Definition 3. If (X, τ, I) be an ideal space and A ⊆ X, then A is said
to be countably ρI-compact if for any countable family {Vα}α∈ω of open
subsets of X such that A\∪α∈ωVα ∈ I, there exists a finite set ω0 ⊂ ω
such that A\∪α∈ω0Vα ∈ I or in other words, if for any countable open
I-cover, there exists a finite I-subcover. The ideal space (X, τ, I) is
said to be countably ρI-compact if X is countably ρI-compact.

Clearly (X, τ) is countably compact if and only if (X, τ, {∅}) is
countably ρ{∅}-compact and that if (X, τ, I) is countably ρI-compact
then (X, τ, I) is countably I-compact.

Example 4. If X = [0,+∞), τ = {∅, X} ∪ {(r,∞) | r ≥ 0} and
I = If then the ideal space (X, τ, I) is countably I-compact but not
countably ρI-compact as the open I-cover U = {(1/n,∞) | n ∈ N}
does not have any finite I-subcover.

Hamlett [2] introduced the notion of I-Lindelöf ideal topological
spaces. An ideal space (X, τ, I) is said to be I-Lindelöf if for any
open cover of X, there exists a countable I-subcover. It is known that
a countably compact space is compact if and only if it is Lindelöf. We
give a more general result in countably ρI-compact spaces.

Theorem 5. If an ideal space (X, τ, I) is countably ρI-compact and
I-Lindelöf, then (X, τ, I) is an I-compact space.

Proof. Suppose {Vα}α∈λ be any open cover of X, then X being an
I-Lindelöf space, there exists a countable subcover {Vα}α∈ω such that
X \ ∪α∈ωVα ∈ I and since X is countably ρI-compact, there exists a
finite set ω0 ⊂ ω such that X \∪α∈ω0Vα ∈ I. Hence X is an I-compact
space. □
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Levine [9] and Jafari [7] defined the concept of g-closed sets and
Ig-closed sets, respectively and it is showed that every g-closed set is
Ig-closed. Nestor [13] introduced the concept of ρIg-closed subsets.

Definition 6. [13] A subset A of an ideal space (X, τ, I) is said to be
ρIg-closed set if for every U ∈ τ , A \ U ∈ I implies A \ U ∈ I.
Note that every g-closed set is a ρIg-closed set and every ρIg-closed

set is Ig-closed set. In [4] it is showed that a closed subspace of a
countably I-compact space is countably I-compact. More generally,
we have the following result.

Theorem 7. If an ideal space (X, τ, I) is countably ρI-compact and
A ⊆ X is ρIg-closed, then A is countably ρI-compact.

Proof. Let {Vα}α∈ω be a countable family of open subsets of X such
that A \ ∪α∈ωVα ∈ I. Since A is ρIg-closed, so by definition A \
∪α∈ωVα ∈ I. Then X \{(X \A)∪(∪α∈ωVα)} = A\∪α∈ωVα ∈ I. Given
that X is countably ρI-compact, there exists a finite set ω0 ⊂ ω such
that X \ ∪α∈ω0Vα ∈ I or X \ {(X \ A) ∪ (∪α∈ω0Vα)} ∈ I.

In any case A \ ∪α∈ω0Vα ∈ I and since A \ ∪α∈ω0Vα ⊆ A \ ∪α∈ω0Vα,
we have A \ ∪α∈ω0Vα ∈ I and thus A is countably ρI-compact. □

Theorem 8. If A and B are countably ρI-compact subsets of an ideal
space (X, τ, I) then A ∪B is countably ρI-compact.

Proof. Let {Vα}α∈ω be a countable family of open subsets such that
(A ∪ B) \ ∪α∈ωVα ∈ I. This implies that A \ ∪α∈ωVα ∈ I and B \
∪α∈ωVα ∈ I and there exists finite sets ω1 ⊂ ω and ω2 ⊂ ω with
A \ ∪α∈ω1Vα ∈ I and B \ ∪α∈ω2Vα ∈ I. Then A \ ∪α∈ω1∪ω2Vα ∈ I and
B \ ∪α∈ω1∪ω2Vα ∈ I and hence (A ∪B) \ ∪α∈ω1∪ω2Vα ∈ I. □

If (X, τ, I) is an ideal space, we denote by τ ∗(I), the topology on X
generated by the basis β(I, τ) = {U\I : U ∈ τ, I ∈ I} [8]. When there
is no ambiguity we will simply write τ ∗ for τ ∗(I) and β for β(I, τ).
When τ ∗ = β, that is when β is a topology, we say that the topology τ
is simple with respect to I or just simple when no ambiguity is present
since all the τ ∗-open sets are of simple form, that is, V ∈ τ ∗ means
V = U \ I for some U ∈ τ and I ∈ I. As β(I, τ) = β(I, τ ∗), we have
τ is simple if and only if τ ∗ is simple.
A condition which implies τ is simple is the following: Given a

space (X, τ, I), Nj̊astad [11] defines the ideal I to be compatible with
τ , denoted I ∼ τ , if A ⊆ X and if for every x ∈ A there exists a
U ∈ τ(x) such that U ∩ A ∈ I then A ∈ I. It is known that in any
space (X, τ), the ideals N (τ) and M(τ) are compatible.
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Theorem 9. Let (X, τ, I) be an ideal space.

(1) If (X, τ ∗) is countably ρI-compact, then (X, τ) is countably
ρI-compact.

(2) If τ is simple and (X, τ) is countably ρI-compact then (X, τ ∗)
is countably ρI-compact.

Proof. 1. The result is immediate from the observation that τ ⊆ τ ∗.
2. Let {Vn : n ∈ ω} be a τ ∗-open I-cover of X. For every Vn in the
cover, there exists Un ∈ τ and In ∈ I such that Vn = Un \ In. Now
{Un : n ∈ ω} will be a τ -open I-cover and hence there exists a finite
subcollection {Uni

: i = 1, 2, . . . ,m} such that X \ ∪m
i=1Uni

= I ∈ I.
Now we have X \ ∪m

i=1Vni
⊆ I ∪ (∪m

i=1Ini
) ∈ I. □

Corollary 10. Let (X, τ, I) be a space with I ∼ τ . Then (X, τ) is
countably ρI-compact if and only if (X, τ∗) is countably ρI-compact.

A collection {Aα : α ∈ λ} of subsets ofX with an ideal I onX is said
to have the finite intersection property modulo I or I-FIP if for every
finite subcollection {Aαi

: i = 1, 2, . . . ,m}, we have ∩m
i=1Aαi

/∈ I. The
following theorem contains some useful characterizations of countable
ρI-compactness.

Theorem 11. Let (X, τ, I) be an ideal space. Then the following are
equivalent.

(1) (X, τ) is countably ρI-compact space.
(2) For every countable family {Fn : n ∈ ω} of closed sets such

that ∩∞
n=1Fn ∈ I, there exists a finite subfamily {Fni

: i =
1, 2, . . . ,m} such that ∩m

i=1Fni
∈ I.

(3) For every countable family {Fn : n ∈ ω} of closed sets with
I-FIP, ∩∞

i=1Fn /∈ I.

Proof. (1) ⇒ (2). Let {Fn : n ∈ ω} be a countable collection of
closed sets such that ∩∞

i=1Fn ∈ I. Then {X \ Fn : n ∈ ω} is a
countable open I-cover of X, so there exists a finite subcollection
{X \ Fni

: i = 1, 2, . . . ,m} such that X \ ∪m
i=1(X \ Fni

) ∈ I which
implies ∩m

i=1Fni
∈ I.

(2) ⇒ (3) These are contrapositive implications.
(3) ⇒ (1) Let {Un : n ∈ N} be a countable open I-cover of X,

that is X \ ∪∞
n=1Un ∈ I. Then {X \ Un : n ∈ N} is a countable

collection of closed sets such that ∩∞
n=1(X \ Un) ∈ I. By hypothesis

this family does not have the property I-FIP and so there exists a
finite subcollection {Uni

: i = 1, 2, . . . ,m} such that ∩m
i=1X \ Uni

∈ I.
Hence X is countably ρI-compact space. □
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Now we study the behavior of countably ρI-compact spaces under
certain types of maps.

Theorem 12. If (X, τ, I) is countably ρI-compact space, f : (X, τ) →
(Y, β) be a continuous map and if J = {B ⊆ Y | f−1(B) ∈ I}. Then
(Y, β,J ) is countably ρJ -compact.

Proof. Let {Vα}α∈ω be a countable family of open subsets of Y such
that Y \∪α∈ωVα ∈ J . Since f−1(Y \∪α∈ωVα) = X \∪α∈ωf

−1(Vα) ∈ I,
the countable family {f−1(Vα)} is an open I-cover of X. So there
exists a finite set ω0 ⊂ ω such that f−1(Y \ ∪α∈ω0Vα) = X \
∪α∈ω0f

−1(Vα) ∈ I which implies that Y \ ∪α∈ω0Vα ∈ J . □

Theorem 13. If (X, τ, I) is countably ρI-compact, f : (X, τ) →
(Y, β) is a continuous bijection, then (Y, β, f(I)) is countably ρf(I)-
compact.

Proof. Let {Vα}α∈ω be a countable family of open subsets of Y such
that Y \∪α∈ωVα ∈ f(I). Then f−1(Y \∪α∈ωVα) = X\∪α∈ωf

−1(Vα) ∈ I
so there exists a finite set ω0 ⊂ ω such that X \ ∪α∈ω0f

−1(Vα) ∈
I. Thus Y \ ∪α∈ω0Vα ⊂ f(X \ ∪α∈ω0f

−1(Vα)) ∈ f(I). Hence Y is
countably ρf(I)-compact. □

If f : X → Y is an injective map and J is an ideal on Y , then the
collection f−1(J ) = {f−1(J) | J ∈ J } is an ideal on X.

Theorem 14. If f : (X, τ) → (Y, β) is an open bijective map and
(Y, β,J ) is countably ρJ -compact space then (X, τ, f−1(J )) is count-
ably ρf−1(J )-compact.

Proof. Suppose {Vα}α∈ω be a countable family of open subsets of X
such that X \ ∪α∈ωVα ∈ f−1(J ). Then there exists J ∈ J with
X \ ∪α∈ωVα = f−1(J). So Y \ ∪α∈ωf(Vα) = f(f−1(J)) = J ∈ J
and since (Y, β,J ) is countably ρJ -compact, there exists a finite set
ω0 ⊂ ω with f(X \∪α∈ω0Vα) = Y \∪α∈ω0f(Vα) ∈ J . This implies that
X \ ∪α∈ω0Vα ∈ f−1(J ). □

4. Characterization of Countably ρI-compact Spaces

Bacon [1] gave a sufficient condition for a countably compact topo-
logical space to be compact space. We generalize this result to char-
acterize the countably ρI-compact spaces. A property L-I is defined
which is sufficient condition for a countably ρI-compact space to be a
ρI-compact space.

In this section, the closure of A will be denoted by A−, for any
subset A ⊆ X.
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Definition 15. Let D and E be the collections of subsets of a space
X. We say that D is weakly cushioned modulo I in E if there is a
function f : D → E such that if G is a countable subcollection of D
and for each G ∈ G, xG is a point of G, then {xG : G ∈ G}−\f(G) ∈ I
and for any finite subcollection H of G, ∪H ⊆ ∪f(H).

Let E be a subcollection of subsets of X, then ω(E) denote the
collection of all countable (finite or infinite) unions of members of E .

Definition 16. An ideal space (X, τ, I) is said to have property L-
I if whenever E is an open I-cover of X, there is a sequence D1,
D2 . . . such that for each n, Dn is a collection of subsets of X weakly
cushioned modulo I in ω(E) and X \ ∪{U : U ∈ E} ⊆ X \ ∪nDn ∈ I
and ∪Dn ∩ I is finite for all I ∈ I.

Theorem 17. Every countably ρI-compact space is ρI-compact if it
has the property L-I.

Proof. Suppose X is countably ρI-compact space with property L-I
and E is an open I-cover of X. Let D1, D2 . . . be a sequence such that
for each n, Dn is a collection of subsets of X such that X \∪{U : U ∈
E} ⊆ X \ ∪Zn ∈ I, where Zn = ∪{G : G ∈ Dn} with Zn ∩ I being
finite for each I ∈ I and for each n, Dn is weakly cushioned modulo
I in ω(E). For each n, let fn : Dn → ω(E) be a function such that if
G is a countable subcollection of Dn and xG ∈ G for each G ∈ G, then
{xG : G ∈ G}− \ ∪fn(G) ∈ I and for any finite subcollection H of G,
∪H ⊆ ∪fn(H).

Suppose that for some n, Zn is not a subset of any element in ω(E).
Let {x1, . . . , xn} is a subset of Zn and for each i ∈ {1, . . . , n}, Gi is
an element of Dn that contains xi. Define Ak = ∪k

i=1fn(Gi). Since
Ak ∈ ω(E), there is a point xk+1 in Zn \ Ak. Let Gk+1 be an element
of Dn that contains xk+1. Since ∪k

i=1Gi is a subset Ak, Gk+1 is not in
{G1, . . . , Gk}. By induction there exist sequences (xn), (Gk) and (Ak)
such that for each k, Gk is an element of Dn different from Gj where
j ̸= k, xk is in Gk ∩ Zn, Ak = ∪k

i=1fn(Gi) and xk+1 ∈ Zn \ Ak. Define
B = (X\{x1, x2 . . .}−)∩(∪E). As Dn is weakly cushioned modulo I in
ω(E), {x1, x2, . . .}− \ ∪∞

k=1fn(Gk) = {x1, x2, . . .}− \ ∪∞
k=1Ak ∈ I. Since

X \ ∪E ∈ I, X \ {B,A1, . . .} ∈ I which implies that {B,A1, . . .} is a
countable open I-cover of X and X being a countably ρI-compact
space, there will be some k such that X \ B ∪ Ak ∈ I. Since
xk+1, xk+2, . . . are infinite number of elements of Zn contained in a
member of I, we arrive at a contradiction. Hence each Zn is contained
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in some element of ω(E) and {Z1, Z2, . . .} is a countable I-cover of X
contained in E . Hence X has a finite I-subcover of X. □

Definition 18. A topological space X is said to be ρI-isocompact if
every closed countably ρI-compact subset of X is ρI-compact.

Theorem 19. If an ideal space (X, τ, I), where I is a σ-ideal, is the
union of a countable collection of closed ρI-isocompact subsets then X
is ρI-isocompact space.

Proof. Suppose X = ∪∞
i=1Fi, where each Fi is closed and ρI-

isocompact. Let M be a closed countably ρI-compact subset of X
and G be an open I-cover of M , that is M \ ∪G ∈ I. For each i,
M ∩ Fi is a closed countably ρI-compact subset of Fi which implies
that M ∩ Fi is ρI-compact. So there exists a finite I-subcover Hi

of M ∩ Fi that is M ∩ Fi \ ∪Hi ∈ I. Then ∪∞
i=1Hi is a countable

open I-cover of M and so contains a finite subcollection that covers
M modulo I. □

A subset A of X is said to be a non-ideal set if A /∈ I. It is
known that a space X is countably compact if and only if locally
finite collections of nonempty subsets of X are finite. Here we prove
a theorem which has this known fact as a corollary.

Definition 20. Let (X, τ, I) be a space and I ∈ I. A family A of
subsets of X is said to be locally finite modulo I if for each x ∈ X \ I,
there exists U ∈ τ(x) such that U intersects with at most finite number
of elements in A.

Every locally finite family is locally finite modulo I for every I ∈ I.

Theorem 21. Let (X, τ, I) be an ideal space. Then X is countably
ρI-compact if and only if for any I ∈ I and any countable locally finite
modulo I family of non-ideal sets in X is finite.

Proof. Let (X, τ, I) be a countably ρI-compact space and {An : n ∈
N} be a countable locally finite family of non-ideal sets modulo I ∈ I.
For every n ∈ N, define Bn = ∪∞

i=nAi. Then Bn+1 ⊆ Bn and Bn /∈ I
for every n. Let x ∈ X \ I, then there exists U ∈ τ(x) and j ∈ N such
that U ∩ Ai = ∅ for every i ≥ j. Therefore U ∩ Bj = ∅ and x /∈ Bj.
This shows that ∩∞

n=1Bn ⊆ I ∈ I. And by Theorem 11, we have a
finite subcollection such that ∩m

i=1Bni
∈ I. Choosing k ∈ N such that

k > max{n1, . . . , nm}, we have

Bk ⊆ ∩m
i=1Bni

⊆ ∩m
i=1Bni

.
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This implies Bk ∈ I which is a contradiction.
Conversely, assume that X is not a countably ρI-compact space.

Then there exists a countable family of open sets {Un : n ∈ N} such
that X \ ∪∞

i=1Un ∈ I and for any finite set F ⊂ N, X \ ∪k∈FUk /∈ I.
Let An = X \ ∪n

k=1Uk. Then An /∈ I, An+1 ⊆ An and ∩∞
i=1An =

X \ ∪∞
k=1Uk = I ∈ I. Let x ∈ X \ I, since each An is closed, there

exists U ∈ τ(x) and m ∈ N such that U ∩ An = ∅ for every n ≥
m. From this we conclude that {An : n ∈ N} is countably infinite
locally finite modulo I ∈ I family of non-ideal sets which leads to a
contradiction. □

For I = {∅}, the Theorem 21 reduces to the following well known
result [6].

Corollary 22. A space X is countably compact if and only if every
locally finite family of nonempty sets in X is finite.

Definition 23. An ideal space (X, τ, I) is said to be paracompact mod-
ulo I if each open I-cover U of X has an open I-cover V which is
locally finite refinement modulo I = X \ ∪U ∈ I.

Note that for any space (X, τ, I), the following implications hold:
paracompact modulo I ⇒ I-paracompact ⇐ paracompact.

Theorem 24. Let (X, τ, I) be paracompact modulo I space with I ∩
τ = {∅}. Then X is countably ρI-compact if and only if X is ρI-
compact.

Proof. Assume that (X, τ, I) is a countably ρI-compact and para-
compact modulo I space. Let U be an open I-cover of X, then
U has an open I-cover V which is locally finite refinement modulo
I = X \ ∪V ∈ I. Since X is countably ρI-compact and I ∩ τ = {∅},
by Theorem 21, the family V is finite. Hence we can say that X is
ρI-compact. □

A space (X, τ) is a Baire space if and only if M(τ)∩ τ = {∅}, where
M(τ) denotes the σ-ideal of meager (first category) subsets of X.

Corollary 25. Let (X, τ,M(τ)) be a Baire paracompact modulo M(τ)
space. Then X is countably ρM(τ)-compact space if and only if X is
ρM(τ)-compact space.
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