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Abstract. The purpose of this paper is the study of the growth of
solutions of higher order linear differential equations

f(k) + (Dk,1 + kalerfl(z)) f(kil) + ttt + (Dl + Blte(z)) f/

+ (D() + Alepl(z) + AQ@PZ(Z)) f = 0,

where A;(z) (# 0) (¢ = 1,2), Bi(2) (Z 0) (j = 1,..,k — 1),
Dy, (2) (m =0, ...,k —1) are meromorphic functions of finite order less
thann, P; (2) = a; 2"+ - -+a;0 and Q; (2) = b; ,2"+- - -+b; o are poly-
nomials with degree n > 1 such that a;,,0;, (1 =1,2; j=1,....k—1;
g = 0,1,...,n) are complex numbers. Our results extend the previ-
ous results due to Habib and Belaidi [3], [11], [12] and Beddani and
Hamani [4].
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1. INTRODUCTION AND MAIN RESULTS

Throughout this paper, we assume that the reader is familiar with the
fundamental results and the standard notations of the Nevanlinna’s
value distribution theory, see [14], [20]. Let p(f) denote the order
of growth of a meromorphic function f and the hyper-order of f is
defined by

p2 (f) :=limsup loglog T'(r, /) lolgT (r, /)

r—+00 ogr

where T'(r, f) is the Nevanlinna characteristic function of f, see [14],
[15], [20].

?

Definition 1.1 ([16], [18]) Let f be a meromorphic function. Then,
the convergence exponent of the zero-sequence of a meromorphic func-
tion f is defined by

A(f) = lirnsupM

r—+00 10g r

Y

where N ('r, %) is the integrated counting function of zeros of f in

{z 1 |2| < r}, and the exponent of convergence of the sequence of dis-
tinct zeros of f is defined by

B log N (7. 4)
A(f) :=limsup —————=~
400 logr

9

where N (7‘, %) is the integrated counting function of distinct zeros of

fin {z:|z| <r}. The exponent of convergence of the pole-sequence

of f is denoted by
A (l) — limsup 8N ().
f r—+00 log r

where N (r, f) is the integrated counting function of poles of f in
{z : |z| < r}. The hyper convergence exponents of zero-sequence and
the distinct zeros of f are defined respectively by

log log N (7", %) _ loglog N (r, %)
Ao (f) :=limsup , A2 (f) :=limsup :

r——400 1Og T r—-400 10g T

Definition 1.2 ([7]) Let f be a meromorphic function. Then, the
exponent of convergence of the sequence of distinct fixed points of f
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is defined by

?(Z):X(f_z) = limsuplogN< _Z>'

r—+400 log r

We also define

T() = A(f — o) :IlimsuplogN< - ‘P>

r—+oo 10g r

for any meromorphic function .

In [11], Habib and Belaidi have investigated the order and the
hyper-order of solutions of some higher order linear differential equa-
tions and obtained the following result.

Theorem A ([11]) Let Aj(z) (# 0) (j = 1,2), Bi(z) (# 0) (I =
...k —=1), Dy (2) (m=0,..,k—1) be entire functions with

max {p (4;),p(B1),p(Dm)} <1,

by (I =1,...k—1) be complex constants such that:

(i) arg by = arg ay and b = ca; (0<¢ <1)(l € ly) and (ii) b is
a real constant such that by < 0 (I € I,), where I, # 0, I, # 0, I
Nl =0, [ Ul, ={1,....k — 1} and ay,ay are complex numbers such
that ajag # 0, a1 # as (suppose that |ai| < |az|). If arg a3 # 7 or a;
15 a real number such that a; < &, where ¢ = max{¢ : l € I} and
b=min {b : [ € I}, then every solution f # 0 of the equation

f(k) + (Dkfl + quebk*lz) f(kfl) + -+ (D1 + Bleblz) f

(11) + (DQ + Ale‘“z + Age‘mz) f =0
satisfies p(f) = +oo and po(f) = 1.

In [3], they consider the relation between small functions with
meromorphic solutions and their derivatives to complex higher order
linear differential equations whose coefficients are meromorphic func-
tions. Indeed, they obtained the following result.

Theorem B ([3]) Let A;(z) (#0) (j = 1,2), Bi(z) (#0) (I =
1,....k — 1) be meromorphic functions with

max{p(4;) (j=1,2),p(B) (I=1,...k—1} <L,
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by (I = 1,...k — 1) be complex constants such that (i) by = ca;
(0<ag<1)(le€l)and (ii) b is a real constant such that by < 0
(l S IQ), where I, 7&@, Iy %@, LN :Q), LUIL = {1,2,...,]{7—1},
and ay, as are complex numbers such that ajas # 0, a; # as (sup-
pose that |ay| < |as|). If argay, # m or ay is a real number such that
a; < 1%6, where ¢ = max{¢;:l € 1} and b = min{b, : [ € L,}. If
©(#£ 0) is a meromorphic function with order p(p) < 1, then every
meromorphic solution f # 0 whose poles are of uniformly bounded
multiplicities of equation

(1.2) f®) 4By je =17 D o Breb® f g (A1e™7 + Age™®) f =0
satisfies N(f — o) = A(f' —¢) = A(f" — ) = o0.

In the paper [12], the authors have investigated the fixed points
of solutions, their first and second derivatives and proved:

Theorem C ([12]) Let A;(2) (# 0) (j = 0,1,2) and Bi(z) (I =
2, ...,k — 1) be meromorphic functions with

max{p(4;) (j=0,1,2),p(B)(=2,...k—1)} <1

and ay,ay be complex numbers such that ajas # 0, a3 # ay (suppose
that |ay| < |ag| ), let ag be a constant satisfying ag < 0 such that
arga; #m or ay < ag. If f(# 0) is any meromorphic solution whose
poles are of uniformly bounded multiplicities of equation

f(k) + Bk—lf(k_l) NS BQf” +A06a0zf, + (Ale(hz + A26a2z) f — O,
then f, f', f" all have infinitely many fixed points and 7 (f) =7 (f') =
T (f") = oc.

Recently, Beddani and Hamani [4] have investigated the growth
of solutions of more general higher order linear differential equations
and obtained the following result.

Theorem D ([4]) Let k > 2 be an integer, Ps (z) = > as:2" (s = 1,2),
i=0

Q;(2) = Y b2 (j=1,...k — 1) be polynomials with degree n > 1,
i=0

where asyo,_...,as,n (s=1,2), bjo,....,bjn (j=1,....;k —1) are complex
numbers such that as, = |as,|e? #0 (s=1,2), 0, € [—E 3—") and

20 2
a1 # Qo (suppose that |ay,| < |agn| ). Let As(z) (#0) (s =1,2),
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Bi(z) (#0) (j=1,...k—=1), Dy, (2) (m =0, ...,k — 1) be meromor-

phic functions with

max {p(A.),p(B;),p(Dn)} < n.

Let I and J be two sets satisfying I # 0, J# 0, I NJ =0, I UJ =
{1,....k — 1} such that for j € I, b;,, = cja1, (0 <c¢; <1) and for
je€J b, <0. If arg a1, = 01 # 7 or ay, 15 a real number such that
arn < 1=, where ¢ = max{c;: j €I} and b = min {b;, : j € J},
then every meromorphic solution f #Z 0 of equation

J® 4 (Dyoy + By Q1) f=U oo (Dy + Bie@ @) f/
(13) + (DO + Alepl(z) + A2€P2(z)> f =0

is of infinite order and satisfies pa(f) > n. Furthermore, if A <%>
+00, then po(f) = n.

The main purpose of this paper is to extend and improve the re-
sults of theorems A, B, C and D to some higher order linear differential
equations. In fact we will prove the following results.

Theorem 1.1 Let A;(z) (# O) (¢t = 1,2), Bj(z) (# 0)
(j=1,.,k=1), Dp(2) (m=0,...,k — 1) be meromorphic functions
with

max {p (Az) P (BJ) P (Dm>} <n,
and P (2) = a;n2" 4+ - -+a;0, Q; (2) = bj 2"+ -+bjo be polynomials
with degree n > 1, where a;q, bj, (1 = 1,2; j = 1,..,k—1; ¢ =
0,1,...,n) are complex numbers with a;, # 0 such that:
(i) arg b, = arg ay, and bj, = cja1, (0<c¢; <1)(j € I;) and (ii)
bjn be real constants such that b;, <0 (j € Is), where Iy # 0, I # 0,
L N, =0, UL, = {1,...k—1} and a;, are complex numbers
such that ay a2, # 0, a1, # a2, (suppose that |ai,| < |as,| ). If
arg a, 7# T or a1, 15 a real number such that a,, < ﬁ, where
c=max{c;: j€ 1} and b =min {b;, : j € L1}, then every mero-
morphic solution f % 0 of the equation (1.3) whose poles are of uni-
formly bounded multiplicities satisfies p(f) = +oo and pa(f) = n.

Remark 1.1 Clearly, Theorem 1.1 is an extension of Theorem A
from entire solutions of equation (1.1) to the case of meromorphic
solutions of equation (1.3) with meromorphic coefficients instead of
entire coefficients. Furthermore, we have changed the conditions ”
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bjn <07 and 7 A (%) < 400 7 in Theorem D by ” b;,, < 0”7 and

every meromorphic solution f # 0 whose poles are of uniformly
bounded multiplicities ” in Theorem 1.1.

(5_,5 0) (Z = 172)7 BJ(Z) (?é O)

Corollary 1.1 Let Ai(z)
=0,....,k — 1) be entire functions with

(j=1,...k—=1), Dy, (m

max {p (A i),p(Bj),p(Dm)} <n,

and P;(2) = a;n2™ + -+ + a;0, Q; (2) = bjn2™ + -+ bjo be polyno-
mials with degree n > 1, where a;q, bj, (1 = 1,27 =1,..,k—1;¢ =
0,1,...,n) are complex numbers with a;, # 0 such that:

(i) arg bj, = arg a1, and bj, = cja1, (0<¢; <1) (j € I) and (ii)
bjn be real constants such that b;, <0 (j € Iy), where Iy # 0, I # 0,
IL N, =0, I UL = {l,...k—1} and aj, are complex numbers
such that aynas, # 0, a1, # aa, (suppose that |ai,| < |azn| ).
If arg ay,, # 7 or ai, is a real number such that ay, < &, where
c=max{c;: j€ 1} and b=min {b;,, : j € Iy}, then every solution
f # 0 of the equation (1.3) satisfies p(f) = +oo and po(f) = n.

Example 1.1 Consider the following differential equation

f(3) _ 2i26iz2f” + <4Z2 +6i + Z€_4Z2> f/

(1.4) — ((162’23 + 82) %% 4 2i226(*4+i)z2> f=0.

Set
Ay (2) = —16iz3 — 82, Ay (2) = —2i2?,
By (z) =z, By (2) = —2iz,
D(] (Z) = O, D1 (Z) =422 + 62, D2 (Z) =0

and

Py (2) = 2i2?,

Py(z) = (=4 +1i) 2

Ql( ) = _4’227

QQ (Z) = iZz.
We have a1 = 21, a99 = —4 + 1, b5 = —4, bys = i, we can see that

arg ajp = arg by = 5,boy =1 = %a'127cl = %70 <c <1,
bia <0

and

max {p (A;) (i = 1.2) . p(B}) (j = 1,2),p (D) (m = 0,1,2)} = 0 < 2.
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Then, according to Corollary 1.1, every solution f # 0 of the equation
(1.4) satisfies p(f) = +oo and pa(f) = 2. We can see that f(z) =

¢ represents a solution of equation (1.4) which verifies p(f) = 400

and po(f) = 2.

Example 1.2 Consider the following differential equation

f(3)_ (Z+1+£eiz) f”‘l— |:422+COSZ 4 z+1
z

5 — —sinz+
2z z 2z

22

4 i iy
+i (—6+ o = +z2+z) + (2% +1)e” } f!
+ [(—423 —42° —4cosz+ 122+ (—4 sin z + 1822 + 22)) 27

(1.5) +8z‘z3e3iﬂ F=0.

(A (2) = —42° — 422 —4dcosz + 122 + i (—4sinz 4+ 182% + 2z2)
Ay (2) = 8iz?,
Bi(2) =2>+1,By(2) = —g,
Dy (2) =0,
Dy(z) =422+ %2 —2sinz + 2 4+ (—6+ 2+ 22 + 22 4 2)
Dg (Z) =—z2-1

and
Py (z) = 2i2?,
Py (2) = 3iz?,
Q1 () = 122,
Qs (2) =iz
We have a9 = 21, ags = 312, b19 = i, byy = 0, we can see that
argayp = argbip = 5,b12 =1 = %G12,C1 = %>0 <c <1,
b22 - O

and
max {p (A;) (i =1,2),p(B;) (1 =1,2),p(Dn) (m=0,1,2)} =1 < 2.

Then, according to Theorem 1.1, every meromorphic solution f # 0

whose poles are of uniformly bounded multiplicities of the equation

(1.5) satisfies p(f) = +oo and pa(f) = 2. We can see that f(z) =
- 2

e®” represents a solution of equation (1.5) which verifies p(f) = +oo

and po(f) = 2. Note that in this case we cannot apply Theorem D

because by = 0.
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Corollary 1.2 Let A;(z) (#0) (i =1,2), B;(2) (Z0) (=1, ..., k—1),

Dy, (2) (m=0,...,k — 1) be meromorphic functions with

max {p (A;), p(B;),p(Dm)} <n

and P; (2) = a; 2"+ +a;0, Q; (2) = bj 2"+ -+bjo be polynomials
with degree n > 1, where a;q4, bj, (i = 1,2, j = 1,..,k -1, ¢ =
0,1,...,n) are complex numbers with a;,, # 0 such that arg b;, =
arg ai, and bj, = cjar, (0<c¢;<1) (j=1,...,k—1), where aj,
are complex numbers such that ay a2, # 0, a1, # aa, (suppose that
larn| < lagn| ). If arg a1, # 7 or ay, is a real number such that
arn, <0, then every meromorphic solution f # 0 of the equation (1.3)
whose poles are of uniformly bounded multiplicities satisfies p(f) =
+oo and pa(f) = n.

Corollary 1.3 Let A;(z) (#0) (i =1,2), B;(2) (#0) (j =1,...,k—1),
Dy, (z) (m=0,....,k — 1) be meromorphic functions with

max {p (A,),p(B;) . p (D)} < n

and P; (2) = a;n2" + -+ ai0, Q; (2) = bj 2" + -+ bjo be polyno-
mials with degree n > 1, where a;4, bj, (i = 1,2; j = 1,..,k — 1;
qg = 0,1,...,n) are complex numbers with a;,, # 0 such that b;,
(7 =1,...,k — 1) are real constants satisfying b;, <0, a;, are complex
numbers such that ay nas, # 0, a1, 7# a2, (suppose that |ay,| < |agy|
). If arg ai, # ™ or ai, is a real number such that a;, < b,
where b = min {b;,, j=1,....k — 1}, then every meromorphic solu-
tion f # 0 of the equation (1.3) whose poles are of uniformly bounded
multiplicities satisfies p(f) = +oo and pa(f) = n.

Theorem 1.2 Let Aj(2) (# 0) (j = 1,2), Bi(z) (# 0)
(l=1,.,k—=1), Dp(2)(m=0,...k —1) satisfy the additional hy-
potheses of Theorem 1.1. If (% 0) is a meromorphic function with
order p(y) < n, then every meromorphic solution f # 0 whose poles
are of uniformly bounded multiplicities of equation (1.3) satisfies

M=) =X —@)=A(f"—p) =0
and
X (f—0)=X(f —¢)=X(f"—p)=n.

Remark 1.2 Obviously, Theorem 1.2 is an extension of Theorem B
from meromorphic solutions of equation (1.2) to the case of meromor-
phic solutions of equation (1.3).
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Corollary 1.4 Let Aj(z) (# 0) (j = 1,2), Bi(z) (# 0)
(l=1,....k=1), Dy (2)(m=0,....k —1) satisfy the additional hy-
potheses of Theorem 1.1. If f(# 0) is a meromorphic solution whose
poles are of uniformly bounded multiplicities of equation (1.3), then
£, f f" all have infinitely many fived points and satisfy 7T (f) =

T(f)=7(") =00, T2(f) =T2 () =72 (/") =n.
2. LEMMAS FOR THE PROOFS OF THE THEOREMS

First, we recall the following definitions. The linear measure of a set
E C [0,400) is defined as m (E) = 0+°O X (t) dt and the logarithmic
measure of a set F C [1,400) is defined by Im (F) = [ x£Wgp

1 t
where xp (1) is the characteristic function of a set H.

Lemma 2.1 ([1]) Let Pj(z) (j = 0,1,...,k) be polynomials with
degPy=n (n>1) and degP; < n (j = 1,2,....k). Let A;(2)(j =
0,1,...,k) be meromorphic functions with finite order and

max{p(4;):j=0,1,...,k} <n
such that Ag(z) #Z 0. We denote
F(Z) — Akepk(z) + Ak_lepk—l(z) R Alepl(z) + AO@PO(Z).

If deg(Po(z) — Pj(z)) =n for all j =1,....k, then F' is a nontrivial
meromorphic function with finite order and satisfies p(F) = n.

Lemma 2.2 ([6]) Let f be a meromorphic function of order p(f) =
p < oo. Then, for any given € > 0, there exists a set Ey C (1,+00)
that has finite linear measure and finite logarithmic measure, such that

|f(2)] < exp{r’*}
holds for |z| =r ¢ [0,1] U Ey, r — +o0.

Lemma 2.3 ([9]) Let f be a transcendental meromorphic function of
finite order p. Let € > 0 be a constant, k and j be integers satisfying
k > 7 > 0. Then, the following statements hold:

(1) There exists a set Ey C [—g,%’r) with linear measure zero, such

that, if 0 € [—5,25)\Es, then there is a constant Ry = Ry(f) > 1,

such that for all z satisfying argz = 6 and |z| =r > Ry, we have

 (2)
9 2)

< |Z|(k‘*j)(f’*1+€) ‘
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(ii) There exists a set E5 C [1,400) which has finite logarithmic mea-
sure, such that for all z satisfying |z| ¢ Es U [0, 1], we have

o

< ‘Z’(k‘*j)(P*HE) _

(iii) There exists a set Ey C [0,400) with finite linear measure, such
that for all z satisfying |z| ¢ E4 for all k > j > 0, we have

‘ ()

< [o|E=ore)

Lemma 2.4 ([17]) Suppose that n > 0 is an integer. Let P;(z) =
a2 + -+ (j = 1,2) be nonconstant polynomials, where a;, (¢ =
0,1, ,n) are complex numbers and ainas, # 0. Set z = e’ a;, =
|ajn| €, 0; € [—2,25), 6 (P}, 0) = |ajn|cos (nf +6;), then there is a
set Bs C [—%, n) that has lmear measure zero. If 01 # 0, then there

exists a ray argz =6, 6 € [—2=, 5E)\ (E5 U Eg) , such that

2n’%
5(P1,9) >0,5(P2,9) <0

or

d(P1,0) <0,6(Pr0)>0,
where Eg = {0 € [-X,35):§(P;,0) =0} is a finite set, which has
linear measure zero.

Remark 2.1 ([17]) In Lemma 2.4, if 0 € [—X, )\ (E5 U Eg) is

2n 2n

replaced by 6 € [3=, 35)\ (E5 U Eg) , then we obtain the same result.
Lemma 2.5 ([13]) Let P(2) = (o +i8)2" +--- (o, B are real num-
bers,|a| + || # 0) be a polynomial with degree n > 1 and A(z)
be a meromorphic function with p(A) < n. Set f(z) = A(z Yef

(z =re' ) 0 (P,0) = awcosnb — Ssinnb. Then, for any given € > 0
there is a set E; C [0,2m) that has linear measure zero, such that for
any 0 € [0,2m)\ (E7U Eg) for is R > 0, such that for |z| = r > R,
we have:

(i) if 0 (P,0) > 0, then

exp {(1—2) 3 (P.0) 1"} < | (re®) | < exp {(1+2) 5 (P.0) 1"},
(ii) if 0 (P,0) <0, then

exp {(14)3 (P,0)"} < If (re®) | < exp{(1- )3 (P,0) "},
where Eg = {0 € [0,27) : (P,0) = 0} is a finite set.



THE HYPER-ORDER OF SOLUTIONS OF HOMOGENEOUS LDE 51

Lemma 2.6 ([8]) Suppose that k > 2 and Ay, Ay, ..., Ax_1 are mero-
morphic functions such that p = max{p(A;) : j=0,1,..k —1} < c0.
Let f be a transcendental meromorphic solution with all poles of f
are of uniformly bounded multiplicities of equation

f(k) + Ay (2) f(k—l) +---+ Ay (2) f=0.
Then, ps (f) < p.

Lemma 2.7 ([9]) Let f be a transcendental meromorphic function,
and let o« > 1 and € > 0 be given constants. Then, there exists a
set Eg C (1,400) having finite logarithmic measure and a constant
B >0, that depends only on « and (n,m) (n, m positive integers with
n >m > 0) such that for all z satisfying |z| = r ¢ [0,1]U Ey, we have
™ (2) Tlrf), . nm
‘f(m) B <B — (log” r)log T (ar, f) :

Lemma 2.8 ([10]) Let ¢ : [0,4+00) — R and ¢ : [0,400) — R
be monotone non-decreasing functions such that o(r) < (r) for all
r & (EyU[0,1]), where Eyg is a set of finite logarithmic measure. Let

a > 1 be a given constant. Then, there exists an r1 = r1(a) > 0 such
that o(r) < ¢¥(ar) for all r > ry.

Lemma 2.9 ([2],[5]) Let A;(2)(#0),j=0,1,..,k—1, F(2)#0 be
finite order meromorphic functions.
(i) If f is a meromorphic solution of equation

(2.1) O 4 A () f* Y A(2) f=F
with p (f) = +oo, then f satisfies
M) =A(f) =p(f) = +oo.

(i) If f is a meromorphic solution of equation (2.1) with p (f) = 400
and po (f) = p, then f satisfies

AP =X =p(f) =400, X (f) =X (f) = p2(f) = p.

Lemma 2.10 Let Fj () (j =0,1,...,k — 1) be meromorphic functions
such that Fy(z) #Z 0. Suppose that f is a solution of

(2.2) SO+ Fa @) "4+ Fi(2) f +Fo(2) f =0,
Then, g; = %9 is a solution of the equation

(2.3) g FL () g Y b Fi(2) g4 Fi(2) 9= 0,
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where Fj(2),(j =0,1,...,k),i € N are defined by the following se-

quence of functions:

(2.4)
J(z) F;(z), ij,l,...k:—l(, .
7 7 7 F’Li(z)
Fi(2) = (1 () + F7 (2) = Fi (=) S
1=1,2,...,7=0,1,....k—1,
Fi(z)=F""'(2)=--=F(2) = F.(2) =1, for all i € N.

Proof. Assume that f is a solution of equation (2.2) and let g; = f.
We prove that g; is a solution of the equation (2.3) : Our proof is by
induction.

For ¢ = 1, differentiating (2.2), we obtain

f(k+1) + Fp (z) f(k) + (F];_l (z) + Fyy (z)) f(k—l)
+ (Fig (2) + Fyg () f&72
(2.5) ++ (Fl+Fo(2) '+ Fi(2) f=0.
By (2.2), we get

B _f(k) + Fr_1 (2) f(kfl) +o B (2) f
(2.6) f= e |

Substituting (2.6) into (2.5), we get
Fj(z
f(k+1) 4 (Fk—l (Z) . 0( )) f(k)

+ (F,;_l (2) + Fi_o (2) — Fu_y (2) £ (Z)) =D

Fy (2)
+~+Oy@+m@ywu@gzof'
(2.7) +(ﬂ@+m@ywu@gzof:

Using (2.4), since Fy (z) = 1, then (2.7) becomes

(k) /(s BRI 1COAWNEEY
o+ (R + o () - Ao 23 ) d

(2.8) FFL, () g+ + Fl(2) g = 0.
That is
29 W+ EL VAR, () P+ + Bl () g =0.



THE HYPER-ORDER OF SOLUTIONS OF HOMOGENEOUS LDE 53

Suppose that the assertion is true for the values which are strictly
smaller than a certain . We suppose g;_1 is a solution of the equation

k i k—1 i— k—2
gz(—)l + Fk—} (2) gz(—l : + sz—é (2 )gz( 1 )

(2.10) o+ FN(2) gl + Fé_l (2) gi-1 = 0.

Differentiating of (2.10), we can write

k+1 i— k i— / i— k—1
g1+ A ()0 + (R () + R () oY

@11) 4+ (F ) + B @) g+ (B (2) g =0

From (2.10) , we have

(2.12)

91@1 JFFZ:%( )91( 1 )+FI§ ;( )gz(klz) +o - F (2) gi
Fy~'(2) '

Substituting (2.12) into (2.11), and using the fact that F; ™' (2) = 1,

we get

o+ (om0 - 0 G ) )

gi-1 = —

Fy (2)

+ ((Féii (2)) + FL(2) = F7L (2) %) gD

4+ ((Fé’l (Z))/ _i_Fli*l (Z) — infl( ) (};jz 1<(ZZ))) ) 92/4

i—1 / i1 i—1 (Fg_l (Z))/ o
(2.13) + <(F1 (2)) + Fy 't (z) = F7H (2) W) gi—1 = 0.
By (2.4) and (2.13), we have

k i k— k— i
9§)+Fk—1()gz( U F 2()9( Dt Fi(2)gi =0
Thus, Lemma 2.10 is proved.

Lemma 2.11 ([20]) Suppose that fi(2), fa(2),.... fu(2) (n > 2) are
meromorphic functions and g1 (z),92(2), ..., gn (2) (n > 2) are entire
functions satisfying the following conditions:

()Zf()@gf =0;
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(i) g; (2) — gk (2) are no constants for 1 < j <k < n;
(iii) for 1 <j<n,1<h<k<n,

T(r, f;)=o0 {T (r, egh_gk)}
(r — +o0, 7 ¢ Ey1), where Eyy is a set with finite linear measure.
Then, f;j(2)=0,j=1,2,...,n.

Lemma 2.12 ([19]) Suppose that fi(2), fa(2),.... fu(2) (n > 2) are
meromorphic functions and g1 (z),92(2), ..., gn (2) (n > 2) are entire
functions satisfying the following conditions:

(i ilegj<z>fj (2) = furr:
2

(i) If 1 <j<n+1and 1 <k <n, then the order of f; is less than
the order of e9k(2)., Ifn>21<j<n+1and 1< h<k<n, then
the order of f; is less than the order of e~ 9. Then, f;(z) =0,j =
1,2,..,n+ 1.

Lemma 2.13 Let P(z) = a1,2" + -+ a1 and Q;(2) = bj,2" +
<o+ b0 (7 =1,...,q) be polynomials with degree n > 1, where ay;
(i = 0,1,...,n) are complex numbers such that ay, # 0, b;; (j =
1,..,q;1 = 0,1,...,n) are real constants with b;,, < 0 (j = 1,...,q).
Let m > 2 be an integer and a,v; (j = 1,...,q) be real numbers such
that 0 <o <m, v > 0and 0 < a+y+v+- -+ < m
If argay,, # ™ or a1, < b, where b = min{b;, : j=1,...,q}, then
main 7é aaq p + ’Ylbl,n + 72b2,n +eee ’yqbq,n-

Proof. Suppose that ma, ,, = aay ,+71b10+Y2b2n+ - - +74bgn- Then,
we have

- f)/lbl,n + 72[72,n + -+ quq,n

B m—a« '

Since b = min {b;,, : j =1,...,q}, then there exist constants ¢; such
that 0 <¢; <1(j=1,...,q) and b;,, = ¢;b. By this, we obtain a;, =
Kb, where

a1n

Y161 Y202 s YeCy

N m— « ’

Since 0 < yie1 + 726 + -+ V¢ <1+ Y2+ -+ <m— a, then
we get 0 < K < 1.

(i) If K =0, then a;, = 0, which is a contradiction.

(i) When 0 < K < 1 we have ay,, = Kb. If arga,,, # 7 or ay,, < b,
then a;, # ¢b (0 < ¢ < 1) which is a contradiction. So,

K

may, # aayy, + 101, + Y2bon + -+ Ybgn-
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Lemma 2.14 Let P (2) = a1 ,2" + -+ a1p, P2 (2) = agn2™ + -+ +
azo, Qj (2) = bjn2" + -+ bjo and Qs (2) = b}y 2" + - + V5 be
polynomials with degree n > 1, where a;, (i = 1,2; ¢ = 0,1,...,n)
are complex numbers such that ay ,a2, # 0, a1, # ag, (suppose that
|a17n| < |a2,n|), bj7q,bj/7q (j = 1,...,[; j/ = 1,...,1/; q = O,l,...,n) be
real constants such that bjn, < 0,05, <0 (j =1, j =1,..,0').
Let m > 2 be an integer and o > 0,8 > 0,a/ > 0,8 > 0,7; > 0
(G =10 and v, > 0 (j = 1,..,1') be real numbers such that
O<a+B8+m+r+-+n<mand 0 < o'+ +9+%+
o4y < m, max{a, 5,5} < m. If argay,, # 7w or ar, < b,
where b = min{bjm =10V, (= 1,...,[’)} and may, =
aa n + ﬁaln + ’YIbl,n + 72b2,n o+ ’Ylbl,nu then mazn 7é a/al,n +
6/a2,n + ’Yib/l,n + ’}ébé,n +eeet IYII’b;’,n‘

Proof. Suppose that mas, = o'ay,+8'asn+71b7 ,,+7505 47 2'771'
Then, we have the system

(2 14) maip, = Qayn + ﬁaﬂ,n + Vlbl,n + 72b2,n + -+ ’ylbl,'m
) magn = O/al,n + B/a2,n + Vibll,n + ’Yébé,n +eeet 7l/’b;’,n'

Since b = min {bj,n G=1..0,0, (=1, l’)} , then there exist
constants ¢; (0 < ¢; <1)and ¢} (0< ¢}, <1) (j=1,....,55 =1,..,1)

such that b;, = ¢;b,b., , = c/,b. Thus, by (2.14) we obtain

’7n
(m - O{) Q1 n — Ba2,n = Pyba

(2.15) {—dmm+wwﬂﬂ@mzﬁa
where

Y = Y1C1 + Y2C2 + - - + VG,

Y =me e+ .
Set

o0=a+f+n,

(216) { 5/ — O[/ +/B/ +7/
Since

O<me+me+-+vag<n+rt+-+n<m-a,
0< e +vc+ - F+yer <yp+v+-+y <m—d,

then

d=a+f+y<a+fB+m+rt+-+num,
5/:&/+ﬁ/—|—’}/§O/—l—ﬁ/-i-’yi‘f"Yé‘i‘“'"i‘%//Sm'
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The system (2.15) has the following determinant A

= (m—a)(m—=p)—-dp.

Case 1: If o/ =0, then A = (m —«a) (m — ') > 0.

Case 2: If /3 #0. Using 6 <m, & <m, weget m—a > S+~v,m—
p'>a ++". Thus, A > L, where L = (B +7) (¢/ +7') — «/B.
Subcase 2.1: If vy 20 and v 20 or vy =0 and 7 # 0 or v # 0 and
~" =0, then, A > L > 0.

Subcase 2.2: If v =4/ =0, then

0=a+ 3,

6/:a/_|_/8/'
(i) f § < m,0" < m, then m —a > f and m — ' > d’and so
A=m—a)im—p0)—dp>pad —a'f=0.

m—-—a —f
—ao/ m— 3

(2.17) A=

(i) If § = m,d = m, then m —a = g and m — /' = &/, hence A =
(m—a)(m—p)—dB=pa"—aop=0.
(iii) If 6 = m,d < m, then m —a = and m — ' > o/, hence A =
Bm—0)—dB>pad —adf=0.
v) If § <m,0 =m, then m —a > and m — ' =/, hence A =
m—a)o —ao'f>Fd —adp>0.
a) For the Subcase 2.2 (ii), we have A = 0, by the system (2.15) , we
get aj , = as,, which is a contradiction.
b) For Case 1 and Subcase (i), (ii) and (iv) of Case 2, when A > 0,
by the system (2.15), we get
vy =B
'7/ m—/B’ _bfy(m_ﬁ/)_}_ﬁ,yl_
A N A B
We have v (m — ') + 8+ > 0, by (2.16) , we can write
ym=B)+8y -A=(—-a—-p5)(m—p)
B — o — )~ (m—0) (m — ) + o5
=(m—p)(0—-p—m)+p(—p)
= (m =)0 —mB —m?+ 'm+ B
<(m—pBYm—mpB—m?+B'm+ pm=0.
Thus, 0 < Wm=80457 _ g <1,
(i) When S = 0, then a;,, = 0 which is a contradiction.
(i) When 0 < S < 1 we have ay,, = bS. If argay,, # 7 or a1, < b,
then ay, # ¢b(0 < ¢ <1) which is a contradiction. Hence, masy,, #
O/al,n + 6/a2,n + /}/ibll,n + VébIZ,n +eeet fyl/’bg’,n'

bS.

A1n = b'
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3. PROOF OF THE THEOREM 1.1

Assume that f (# 0) is a meromorphic solution of equation (1.3) with
all poles are of uniformly bounded multiplicities.
First step. We prove that p(f) = +oo. First of all, we prove that
equation (1.3) can not have a meromorphic solution f (# 0) with p (f)
< n. Assume that there exists a meromorphic solution with p (f) < n.
We can rewrite (1.3) in the following form
(3.1)

Bj_1e@-1@) p=1) 4 Ble@iG) gy (Alepl(z) +A26P2(2)) f=H,

with H = — (f(k) + Dy fE D 4o D+ Dof) . By the condi-
tions of Theorem 1.1, we have a; a2, # 0, a1, # az, and b;,, = cja1,,
(0 <¢j < 1), thus

deg (P — P,) =

deg (Q] P;) = deg (Q] Qi) =

with j#1;,j=1,...k—1;1l=1,....k—1; ¢ =1,2. Then, by Lemma
2.1 and (3.1), we find that the order of growth of the left side of
equation (3.1) is n. On the other hand, p(f) < n, p(f¥) < n,
j=1,...,k, s0o p(H) < n, which is a contradiction. Consequently,
every meromorphic solution f (# 0) of equation (1.3) is transcendental
with order p (f) > n. Now, we prove that p(f) = 4+00. Suppose that
p(f) = p < 4+00. By equation (1.3), we get

f (k) f(’f—l)
|A16P1(z) +A26P2(Z)‘ < ‘ |Dk: 1| + ’Bkz 16Qk 1(z )D ‘ f
f/
(3.2) + 4 (ID1] + | B9 ?)) 7‘ + | Dol .
Set p; = max {p(Ai),p(Bj),p(Dp)} < n.By Lemma 2.2, for any
]:1,...,’/@*1
m=0,..., k-1

given ¢ (0 <& <n—py1), there exists a set E; C (1,400) that has
finite linear measure and finite logarithmic measure such that when
|z| =r ¢ [0,1] U Ey, r — 400, we have

(3.3)

|A;(2)] < exp {r””g} |B;(2)| < exp {rp1+5} | D (2)| < exp {r’”“} .

By Lemma 2.3, there exists a set £y C [-7F, 7) of linear measure zero,

such that if § € [—Z, 3T)\ Es, then there is a constant Ry = Ro(f) >
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such that for all z satisfying arg z = 0 and |z| = r > Ry, we have

(3.4) ‘M < | (=1, .0k).

Set z = 1€, ay,, = |a1,] €, ag, = |agn| €2, 01,0, € -3, 37”) Then

(3.5) 0 (P1,0) = |ayn|cos(nf +61),6 (P, 0) = |ag,|cos (nf + 6s) .

Since bj, = c;a1, (0<¢; <1)(j € I) and ¢; are distinct numbers,
then

(3.6) 0(Qj,0) = c;0 (P1,0).

Case 1. If 6, = arg a;,, # 7 which is 0; # 7.
(i) Assume that 6; # 92 By Lemma 2.4, for any given ¢ with

(0 < & < min{n—py,3 (Hi)}), there is a ray argz = 6 with

RS [ 2n7 Qn)\(EQ U E5 U Eﬁ) such that
d(P1,0)>0,6(P,0)<0

or
5(P1,0) <O,(5(P2,9) > 0.

a) When § (Py,0) > 0,0 (P2, 0) < 0, we have 6 (P,0) < 6 (Py,0). For
sufficiently large r, we get by Lemma 2.5

‘Alepl(z) + AgePQ(Z)| > |A16P1(Z)] — |A2€P2(z)|
>exp{(1—¢)d(P,0)r"} —exp{(1—¢)d (P, 0)r"}

(3.7) > %exp{(l—a)&(Pl,H)r"}.

For j € I, by (3.6), we have
(3.8)
‘Bjer(Z)‘ <exp{(1+¢)c;d(P,0)r"} <exp{(l+¢)cd(P,0)r"},
and for j € I5, we have
Bjer(Z) — Bjer(z)_bj’"Znebj’"Zn — h,] (Z) €bj’nzn7
where h;(z) = BjeQi®binz" with py, = p(h) <
max {n — 1, p(B;)} < n. By Lemma 2.2, for any given ¢ with

0 < e < mi L(fl=c
£ min-< n — n — —
£1, P272 1—|—C

when |z| =7 ¢ [0,1] U Ey, 7 — 400, we have
[hj(2)] < exp {r” ™}
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Then
|B;e% )| = |h; (2) e"n*"| < exp {r>*e} |ehn*"]

(39) = exp {rszrE} ebﬂ'»"’”n cos né < exp {Tp2+€}
because b;,, < 0 and cosnf > 0. Substituting (3.3), (3.4), (3.7), (3.8),
(3.9) into (3.2), we obtain

1

5 eXP {(1=¢)6(P,0)r"} < rhlo-i+e)

+ (exp {rpﬁ_a} + |Bk—16Q"‘—1(Z>|) rkp=14¢)
+ oo+ (exp {rete) + ’Blte(z) ‘) PHO-149) 4 o rose)
<(k+1) pk(p=1+e) exp {7«01+6 + rﬂ2+6} exp{(1+¢)cé(P,0)r"}
which gives
exp{(1 —¢)d (P,0)r"}
(3.10)
<2(k+1) rko=14) oy {TP1+5 + rP2+€} exp {(1+¢)cd (Pp,0)r"}.

From (3.10) and 0 < & < 1 (ﬁ) , we obtain
(3.11)

1 _
exp { ( 5 C) § (P, 0) 7’"} <2(k+1)r* 4 exp {7‘”1+6 + r”“}

which is a contradiction because

d(P,0)>0and 0 <e <min{n—p;,n—pa}.

b) When ¢ (P1,6) < 0,0 (P,,0) > 0, we have ¢ (P1,6) < 6 (P»,0). For
sufficiently large r and the above ¢, we get by Lemma 2.5

A1) 4 4,67 ] > | ApeB)] — 4,61
> exp{(1—¢)d (P, 0)r"} —exp{(1—¢)d(P,0)r"}

1
(3.12) > §exp{(1 —€)d(Py,0)r"}.
For j € I, by (3.6), we have
(3.13) ‘Bjer(z)‘ <exp{(l—¢)cj0 (P,0)r"} <1

and for j € I, (3.9) holds. Substituting (3.3), (3.4), (3.9), (3.12),
(3.13) into (3.2), we obtain

exp {(1—€) 8 (P, 0)r"} < 2(k + 1) rF07159) exp {pP1Fe 4 pr2tel
which is a contradiction because

d(Py,0)>0and 0 <e <min{n—p;,n—pa}.
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(ii) Assume that 0; = 6. By Lemma 2.4, for any given ¢ with
0 < e < min n—pl,n—pQ,%}, there is a ray argz = 0
such that 0 € [—5-,5-)\ (E2 UEs U Eg) and 6 (P,0) > 0. Since
la1n| < lagn|, a1, # a2, and 6, = 6y, then |ai,| < |ag,|, thus
0 <0 (P,0) < 0(P,0). For sufficiently large r, we have by Lemma
2.5

‘AlePl(Z) + A2€P2(Z)| > |A2€P2(Z)| _ |A1€P1(Z)|
>exp{(1—¢)d(P,0)r"} —exp{(1+¢)d(P,0)r"}
(3.14) = (exp{ar"} —1)exp{(1+¢)d (P,0)r"},

where
a=(1—-¢)d(Py,0)—(14+¢)d(P,0).

. 0(P,0)—d(P1,0)
Since 0 < € < m, then

a=10(P,0)—0(P,0)—c(6(P,0)+6(P,0))
0 (Py,0) — 06 (Py,0)

> 0P, 0) =01 0) = 5 5 (P d)

(0 (Py,0) + 0 (P1,0)) = 0.
We get by (3.14)

1
(3.15) |A16P1(Z) + AgePQ(z)‘ > 5 eXP {ar"}exp{(14+¢)d (P,0)r"}.

On the other hand, by Lemma 2.2 and Lemma 2.5, we get (3.8) and
(3.9) . Substituting (3.3),(3.4),(3.8),(3.9), (3.15) into (3.2), we ob-
tain

1

S exp (ar”)exp{(1+¢) 8 (P, 0)r"} < (k + 1) r*71+9

(3.16) xexp {7 14y exp {(L+-2) 6 (Pr,6) 1"}
By (3.16), we get
exp{(1+&)(1—=¢)d(P,0)r" 4+ ar"} < 2(k+ 1)rFe1+9

x exp {rP1e + rr2te}
which is a contradiction because § (P;,0) > 0, « > 0 and 0 < e <
min{n — py,n — po }.
Case 2. If a1, < 1%6 which is 6; = 7.
(i) Assume that 0; # 0s, then 0y # 7. By Lemma 2.4, for any given

e(0<e< min{n — p1,n — pa, %}), there is a ray argz = 6 such

that 6 € [—Z, )\ (E2 U E5 U Eg) and § (P, 0) > 0. On the other

T 20 2n
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hand, we have ¢ (P,0) = |ay,|cos(nf +60,) = —|ai,|cos(nf) < 0
because cos (nfl) > 0. For sufficiently large r, we obtain by Lemma 2.5

‘Alepl(z) +A2€P2(Z)| > |A2€Pz(z)| _ |A1€P1(Z)|
> exp{(1— )8 (Pp.0)r"} —exp {(1— ) 3 (P1,6) "}
1
(3.17) > ~exp{(1-2)8 (P, 0)1"}

and (3.9),(3.13) hold. Substituting (3.3, (3.4), (3.9, (3.13) , (3.17)
into (3.2) , we obtain

%exp {(1=2)6 (P, 0)r"} < (k+ 1) rF071F9) oxp {pP1He 4 pr2tel
xexp{(1+e¢)cd(P,0)r"}
(3.18)
< (k4 1) 15 exp {4 et L exp {(1 4 €) o8 (Py, 0) 17}

By0<e< (( 5 and (3.16) , we get

201+
d—o)s
e
which is a contradiction because ¢ (P2,6) > 0,1 —c>0and 0<e<
min {n — p;,n — pa} .

(ii) Assume that 6; = 0,, then 0y = 7. By Lemma 2.4, for any

given € <0 < € < min {n — p1, %}) , there is a ray arg z = 0

such that 6 € [~ 32)\ (E, U E5 U Eg), then cosnf < 0, 6 (P1,0) =
layn|cos (nf +6,) = —l|ay,|cos(nf) > 0. Because |a1,| < |agnl,
a1n # Ao, We get |a1,] < |agy|, thus 0 < § (P1,60) < §(Ps,0). For
sufficiently large r, we get (3.8) and (3.15) holds. For j € I, we have

BeQJ(Z) — BeQJ(Z)ibJ,nZ e ]”Z — h ( ) J"Zn,

where h; (z) = B;eQi®)=%n2" with py = p (h;) < max (n — 1,p(B;)) <
n. ByLemmaZZ for any given € (0 < e <n — pg), when |z| =1 ¢
[0,1] U Ey, r — 400, we have

|hj(2)| < exp {r”2+5} .

(PQ, 9) 7’"} <2 (k + 1) rk(p—1+e) exp {TP1+5 + T.,02+5}

Then
|B;e% )| = |h; (2) e?n*"| < exp {r>*e} |ehin*"]

(319) = exp {sz'i‘f} ebj,n”"n cos nf
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because b, <0 and cosnf < 0, b = min {b;,, j € I}, from (3.19),
we get

(320) |Bj€Qj(z)| < exp {Tp2+€} ebr™ cosnb
Substituting (3.3),(3.4), (3.8), (3.15), (3.20) into (3.2) , we obtain
1
B exp{(1+¢)d(P,0)r"+ar"} < (k+1) rk(p=1+te)
X exp {fppl-‘ra + Tp2+8} ebr"cosne exp {(1 + 5) s (Pl, 9) T’n}
which gives
exp{((1—=¢c)(1+¢)d6(P,0)+a—bcosnd)r"} <2(k+1) prlp=1+¢)

X exp {TlerE + TPQJrS} _

Set y=(1—-¢)(14+¢)d(P1,0)+ a— bcosnb, we obtain

(321) exp {,YTTL} S 2 (k’ + 1) Tk(P—H-E) exp {rﬂl-f—a 4 TP2+E} )
Since a > 0, cosnf < 0, § (P1,0) = —|ay,|cos (nb), a1, < 7= and
b <0, then

y=0-¢)(1+¢)d(P,0)+ a—bcosn
=—[(1—c¢)(1+¢)|arn|+ b cosnl + «
0]
-0
Since 0 < ¢ < min{n —py,n—pa} and v > 0, then (3.21) is a

contradiction. Concluding the above proof, we obtain p (f) = 4o0.
Second step. We prove that p, (f) = n. By

p(Do + A1) 4 Aye N} =
and Lemma 2.6, we obtain ps (f) < n. Remains to show that ps (f) >
n. By Lemma 2.7, there exists a set Ey C (1,+00) having finite loga-
rithmic measure and a constant B > 0, such that for all z satisfying
|z| =r ¢ [0,1] U Ey, we have
f(j) (2)
f(2)

Case 1. If 6, = arg a;,, # 7 which is 6; # 7.

(i) if 61 # 0,. By Lemma 2.4, for any given ¢ with

0<e< . 1 1—c
€ min — — P2, =
n P1, M 272 1 c )

>—|(1—-¢)(1+¢) +b| cosnf + a = o+ becosnb > 0.

(3.22) < B(T (2r, f))*.
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there is a ray argz = 6 such that § € [—5-, 7-)\(E> U 5 U Eg) such
that

d(P1,0)>0,6(P,0)<0
or
d(P1,0) <0,6(Py,0)>0.

a) When § (Py,0) > 0,0 (P2, 0) < 0, we have 6 (P, 0) < 6 (P,0). For
sufficiently large 7, using the same reasoning as in Case 1((7), (a)), we
get

1
(3.23) |A1€P1(Z) + A2€P2(Z)‘ > 5 eXP {1—=2)d(P,0)r"}.

Substituting (3.3),(3.8),(3.9),(3.22),(3.23) into (3.2), we obtain

for all z = re? satisfying 2] = r ¢ [0,1] U Ey, 0 €
[—50 52)\ (B2 U E5 U Eg)

%exp{(l — )5 (P 0) ™Y < B(T (2r, f))F

B (oxp {4} 4 [ Bye® ) (7 or, )

oot B (exp {r 70} 4 [ Bie?t ) (T (2r, )" 4 exp (r0177)
(3.24)
< B(k+1)(T @2r, )" exp {rrte 4 rr2t b exp {(1 + ) ed (P1,0) 1"} .

By 0<e< 2((11:2) and (3.24) , we get

1—
exp { ( 5 c) 0(Py,0) r”} < 2B (k+ 1)exp {r"*° 4 rr2te}

(3.25) x (T (2r, ).

Since 0 (P,0) > 0, 0 < &€ < min{n — p;,n — po}, then by using
Lemma 2.8 and (3.25), we obtain py (f) > n, hence ps (f) = n.

b) When 6 (P1,60) < 0,0 (P,,0) > 0, we have ¢ (P1,6) < 6 (P2, 0). For
sufficiently large r and the above ¢, we get by Lemma 2.4

‘AlePl(Z) + A26P2(Z)| > |A2€P2(Z)| _ |A1€P1(Z)|
> exp{(1— )8 (P, 0)r"} — exp {(1 — )8 (Py,0) ")
1
2

(3.26) > —exp{(l—¢)d(P,0)r"}.
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Substituting (3.3),(3.9),(3.13),(3.22),(3.26) into (3.2), we obtain
for all z = re? satisfying 2] = r ¢ [0,1] U Ey, 0 €
[—5-, 30)\ (B2 U E5 U Eg)

exp{(1—¢)d (P, 0)r"} <2B(k+1)

(3.27) x exp {71 4 P2t (T (2r, f))

Since 0 (P2,0) > 0, 0 < ¢ < min{n — p;,n — pa}, then by using
Lemma 2.8 and (3.27), we obtain py (f) > n, hence ps (f) = n.

(i) Assume that 6; = 0. By Lemma 2.4, for the above ¢, there is a ray
arg z = 0 such that § € [—5-, 5-)\ (£ U 5 U Ep) satisfying 6 (P, 0) >
0. Since |a1,| < |agnl|, a1n # a2, and 61 = 0y, then |ay,| < |ag,|, thus
d(Py,0) > 0 (Py,0) > 0. For sufficiently large r, we have by Lemma
2.5, we get (3.15) hold. Substituting (3.3), (3.8),(3.9),(3.15),(3.22)
into (3.2), we obtain for all z = re? satisfying |2| = r ¢ [0,1] U Ey,
0e|—=%, )\ (B2 U E5 U Ep)

2n’ 2n

exp{(1+¢)6(P,0)r" +ar"} <2B(k+1)exp {r"*= + 7}

x (T (2r, )" exp{(1+ ) c6 (P, 0) 1"} .
Then
exp{((1=¢c)(1+¢)d(P,0)+ a)r"}

(3.28) < 2B (k+ 1) exp {r/e 4 reztedl (T (2, f))FF.

Since 0 < ¢ < min{n — p1,n —p2}, 0 (P1,0) > 0, « > 0, then by
using Lemma 2.8 and (3.28), we obtain p, (f) > n, hence py (f) = n.
Case 2. If a1, < 1.

(i) Assume that #; = 6. In first step, we have proved that there
is a ray argz = 6 such that 6 € [, 3%)\ (E, U E5 U Eg) satisfying
§(Ps,0) > 0(P,0) > 0. By Lemma 2.5, and for sufficiently large
r, we get (3.15) holds. Substituting (3.3),(3.8),(3.15),(3.20), (3.22)
into (3.2), we obtain for all z = re? satisfying |2| = r ¢ [0,1] U Ey,
0 € [Z,3)\ (Fy U Es U Eg)

2n’ 2n

exp{(1+¢)d(P,0)r" +ar"} < 2B (k+1)exp {r"*= + 7}

x (T (2r, ) exp {(1 4 ¢) 6 (Py, 0) ™} exp {br" cosnf} .
Then
exp{(1—=¢)(1+¢)d(P,0)+a—bcosnd)r"}

(3.29) < 2B (k+ 1) exp {r"** + r7=} (T (2r, £
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Set y=(1—¢)(1+¢)d(P,0)+ a—bcosnd, we obtain

(3:30)  exp {7} < 2B (k+ 1) exp {4 47} (T (21, )

Since 0 < e <min{n — p;,n — po} and v > 0, then by using Lemma
2.8 and (3.30), we obtain py (f) > n, hence ps (f) = n.

(i) Assume that 61 # 6. In first step, we have proved that there is a ray
argz = 0 where 0 € [—3-, 7-)\ (B2 U E5 U E) satisfying 0 (P, 0) >
0,0 (P1,0) < 0. By Lemma 2.5, and for sufficiently large r, we get
(3.17) holds. Using the same reasoning as in second step (Case 1 (i),
(b)), we can get ps (f) = n. Concluding the above proof, we obtain
that every meromorphic solution f (# 0) whose poles are of uniformly
bounded multiplicities of equation (1.3) satisfies p, (f) = n. The proof
of Theorem 1.1 is complete.

4. PROOFS OF COROLLARY 1.2 AND COROLLARY 1.3

Using the same reasoning as in the proof of Theorem 1.1, we can obtain
Corollary 1.1 and Corollary 1.2.

5. PROOF OF THEOREM 1.2

First step. We prove that
Mf=@)=A(f =) =p(f) = +oo,

A (f=9)=X(f—¢)=p(f) =n.

Set F() = D0+A1€P1(Z)+A2€P2(Z), Fj = Dj—f—Bjer(z) (] = 1, ,k’ — ].) .
Assume that f(# 0) is a meromorphic solution whose poles are of
uniformly bounded multiplicities of equation (1.3), then by Theorem
1.1, we have p (f) = 4+o00. Set go(2) = f(2) — ¢ (2) with p(p) < n.
We have ¢g (z) is a meromorphic function with p(go) = p (f) = +o0
and ps (go) = pa2 (f) = n. Substituting f (2) = go (2) + ¢ (2) into (1.3),
we obtain

(4.1) o+ Fagd™ - Fugh + Fogo = K,

where K = — [p®) + Fj,_1o*D ...+ Fi¢/ + Fyp] . We have K #
0. In fact, if K =0, then

(4.2) o® + F o™ D+ 4 R + Fop =0,

thus, ¢ (# 0) is a solution of equation (1.3) and by Theorem 1.1, ¢
must be of infinite order, which is a contradiction with p(¢) < n.
Hence, K # 0. By Lemma 2.9, we have

A(g0) = A(g0) = p(g0) = +00, X2 (g0) = A2 (g0) = p2(90) = 1.
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Then
Mf=@) =M —¢)=p(f) = +o0,
M (f=¢9)=X(f-¢) =p(f)=n
Second step. Now, we prove that

A=) =A(f'—¢)=p(f) =+,

X (f' =) =X (f —¢)=p2(f) =n.
Set g1 (2) = f'(2) — ¢ (z) with p(¢) < n. We have g () is a mero-
morphic function with p(g1) = p (f’) = +oc and py (g1) = p2 (f) = n.
Using Lemma 2.10, we get that f’(2) is a solution of the equation

@3) (MO EL (O B + FLf =0,

where F} (z),(j =0,1,...,k — 1) are defined by (2.4). By (4.3), we
obtain

@y VRO B R =0

Substituting fU+D (2) = ¢¥ (2) + o) (2),(j = 0,1,..., k) into (4.4),
we obtain

(4.5) i+ Fg" Y+ Flg+ Bl = h,
where
(4.6) hi=—[p® + FLo® Y 4. p Bl + Fry].
We can get
N.
4.7 F'="2 (j=0,1,...k—1
( ) 7 FO (] [ IS ) )
where

NO == F{FO + F02 - FlFé,
(4.8) Ny = (Fy) Fo+ Filp — Fja (), (j=1,...,k—2),
Ny =F 1 Fy— F}.

Now, we prove that hy #Z 0. In fact, if A; = 0, then % = 0. By (4.6)
and (4.7) , we have

(k) (k-1) /
(4.9) %FOJFN,H@ +.~~+N1%+N0:0,
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with 5"%) (j = 1,..., k) are meromorphic functions with p (5"(7])> <n

(j=1,...,k). Using (2.4) and (4.8), we can rewrite (4.9) in the form

k—1
2A1A €P1 2)+Pa(z) —|—A2 2P (2 —|—A2 2P (z) _'_Zfld 2)+Q;(2)
7j=1
(4.10) +Zf2 QG f el 4 fy e @) = M,

k=2 .
where M = Dy + Dy + Dyy + 3 (Djyy + Dy = Djsa) 2, fis fog
j=0
(j =0,...,k — 1) are meromorphic functions of order less than n. Set
J1 = {al,na A2 n, 2a1,n7 2a2,n7 a1,n + agp,

CLLn + bjna agm —+ bjn (] = ]_, ceey k? — 1)} .
Because
2al,n 7& a1,n,
201, # a1 + G2,
2a, n # 2a, o
then by Lemma 2.13, we have 2a;,, # a1, +bj, (j =1,...,k—1).
(i) If 2a1,, # asp,2a1, # azpn + bjn (j=1,...,k—1), then we can
rewrite (4.10) in the form
k—1
perl

where I' C J)\{2a1,},a5 (B €T), M are meromorphic functions
of order less than n and Rg(z) are non-constant polynomials with
degree n . By Lemma 2.11 and Lemma 2.12, we get A; = 0, which is
a contradiction.

(ii) If 2a1,, = n such that n € {aspn, a2, +b;n (j =1,...,k — 1)}, then
by Lemma 2.14, we obtain 2as,, # A € Ji\{2a2,}. Hence, we can
rewrite (4.10) in the form

k-1
A§€2P2(Z) + ZO([;/(ERW(Z) = M,
B'er
where IV C Ji\ {2as2,.},0p (8 €I"), M are meromorphic functions
of order less than n and Rg (z) are non-constant polynomials with
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degree n. By Lemma 2.11 and Lemma 2.12, we get As = 0, which is a
contradiction. Thus, h; # 0 is proved. By Lemma 2.9, we have

X(gl) = A(g1) = p(g1) = +o0, A2 (91) = A2 (1) = p2 (91) = n.
Then
M =@)=A(f'—¢) =p(f) = +ox,
M (f =)= —¢)=p(f) =n.
Third step. Now, we prove that
A" =9) =A(f" =) = p(f) = +oo,

X (f" =) =X (f"—¢)=p2(f) =n.
Set g2 (2) = " (2) — ¢ (2) with p () < n. We have g, (2) is a mero-
morphic function with p(g2) = p (f”) = +oc and py (g2) = p2 () = n.
Using Lemma 2.10, we get that f”(z) is a solution of the equation
(4.11) (f//)(k:) + Flg—l (f//)(k—l) R F12 (f//)/ i F02f” _o,
where F2(2),(j = 0,1,...k — 1) are defined by (2.4). By (4.11), we
obtain
(4.12) FED 4 B D o R2PO) 4 27 =0,

Substituting f02 (z) = g (2) + ¢ (2),(j = 0,1, ..., k) into (4.12),
we obtain

(4.13) G 4 72 Y b 4 2L+ Flgy = h,
where
(4.14) hy = — [p® + F2_ 0% D 4. 4 F2o' + F2g] .

Now, we prove that Fy ;é 0. Suppose that Fj = 0. Then, we have
2A A 6P1(Z +P2 A2 2P1(z) +A2 2P2 +f epl(z +Q1( )

+f el2(2)+Q1(z +f 0€ Py (z )—f‘f 06Pz(Z) =D,
where D = D2 + DD}, + DoD}, fi, f» are meromorphic functions of
order less than n. By using the same reasoning as above, we can get
a contradiction. Hence, F} # 0. In this case, we can get

M ;
(4.15) F? =7

j _F_Ol (]:0,1,71{?—1),

where
My = (Fll)/Fl (F1)2 - 11 (F )/7
) F}+ FIF —FL (FD), (j=1,..k—2),

(4.16) M; = (F} ),
My = Fl_ Fy — ().

j+1
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We can denote equations (4.13) and (4.14) by the following form
(4.17) Figt + My_1gd ™V + -+ Migh + Mogs = ho,
where

(4.18) hy = — [ Fy + My_10% D + - My + Moy] -

Now we prove that hy Z 0. In fact, if hy = 0, then %2 = 0. By (4.18),
we have

k) (k=1) /
(4.19) A VA4 4ok M My =0,
2 2 2

with 50(—7) (j =1,...,k) are meromorphic functions with p <59:7J>) <n

(j= 1 k) Using (2.4) and (4.16) , we can rewrite (4.19) in the form
A3 3P1(z _|_ A3 3P(z) + 3A2A €2P1 2)+Pa(z + 3A1A2 P1(2)+2P2(2)
k-1

+ flverPl(z) + f27062Pz(z) + fs, peP @R | Z i o2P1()+Q;(2)
7j=1

k—1 b1
+Zf27j62p2(Z)+Qj (Z) + § f37j6P1 (Z)+P2 (z)+Qj (Z)
Jj=1 =

FlgeP ARG g, P HQ)
k—1 k—1
(420)  +3 L enOHAEIE L3, POTEIRE) - f
Jj=1 j=1
with
H = Hy+ Hy (1+ Dy + D) + Hy (=D} — Dy)
<H1 (ZH) + Hy (ZK ) %,
where
HOZDg‘i‘D/l‘i‘Hl"’HQ(—Dé—Dl),
Hl D +D0,
Hy, = D” + Dy,
H; = D’+1—|—D3+2—|—Dj,
K - DJ-H DJ'
and f1j, faj, failij.le; (7 =0,1,...,k—1) are meromorphic functions

of order less than n. Set

Jo = {3a1,, 302,201 5 + A2, Q150 + 20020, 201 1, 202 1, A1 5 + A2,
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201 5, + bjn, 202, + bjn, @15 + A2 + bjn, A1, + bip,
Ao + D1n, @1 + b1 + Ojny G2 + 010 + 05 (J=1,...,k = 1)}.
Because
3a1,n 7é 20'1,717
3a1,n # 201, + a2,
3a1,n 7§ 3@2,117
301 # A1 + 2025,
then by Lemma 2.13, we have 3a1, # a1n+bin, 201 0 +bjn, @10+ a2, +
bin(j=1,...,k—1).
(1) If 3a1,n 7& 2a2,n7 al,n+a2,n7 a2,n+b1,na 2a2,n+bjna al,n+a2,n+bjn7 a?,n+
bin+0bj(j=1,....,k — 1), then we can rewrite (4.20) in the form
k-1
Ai’egpl(z) + Zagesﬁ(z) =H,
Berl’
where I' C Jo\ {3a1,},as (B €I'), H are meromorphic functions of
order less than n and Sp () are non-constant polynomials with degree
n. By Lemma 2.11 and Lemma 2.12, we get A; = 0, which is a
contradiction.
(ii) If 3a;, = n such that

n S {2a2,n7 a1n + A2.n, Q2.7 + blna 2a2,n + bjn7 Q1n + a2 n + bjnv

asp+bin+bn (=1, k—1)},

then by Lemma 2.14, we obtain 3as, # A for all A € Jo\ {3aqz,}.
Hence, we can rewrite (4.20) in the form

k—1

A§e3P2<Z> + Z aﬁlesﬁ’(’z) = H,

prer
where IV C Jy)\ {3as,.},ap (8 €1"), M are meromorphic functions
of order less than n and Sg (z) are non-constant polynomials with
degree n. By Lemma 2.11 and Lemma 2.12, we get Ay = 0, which is a
contradiction. Thus, hy Z 0 is proved. By Lemma 2.9, we have

X(g2) = A(g2) = p(g2) = +00, A2 (g2) = X2 (g2) = p2 (g2) = .
Then B

A" =)= X" =) =p(f) = +oo,

A (f" =) =X (f"—¢)=p2(f) =n.
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