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Abstract. The purpose of this paper is the study of the growth of
solutions of higher order linear differential equations
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where Ai(z) (̸≡ 0) (i = 1, 2), Bj(z) (̸≡ 0) (j = 1, ..., k − 1),
Dm (z) (m = 0, ..., k−1) are meromorphic functions of finite order less
than n, Pi (z) = ai,nz

n+· · ·+ai,0 andQj (z) = bj,nz
n+· · ·+bj,0 are poly-

nomials with degree n ≥ 1 such that ai,q, bj,q (i = 1, 2; j = 1, ..., k− 1;
q = 0, 1, ..., n) are complex numbers. Our results extend the previ-
ous results due to Habib and Beläıdi [3], [11], [12] and Beddani and
Hamani [4].
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1. Introduction and main results

Throughout this paper, we assume that the reader is familiar with the
fundamental results and the standard notations of the Nevanlinna’s
value distribution theory, see [14], [20]. Let ρ (f) denote the order
of growth of a meromorphic function f and the hyper-order of f is
defined by

ρ2 (f) := lim sup
r→+∞

log log T (r, f)

log r
,

where T (r, f) is the Nevanlinna characteristic function of f, see [14],
[15], [20].

Definition 1.1 ([16], [18]) Let f be a meromorphic function. Then,
the convergence exponent of the zero-sequence of a meromorphic func-
tion f is defined by

λ (f) := lim sup
r→+∞

logN
(
r, 1

f

)
log r

,

where N
(
r, 1

f

)
is the integrated counting function of zeros of f in

{z : |z| ≤ r}, and the exponent of convergence of the sequence of dis-
tinct zeros of f is defined by

λ (f) := lim sup
r→+∞

logN
(
r, 1

f

)
log r

,

where N
(
r, 1

f

)
is the integrated counting function of distinct zeros of

f in {z : |z| ≤ r} . The exponent of convergence of the pole-sequence
of f is denoted by

λ

(
1

f

)
:= lim sup

r→+∞

logN (r, f)

log r
,

where N (r, f) is the integrated counting function of poles of f in
{z : |z| ≤ r} . The hyper convergence exponents of zero-sequence and
the distinct zeros of f are defined respectively by

λ2 (f) := lim sup
r→+∞

log logN
(
r, 1

f

)
log r

, λ2 (f) := lim sup
r→+∞

log logN
(
r, 1

f

)
log r

.

Definition 1.2 ([7]) Let f be a meromorphic function. Then, the
exponent of convergence of the sequence of distinct fixed points of f
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is defined by

τ (z) = λ (f − z) := lim sup
r→+∞

logN
(
r, 1

f−z

)
log r

.

We also define

τ (φ) = λ (f − φ) := lim sup
r→+∞

logN
(
r, 1

f−φ

)
log r

for any meromorphic function φ.

In [11], Habib and Beläıdi have investigated the order and the
hyper-order of solutions of some higher order linear differential equa-
tions and obtained the following result.

Theorem A ([11]) Let Aj(z) (̸≡ 0) (j = 1, 2), Bl(z) (̸≡ 0) (l =
1, ..., k − 1), Dm (z) (m = 0, ..., k − 1) be entire functions with

max {ρ (Aj) , ρ (Bl) , ρ (Dm)} < 1,

bl (l = 1, ..., k − 1) be complex constants such that:
(i) arg bl = arg a1 and bl = cla1 (0 < cl < 1) (l ∈ I1) and (ii) bl is
a real constant such that bl ≤ 0 (l ∈ I2) , where I1 ̸= ∅, I2 ̸= ∅, I1
∩I2 = ∅, I1 ∪I2 = {1, ..., k − 1} and a1, a2 are complex numbers such
that a1a2 ̸= 0, a1 ̸= a2 (suppose that |a1| ≤ |a2|). If arg a1 ̸= π or a1
is a real number such that a1 <

b
1−c

, where c = max {cl : l ∈ I1} and
b = min {bl : l ∈ I2}, then every solution f ̸≡ 0 of the equation

f (k) +
(
Dk−1 +Bk−1e

bk−1z
)
f (k−1) + · · ·+

(
D1 +B1e

b1z
)
f ′

(1.1) + (D0 + A1e
a1z + A2e

a2z) f = 0

satisfies ρ(f) = +∞ and ρ2(f) = 1.

In [3], they consider the relation between small functions with
meromorphic solutions and their derivatives to complex higher order
linear differential equations whose coefficients are meromorphic func-
tions. Indeed, they obtained the following result.

Theorem B ([3]) Let Aj (z) (̸≡ 0) ( j = 1, 2), Bl (z) (̸≡ 0) ( l =
1, ..., k − 1) be meromorphic functions with

max {ρ (Aj) (j = 1, 2) , ρ (Bl) (l = 1, ..., k − 1)} < 1,
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bl ( l = 1, ..., k − 1) be complex constants such that (i) bl = cla1
(0 < cl < 1) ( l ∈ I1) and (ii) bl is a real constant such that bl < 0
( l ∈ I2), where I1 ̸= ∅, I2 ̸= ∅, I1 ∩ I2 = ∅, I1 ∪ I2 = {1, 2, ..., k − 1},
and a1, a2 are complex numbers such that a1a2 ̸= 0, a1 ̸= a2 (sup-
pose that |a1| ≤ |a2|). If arg a1 ̸= π or a1 is a real number such that
a1 <

b
1−c

, where c = max {cl : l ∈ I1} and b = min {bl : l ∈ I2}. If
φ( ̸≡ 0) is a meromorphic function with order ρ (φ) < 1, then every
meromorphic solution f ̸≡ 0 whose poles are of uniformly bounded
multiplicities of equation

(1.2) f (k)+Bk−1e
bk−1zf (k−1)+· · ·+B1e

b1zf ′+(A1e
a1z + A2e

a2z) f = 0

satisfies λ (f − φ) = λ (f ′ − φ) = λ (f ′′ − φ) = ∞.

In the paper [12], the authors have investigated the fixed points
of solutions, their first and second derivatives and proved:

Theorem C ([12]) Let Aj(z) (̸≡ 0) (j = 0, 1, 2) and Bl(z) (l =
2, ..., k − 1) be meromorphic functions with

max {ρ (Aj) (j = 0, 1, 2), ρ (Bl) (l = 2, ..., k − 1)} < 1

and a1, a2 be complex numbers such that a1a2 ̸= 0, a1 ̸= a2 (suppose
that |a1| ≤ |a2| ), let a0 be a constant satisfying a0 < 0 such that
arg a1 ̸= π or a1 < a0. If f (̸≡ 0) is any meromorphic solution whose
poles are of uniformly bounded multiplicities of equation

f (k) +Bk−1f
(k−1) + · · ·+B2f

′′ + A0e
a0zf ′ + (A1e

a1z + A2e
a2z) f = 0,

then f, f ′, f ′′ all have infinitely many fixed points and τ (f) = τ (f ′) =
τ (f ′′) = ∞.

Recently, Beddani and Hamani [4] have investigated the growth
of solutions of more general higher order linear differential equations
and obtained the following result.

Theorem D ([4]) Let k ≥ 2 be an integer, Ps (z) =
n∑

i=0

as,iz
i (s = 1, 2) ,

Qj (z) =
n∑

i=0

bj,iz
i (j = 1, ..., k − 1) be polynomials with degree n ≥ 1,

where as,0, ..., as,n (s = 1, 2) , bj,0, ..., bj,n (j = 1, ..., k − 1) are complex
numbers such that as,n = |as,n| eiθs ̸= 0 (s = 1, 2) , θs ∈

⌈
−π

2
, 3π

2

)
and

a1,n ̸= a2,n (suppose that |a1,n| ≤ |a2,n| ). Let As(z) ( ̸≡ 0) (s = 1, 2),
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Bj(z) (̸≡ 0) (j = 1, ..., k − 1) , Dm (z) (m = 0, ..., k − 1) be meromor-
phic functions with

max {ρ (As) , ρ (Bj) , ρ (Dm)} < n.

Let I and J be two sets satisfying I ̸= ∅, J ̸= ∅, I ∩J = ∅, I ∪J =
{1, ..., k − 1} such that for j ∈ I, bj,n = cja1,n (0 < cj < 1) and for
j ∈ J, bj,n < 0. If arg a1,n = θ1 ̸= π or a1,n is a real number such that
a1,n <

b
1−c

, where c = max {cj : j ∈ I} and b = min {bj,n : j ∈ J},
then every meromorphic solution f ̸≡ 0 of equation

f (k) +
(
Dk−1 +Bk−1e

Qk−1(z)
)
f (k−1) + · · ·+

(
D1 +B1e

Q1(z)
)
f ′

(1.3) +
(
D0 + A1e

P1(z) + A2e
P2(z)

)
f = 0

is of infinite order and satisfies ρ2(f) ≥ n. Furthermore, if λ
(

1
f

)
<

+∞, then ρ2(f) = n.

The main purpose of this paper is to extend and improve the re-
sults of theorems A, B, C and D to some higher order linear differential
equations. In fact we will prove the following results.

Theorem 1.1 Let Ai(z) (̸≡ 0) (i = 1, 2), Bj(z) (̸≡ 0)
(j = 1, ..., k − 1) , Dm (z) (m = 0, ..., k − 1) be meromorphic functions
with

max {ρ (Ai) , ρ (Bj) , ρ (Dm)} < n,

and Pi (z) = ai,nz
n+· · ·+ai,0, Qj (z) = bj,nz

n+· · ·+bj,0 be polynomials
with degree n ≥ 1, where ai,q, bj,q (i = 1, 2; j = 1, ..., k − 1; q =
0, 1, ..., n) are complex numbers with ai,n ̸= 0 such that:
(i) arg bj,n = arg a1,n and bj,n = cja1,n (0 < cj < 1) (j ∈ I1) and (ii)
bj,n be real constants such that bj,n ≤ 0 (j ∈ I2) , where I1 ̸= ∅, I2 ̸= ∅,
I1 ∩I2 = ∅, I1 ∪I2 = {1, ..., k − 1} and aj,n are complex numbers
such that a1,na2,n ̸= 0, a1,n ̸= a2,n (suppose that |a1,n| ≤ |a2,n| ). If
arg a1,n ̸= π or a1,n is a real number such that a1,n < b

1−c
, where

c = max {cj : j ∈ I1} and b = min {bj,n : j ∈ I2}, then every mero-
morphic solution f ̸≡ 0 of the equation (1.3) whose poles are of uni-
formly bounded multiplicities satisfies ρ(f) = +∞ and ρ2(f) = n.

Remark 1.1 Clearly, Theorem 1.1 is an extension of Theorem A
from entire solutions of equation (1.1) to the case of meromorphic
solutions of equation (1.3) with meromorphic coefficients instead of
entire coefficients. Furthermore, we have changed the conditions ”
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bj,n < 0 ” and ” λ
(

1
f

)
< +∞ ” in Theorem D by ” bj,n ≤ 0 ” and

” every meromorphic solution f ̸≡ 0 whose poles are of uniformly
bounded multiplicities ” in Theorem 1.1.

Corollary 1.1 Let Ai(z) ( ̸≡ 0) (i = 1, 2), Bj(z) ( ̸≡ 0)
(j = 1, ..., k − 1) , Dm (m = 0, ..., k − 1) be entire functions with

max {ρ (Ai) , ρ (Bj) , ρ (Dm)} < n,

and Pi (z) = ai,nz
n + · · · + ai,0, Qj (z) = bj,nz

n + · · · + bj,0 be polyno-
mials with degree n ≥ 1, where ai,q, bj,q (i = 1, 2; j = 1, ..., k − 1; q =
0, 1, ..., n) are complex numbers with ai,n ̸= 0 such that:
(i) arg bj,n = arg a1,n and bj,n = cja1,n (0 < cj < 1) (j ∈ I1) and (ii)
bj,n be real constants such that bj,n ≤ 0 (j ∈ I2) , where I1 ̸= ∅, I2 ̸= ∅,
I1 ∩I2 = ∅, I1 ∪I2 = {1, ..., k − 1} and aj,n are complex numbers
such that a1,na2,n ̸= 0, a1,n ̸= a2,n (suppose that |a1,n| ≤ |a2,n| ).
If arg a1,n ̸= π or a1,n is a real number such that a1,n <

b
1−c

, where
c = max {cj : j ∈ I1} and b = min {bj,n : j ∈ I2}, then every solution
f ̸≡ 0 of the equation (1.3) satisfies ρ(f) = +∞ and ρ2(f) = n.

Example 1.1 Consider the following differential equation

f (3) − 2izeiz
2

f ′′ +
(
4z2 + 6i+ ze−4z2

)
f ′

(1.4) −
((

16iz3 + 8z
)
e2iz

2

+ 2iz2e(−4+i)z2
)
f = 0.

Set  A1 (z) = −16iz3 − 8z, A2 (z) = −2iz2,
B1 (z) = z, B2 (z) = −2iz,

D0 (z) ≡ 0, D1 (z) = 4z2 + 6i,D2 (z) ≡ 0

and 
P1 (z) = 2iz2,

P2 (z) = (−4 + i) z2,
Q1 (z) = −4z2,
Q2 (z) = iz2.

We have a12 = 2i, a22 = −4 + i, b12 = −4, b22 = i, we can see that{
arg a12 = arg b22 =

π
2
, b22 = i = 1

2
a12, c1 =

1
2
, 0 < c1 < 1,

b12 < 0

and

max {ρ (Ai) (i = 1, 2) , ρ (Bj) (j = 1, 2) , ρ (Dm) (m = 0, 1, 2)} = 0 < 2.
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Then, according to Corollary 1.1, every solution f ̸≡ 0 of the equation
(1.4) satisfies ρ(f) = +∞ and ρ2(f) = 2. We can see that f (z) =

ee
iz2

represents a solution of equation (1.4) which verifies ρ(f) = +∞
and ρ2(f) = 2.

Example 1.2 Consider the following differential equation

f (3) −
(
z + 1 +

i

z
eiz
)
f ′′ +

[
4z2 +

cos z

z2
− 4

z
sin z +

z + 1

z

+i

(
−6 +

4

z
+

sin z

z2
+ z2 + z

)
+ (z2 + 1)eiz

2

]
f ′

+
[(
−4z3 − 4z2 − 4 cos z + 12z + i

(
−4 sin z + 18z3 + 2z

))
e2iz

2

(1.5) +8iz3e3iz
2
]
f = 0.

Set

A1 (z) = −4z3 − 4z2 − 4 cos z + 12z + i (−4 sin z + 18z3 + 2z) ,
A2 (z) = 8iz3,

B1 (z) = z2 + 1, B2 (z) = − i
z
,

D0 (z) ≡ 0,
D1 (z) = 4z2 + cos z

z2
− 4

z
sin z + z+1

z
+ i
(
−6 + 4

z
+ sin z

z2
+ z2 + z

)
,

D2 (z) = −z − 1

and 
P1 (z) = 2iz2,
P2 (z) = 3iz2,
Q1 (z) = iz2,
Q2 (z) = iz.

We have a12 = 2i, a22 = 3i, b12 = i, b22 = 0, we can see that{
arg a12 = arg b12 =

π
2
, b12 = i = 1

2
a12, c1 =

1
2
, 0 < c1 < 1,

b22 = 0

and

max {ρ (Ai) (i = 1, 2) , ρ (Bj) (j = 1, 2) , ρ (Dm) (m = 0, 1, 2)} = 1 < 2.

Then, according to Theorem 1.1, every meromorphic solution f ̸≡ 0
whose poles are of uniformly bounded multiplicities of the equation
(1.5) satisfies ρ(f) = +∞ and ρ2(f) = 2. We can see that f (z) =

ee
iz2

represents a solution of equation (1.5) which verifies ρ(f) = +∞
and ρ2(f) = 2. Note that in this case we cannot apply Theorem D
because b22 = 0.
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Corollary 1.2 Let Ai(z) (̸≡ 0) (i = 1, 2), Bj(z) (̸≡ 0) (j = 1, ..., k−1),
Dm (z) (m = 0, ..., k − 1) be meromorphic functions with

max {ρ (Ai) , ρ (Bj) , ρ (Dm)} < n

and Pi (z) = ai,nz
n+· · ·+ai,0, Qj (z) = bj,nz

n+· · ·+bj,0 be polynomials
with degree n ≥ 1, where ai,q, bj,q (i = 1, 2; j = 1, ..., k − 1; q =
0, 1, ..., n) are complex numbers with ai,n ̸= 0 such that arg bj,n =
arg a1,n and bj,n = cja1,n (0 < cj < 1) (j = 1, ..., k − 1) , where aj,n
are complex numbers such that a1,na2,n ̸= 0, a1,n ̸= a2,n (suppose that
|a1,n| ≤ |a2,n| ). If arg a1,n ̸= π or a1,n is a real number such that
a1,n < 0, then every meromorphic solution f ̸≡ 0 of the equation (1.3)
whose poles are of uniformly bounded multiplicities satisfies ρ(f) =
+∞ and ρ2(f) = n.

Corollary 1.3 Let Ai(z) (̸≡ 0) (i = 1, 2), Bj(z) (̸≡ 0) (j = 1, ..., k−1),
Dm (z) (m = 0, ..., k − 1) be meromorphic functions with

max {ρ (Ai) , ρ (Bj) , ρ (Dm)} < n

and Pi (z) = ai,nz
n + · · ·+ ai,0, Qj (z) = bj,nz

n + · · ·+ bj,0 be polyno-
mials with degree n ≥ 1, where ai,q, bj,q (i = 1, 2; j = 1, ..., k − 1;
q = 0, 1, ..., n) are complex numbers with ai,n ̸= 0 such that bj,n
(j = 1, ..., k − 1) are real constants satisfying bj,n ≤ 0, aj,n are complex
numbers such that a1,na2,n ̸= 0, a1,n ̸= a2,n (suppose that |a1,n| ≤ |a2,n|
). If arg a1,n ̸= π or a1,n is a real number such that a1,n < b,
where b = min {bj,n, j = 1, ..., k − 1}, then every meromorphic solu-
tion f ̸≡ 0 of the equation (1.3) whose poles are of uniformly bounded
multiplicities satisfies ρ(f) = +∞ and ρ2(f) = n.

Theorem 1.2 Let Aj(z) (̸≡ 0) (j = 1, 2), Bl(z) (̸≡ 0)
(l = 1, ..., k − 1) , Dm (z) (m = 0, ..., k − 1) satisfy the additional hy-
potheses of Theorem 1.1. If φ( ̸≡ 0) is a meromorphic function with
order ρ (φ) < n, then every meromorphic solution f ̸≡ 0 whose poles
are of uniformly bounded multiplicities of equation (1.3) satisfies

λ (f − φ) = λ (f ′ − φ) = λ (f ′′ − φ) = ∞
and

λ2 (f − φ) = λ2 (f
′ − φ) = λ2 (f

′′ − φ) = n.

Remark 1.2 Obviously, Theorem 1.2 is an extension of Theorem B
from meromorphic solutions of equation (1.2) to the case of meromor-
phic solutions of equation (1.3).
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Corollary 1.4 Let Aj(z) ( ̸≡ 0) (j = 1, 2), Bl(z) ( ̸≡ 0)
(l = 1, ..., k − 1) , Dm (z) (m = 0, ..., k − 1) satisfy the additional hy-
potheses of Theorem 1.1. If f (̸≡ 0) is a meromorphic solution whose
poles are of uniformly bounded multiplicities of equation (1.3), then
f, f ′, f ′′ all have infinitely many fixed points and satisfy τ (f) =
τ (f ′) = τ (f ′′) = ∞, τ 2 (f) = τ 2 (f

′) = τ 2 (f
′′) = n.

2. Lemmas for the proofs of the theorems

First, we recall the following definitions. The linear measure of a set
E ⊂ [0,+∞) is defined as m (E) =

∫ +∞
0

χE (t) dt and the logarithmic

measure of a set F ⊂ [1,+∞) is defined by lm (F ) =
∫ +∞
1

χF (t)
t
dt,

where χH (t) is the characteristic function of a set H.

Lemma 2.1 ([1]) Let Pj(z) (j = 0, 1, ..., k) be polynomials with
degP0 = n (n ≥ 1) and degPj ≤ n (j = 1, 2, ..., k). Let Aj(z)(j =
0, 1, ..., k) be meromorphic functions with finite order and

max {ρ(Aj) : j = 0, 1, ..., k} < n

such that A0(z) ̸≡ 0. We denote

F (z) = Ake
Pk(z) + Ak−1e

Pk−1(z) + · · ·+ A1e
P1(z) + A0e

P0(z).

If deg(P0(z) − Pj(z)) = n for all j = 1, ..., k, then F is a nontrivial
meromorphic function with finite order and satisfies ρ(F ) = n.

Lemma 2.2 ([6]) Let f be a meromorphic function of order ρ (f) =
ρ < ∞. Then, for any given ε > 0, there exists a set E1 ⊂ (1,+∞)
that has finite linear measure and finite logarithmic measure, such that

|f(z)| ≤ exp
{
rρ+ε

}
holds for |z| = r /∈ [0, 1] ∪ E1, r → +∞.

Lemma 2.3 ([9]) Let f be a transcendental meromorphic function of
finite order ρ. Let ε > 0 be a constant, k and j be integers satisfying
k > j ≥ 0. Then, the following statements hold:
(i) There exists a set E2 ⊂ [−π

2
, 3π

2
) with linear measure zero, such

that, if θ ∈ [−π
2
, 3π

2
)\E2, then there is a constant R0 = R0(θ) > 1,

such that for all z satisfying arg z = θ and |z| = r ≥ R0, we have∣∣∣∣f (k) (z)

f (j) (z)

∣∣∣∣ ≤ |z|(k−j)(ρ−1+ε) .
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(ii) There exists a set E3 ⊂ [1,+∞) which has finite logarithmic mea-
sure, such that for all z satisfying |z| /∈ E3 ∪ [0, 1], we have∣∣∣∣f (k) (z)

f (j) (z)

∣∣∣∣ ≤ |z|(k−j)(ρ−1+ε) .

(iii) There exists a set E4 ⊂ [0,+∞) with finite linear measure, such
that for all z satisfying |z| /∈ E4 for all k > j ≥ 0, we have∣∣∣∣f (k) (z)

f (j) (z)

∣∣∣∣ ≤ |z|(k−j)(ρ+ε) .

Lemma 2.4 ([17]) Suppose that n ≥ 0 is an integer. Let Pj (z) =
ajnz

n + · · · (j = 1, 2) be nonconstant polynomials, where ajq (q =
0, 1, ..., n) are complex numbers and a1na2n ̸= 0. Set z = reiθ, ajn =
|ajn| eiθj , θj ∈ [−π

2
, 3π

2
), δ (Pj, θ) = |aj,n| cos (nθ + θj) , then there is a

set E5 ⊂ [− π
2n
, 3π
2n
) that has linear measure zero. If θ1 ̸= θ2, then there

exists a ray arg z = θ, θ ∈ [− π
2n
, 3π
2n
)\ (E5 ∪ E6) , such that

δ (P1, θ) > 0, δ (P2, θ) < 0

or
δ (P1, θ) < 0, δ (P2, θ) > 0,

where E6 =
{
θ ∈ [− π

2n
, 3π
2n
) : δ (Pj, θ) = 0

}
is a finite set, which has

linear measure zero.

Remark 2.1 ([17]) In Lemma 2.4, if θ ∈ [− π
2n
, π
2n
)\ (E5 ∪ E6) is

replaced by θ ∈ [ π
2n
, 3π
2n
)\ (E5 ∪ E6) , then we obtain the same result.

Lemma 2.5 ([13]) Let P (z) = (α + iβ) zn + · · · (α, β are real num-
bers , |α| + |β| ̸= 0) be a polynomial with degree n ≥ 1 and A(z)
be a meromorphic function with ρ (A) < n. Set f (z) = A(z)eP (z),(
z = reiθ

)
, δ (P, θ) = α cosnθ − β sinnθ. Then, for any given ε > 0,

there is a set E7 ⊂ [0, 2π) that has linear measure zero, such that for
any θ ∈ [0, 2π)\ (E7 ∪ E8) for is R > 0, such that for |z| = r > R,
we have:
(i) if δ (P, θ) > 0, then

exp {(1− ε) δ (P, θ) rn} ≤ |f
(
reiθ
)
| ≤ exp {(1 + ε) δ (P, θ) rn} ,

(ii) if δ (P, θ) < 0, then

exp {(1 + ε) δ (P, θ) rn} ≤ |f
(
reiθ
)
| ≤ exp {(1− ε) δ (P, θ) rn} ,

where E8 = {θ ∈ [0, 2π) : (P, θ) = 0} is a finite set.
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Lemma 2.6 ([8]) Suppose that k ≥ 2 and A0, A1, ..., Ak−1 are mero-
morphic functions such that ρ = max {ρ (Aj) : j = 0, 1, ...k − 1} <∞.
Let f be a transcendental meromorphic solution with all poles of f
are of uniformly bounded multiplicities of equation

f (k) + Ak−1 (z) f
(k−1) + · · ·+ A0 (z) f = 0.

Then, ρ2 (f) ≤ ρ.

Lemma 2.7 ([9]) Let f be a transcendental meromorphic function,
and let α > 1 and ε > 0 be given constants. Then, there exists a
set E9 ⊂ (1,+∞) having finite logarithmic measure and a constant
B > 0, that depends only on α and (n,m) (n,m positive integers with
n > m ≥ 0) such that for all z satisfying |z| = r /∈ [0, 1]∪E9, we have∣∣∣∣ f (n) (z)

f (m) (z)

∣∣∣∣ ≤ B

(
T (αr, f)

r
(logα r) log T (αr, f)

)n−m

.

Lemma 2.8 ([10]) Let φ : [0,+∞) → R and ψ : [0,+∞) → R
be monotone non-decreasing functions such that φ(r) ≤ ψ(r) for all
r /∈ (E10 ∪ [0, 1]) , where E10 is a set of finite logarithmic measure. Let
α > 1 be a given constant. Then, there exists an r1 = r1(α) > 0 such
that φ(r) ≤ ψ(αr) for all r > r1.

Lemma 2.9 ([2],[5]) Let Aj(z)(̸≡ 0), j = 0, 1, ..., k − 1, F (z) ̸≡ 0 be
finite order meromorphic functions.
(i) If f is a meromorphic solution of equation

(2.1) f (k) + Ak−1 (z) f
(k−1) + · · ·+ A0 (z) f = F

with ρ (f) = +∞, then f satisfies

λ (f) = λ (f) = ρ (f) = +∞.

(ii) If f is a meromorphic solution of equation (2.1) with ρ (f) = +∞
and ρ2 (f) = ρ, then f satisfies

λ (f) = λ (f) = ρ (f) = +∞, λ2 (f) = λ2 (f) = ρ2 (f) = ρ.

Lemma 2.10 Let Fj (z) (j = 0, 1, ..., k − 1) be meromorphic functions
such that F0 (z) ̸≡ 0. Suppose that f is a solution of

(2.2) f (k) + Fk−1 (z) f
(k−1) + · · ·+ F1 (z) f

′ + F0 (z) f = 0,

Then, gi = f (i) is a solution of the equation

(2.3) g
(k)
i + F i

k−1 (z) g
(k−1)
i + · · ·+ F i

1 (z) g
′
i + F i

0 (z) gi = 0,
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where F i
j (z) , (j = 0, 1, ..., k) , i ∈ N are defined by the following se-

quence of functions:
(2.4)

F 0
j (z) = Fj (z) , j = 0, 1, ..., k − 1,

F i
j (z) =

(
F i−1
j+1 (z)

)′
+ F i−1

j (z)− F i−1
j+1 (z)

(F i−1
0 (z))

′

F i−1
0 (z)

,

i = 1, 2, ..., j = 0, 1, ..., k − 1,
F i
k (z) = F i−1

k (z) = · · · = F 0
k (z) = Fk (z) = 1, for all i ∈ N.

Proof. Assume that f is a solution of equation (2.2) and let gi = f (i).
We prove that gi is a solution of the equation (2.3) : Our proof is by
induction.
For i = 1, differentiating (2.2), we obtain

f (k+1) + Fk−1 (z) f
(k) +

(
F ′
k−1 (z) + Fk−2 (z)

)
f (k−1)

+
(
F ′
k−2 (z) + Fk−3 (z)

)
f (k−2)

(2.5) + · · ·+ (F ′
1 + F0 (z)) f

′ + F ′
0 (z) f = 0.

By (2.2) , we get

(2.6) f = −f
(k) + Fk−1 (z) f

(k−1) + · · ·+ F1 (z) f
′

F0 (z)
.

Substituting (2.6) into (2.5), we get

f (k+1) +

(
Fk−1 (z)−

F ′
0 (z)

F0 (z)

)
f (k)

+

(
F ′
k−1 (z) + Fk−2 (z)− Fk−1 (z)

F ′
0 (z)

F0 (z)

)
f (k−1)

+ · · ·+
(
F ′
2 (z) + F1 (z)− F2 (z)

F ′
0 (z)

F0 (z)

)
f ′′

(2.7) +

(
F ′
1 (z) + F0 (z)− F1 (z)

F ′
0 (z)

F0 (z)

)
f ′ = 0.

Using (2.4), since Fk (z) = 1, then (2.7) becomes

g
(k)
1 +

(
F ′
k (z) + Fk−1 (z)− Fk (z)

F ′
0 (z)

F0 (z)

)
g
(k−1)
1

(2.8) +F 1
k−2 (z) g

(k−2)
1 + · · ·+ F 1

0 (z) g1 = 0.

That is

(2.9) g
(k)
1 + F 1

k−1 (z) g
(k−1)
1 + F 1

k−2 (z) g
(k−2)
1 + · · ·+ F 1

0 (z) g1 = 0.
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Suppose that the assertion is true for the values which are strictly
smaller than a certain i. We suppose gi−1 is a solution of the equation

g
(k)
i−1 + F i−1

k−1 (z) g
(k−1)
i−1 + F i−1

k−2 (z) g
(k−2)
i−1

(2.10) + · · ·+ F i−1
1 (z) g′i−1 + F i−1

0 (z) gi−1 = 0.

Differentiating of (2.10), we can write

g
(k+1)
i−1 + F i−1

k−1 (z) g
(k)
i−1 +

((
F i−1
k−1 (z)

)′
+ F i−1

k−2 (z)
)
g
(k−1)
i−1

(2.11) + · · ·+
((
F i−1
1 (z)

)′
+ F i−1

0 (z)
)
g

′

i−1 +
(
F i−1
0 (z)

)′
gi−1 = 0.

From (2.10) , we have
(2.12)

gi−1 = −
g
(k)
i−1 + F i−1

k−1 (z) g
(k−1)
i−1 + F i−1

k−2 (z) g
(k−2)
i−1 + · · ·+ F i−1

1 (z) g′i−1

F i−1
0 (z)

.

Substituting (2.12) into (2.11), and using the fact that F i−1
k (z) = 1,

we get

g
(k+1)
i−1 +

((
F i−1
k (z)

)′
+ F i−1

k−1 (z)− F i−1
k (z)

(
F i−1
0 (z)

)′
F i−1
0 (z)

)
g
(k)
i−1

+

((
F i−1
k−1 (z)

)′
+ F i−1

k−2 (z)− F i−1
k−1 (z)

(
F i−1
0 (z)

)′
F i−1
0 (z)

)
g
(k−1)
i−1

+ · · ·+

((
F i−1
2 (z)

)′
+ F i−1

1 (z)− F i−1
2 (z)

(
F i−1
0 (z)

)′
F i−1
0 (z)

)
g′′i−1

(2.13) +

((
F i−1
1 (z)

)′
+ F i−1

0 (z)− F i−1
1 (z)

(
F i−1
0 (z)

)′
F i−1
0 (z)

)
g′i−1 = 0.

By (2.4) and (2.13) , we have

g
(k)
i + F i

k−1 (z) g
(k−1)
i + F i

k−2 (z) g
(k−2)
i + · · ·+ F i

0 (z) gi = 0.

Thus, Lemma 2.10 is proved.

Lemma 2.11 ([20]) Suppose that f1 (z) , f2 (z) , ..., fn (z) (n ≥ 2) are
meromorphic functions and g1 (z) , g2 (z) , ..., gn (z) (n ≥ 2) are entire
functions satisfying the following conditions:

(i)
n∑

j=1

fj (z) e
gj(z) = 0;
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(ii) gj (z)− gk (z) are no constants for 1 ≤ j < k ≤ n;
(iii) for 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,

T (r, fj) = o
{
T
(
r, egh−gk

)}
(r → +∞, r /∈ E11) , where E11 is a set with finite linear measure.
Then, fj (z) ≡ 0, j = 1, 2, ..., n.

Lemma 2.12 ([19]) Suppose that f1 (z) , f2 (z) , ..., fn (z) (n ≥ 2) are
meromorphic functions and g1 (z) , g2 (z) , ..., gn (z) (n ≥ 2) are entire
functions satisfying the following conditions:

(i)
n∑

j=1

egj(z)fj (z) ≡ fn+1;

(ii) If 1 ≤ j ≤ n+ 1 and 1 ≤ k ≤ n, then the order of fj is less than
the order of egk(z). If n ≥ 2, 1 ≤ j ≤ n+ 1 and 1 ≤ h < k ≤ n, then
the order of fj is less than the order of egh−gk . Then, fj (z) ≡ 0, j =
1, 2, ..., n+ 1.

Lemma 2.13 Let P (z) = a1,nz
n + · · · + a1,0 and Qj (z) = bj,nz

n +
· · · + bj,0 (j = 1, ..., q) be polynomials with degree n ≥ 1, where a1,i
(i = 0, 1, ..., n) are complex numbers such that a1,n ̸= 0, bj,i (j =
1, ..., q; i = 0, 1, ..., n) are real constants with bj,n ≤ 0 (j = 1, ..., q).
Let m ≥ 2 be an integer and α, γj (j = 1, ..., q) be real numbers such
that 0 < α < m, γj ≥ 0 and 0 < α + γ1 + γ2 + · · · + γq ≤ m.
If arg a1,n ̸= π or a1,n < b, where b = min {bj,n : j = 1, ..., q} , then
ma1,n ̸= αa1,n + γ1b1,n + γ2b2,n + · · ·+ γqbq,n.

Proof. Suppose that ma1,n = αa1,n+γ1b1,n+γ2b2,n+ · · ·+γqbq,n. Then,
we have

a1,n =
γ1b1,n + γ2b2,n + · · ·+ γqbq,n

m− α
.

Since b = min {bj,n : j = 1, ..., q} , then there exist constants cj such
that 0 ≤ cj ≤ 1 (j = 1, ..., q) and bj,n = cjb. By this, we obtain a1,n =
Kb, where

K =
γ1c1 + γ2c2 + · · ·+ γqcq

m− α
.

Since 0 ≤ γ1c1 + γ2c2 + · · ·+ γqcq ≤ γ1 + γ2 + · · ·+ γq ≤ m− α, then
we get 0 ≤ K ≤ 1.
(i) If K = 0, then a1,n = 0, which is a contradiction.
(ii) When 0 < K ≤ 1 we have a1,n = Kb. If arg a1,n ̸= π or a1,n < b,
then a1,n ̸= cb (0 < c ≤ 1) which is a contradiction. So,

ma1,n ̸= αa1,n + γ1b1,n + γ2b2,n + · · ·+ γqbq,n.
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Lemma 2.14 Let P1 (z) = a1,nz
n + · · ·+ a1,0, P2 (z) = a2,nz

n + · · ·+
a2,0, Qj (z) = bj,nz

n + · · · + bj,0 and Q′
j′ (z) = b′j′,nz

n + · · · + b′j′,0 be
polynomials with degree n ≥ 1, where ai,q (i = 1, 2; q = 0, 1, ..., n)
are complex numbers such that a1,na2,n ̸= 0, a1,n ̸= a2,n (suppose that
|a1,n| ≤ |a2,n|), bj,q, bj′,q (j = 1, ..., l; j′ = 1, ..., l′; q = 0, 1, ..., n) be
real constants such that bj,n ≤ 0, b′j′,n ≤ 0 (j = 1, ..., l; j′ = 1, ..., l′).
Let m ≥ 2 be an integer and α > 0, β > 0, α′ > 0, β′ > 0, γj ≥ 0
(j = 1, ..., l) and γ′j′ ≥ 0 (j′ = 1, ..., l′) be real numbers such that
0 < α + β + γ1 + γ2 + · · · + γl ≤ m and 0 < α′ + β′ + γ′1 + γ′2 +
· · · + γ′l′ ≤ m, max {α, β, α′, β′} < m. If arg a1,n ̸= π or a1,n < b,
where b = min

{
bj,n (j = 1, ..., l) , b′j′,n (j′ = 1, ..., l′)

}
and ma1,n =

αa1,n + βa2,n + γ1b1,n + γ2b2,n + · · · + γlbl,n, then ma2,n ̸= α′a1,n +
β′a2,n + γ′1b

′
1,n + γ′2b

′
2,n + · · ·+ γ′l′b

′
l′,n.

Proof. Suppose thatma2,n = α′a1,n+β
′a2,n+γ

′
1b

′
1,n+γ

′
2b

′
2,n+· · ·+γ′l′b′l′,n.

Then, we have the system

(2.14)

{
ma1,n = αa1,n + βa2,n + γ1b1,n + γ2b2,n + · · ·+ γlbl,n,
ma2,n = α′a1,n + β′a2,n + γ′1b

′
1,n + γ′2b

′
2,n + · · ·+ γ′l′b

′
l′,n.

Since b = min
{
bj,n (j = 1, ..., l) , b′j′,n (j′ = 1, ..., l′)

}
, then there exist

constants cj (0 ≤ cj ≤ 1) and c′j
(
0 ≤ c′j′ ≤ 1

)
(j = 1, ..., l; j′ = 1, ..., l′)

such that bj,n = cjb, b
′
j′,n = c′j′b. Thus, by (2.14) we obtain

(2.15)

{
(m− α) a1,n − βa2,n = γb,

−α′a1,n + (m− β′) a2,n = γ′b,

where {
γ = γ1c1 + γ2c2 + · · ·+ γlcl,
γ′ = γ′1c

′
1 + γ′2c

′
2 + · · ·+ γ′l′c

′
l′ .

Set

(2.16)

{
δ = α + β + γ,
δ′ = α′ + β′ + γ′.

Since{
0 ≤ γ1c1 + γ2c2 + · · ·+ γlcl ≤ γ1 + γ2 + · · ·+ γl ≤ m− α,
0 ≤ γ′1c1 + γ′2c2 + · · ·+ γ′l′cl′ ≤ γ′1 + γ′2 + · · ·+ γ′l′ ≤ m− α′,

then {
δ = α + β + γ ≤ α + β + γ1 + γ2 + · · ·+ γl ≤ m,

δ′ = α′ + β′ + γ′ ≤ α′ + β′ + γ′1 + γ′2 + · · ·+ γ′l′ ≤ m.
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The system (2.15) has the following determinant ∆

(2.17) ∆ =

∣∣∣∣ m− α −β
−α′ m− β′

∣∣∣∣ = (m− α) (m− β′)− α′β.

Case 1: If α′β = 0, then ∆ = (m− α) (m− β′) > 0.
Case 2: If α′β ̸= 0. Using δ ≤ m, δ′ ≤ m, we get m−α ≥ β+ γ,m−
β′ ≥ α′ + γ′. Thus, ∆ ≥ L, where L = (β + γ) (α′ + γ′)− α′β.
Subcase 2.1: If γ ̸= 0 and γ′ ̸= 0 or γ = 0 and γ′ ̸= 0 or γ ̸= 0 and
γ′ = 0, then, ∆ > L > 0.
Subcase 2.2: If γ = γ′ = 0, then{

δ = α + β,
δ′ = α′ + β′.

(i) If δ < m, δ′ < m, then m − α > β and m − β′ > α′and so
∆ = (m− α) (m− β′)− α′β > βα′ − α′β = 0.
(ii) If δ = m, δ′ = m, then m − α = β and m − β′ = α′, hence ∆ =
(m− α) (m− β′)− α′β = βα′ − α′β = 0.
(iii) If δ = m, δ′ < m, then m − α = β and m − β′ > α′, hence ∆ =
β (m− β′)− α′β > βα′ − α′β = 0.
(iv) If δ < m, δ′ = m, then m − α > β and m − β′ = α′, hence ∆ =
(m− α)α′ − α′β > βα′ − α′β > 0.
a) For the Subcase 2.2 (ii), we have ∆ = 0, by the system (2.15) , we
get a1,n = a2,n, which is a contradiction.
b) For Case 1 and Subcase (i) , (ii) and (iv) of Case 2, when ∆ > 0,
by the system (2.15) , we get

a1,n = b

∣∣∣∣ γ −β
γ′ m− β′

∣∣∣∣
∆

= b
γ (m− β′) + βγ′

∆
= bS.

We have γ (m− β′) + βγ′ ≥ 0, by (2.16) , we can write

γ (m− β′) + βγ′ −∆ = (δ − α− β) (m− β′)

+β (δ′ − α′ − β′)− (m− α) (m− β′) + α′β

= (m− β′) (δ − β −m) + β (δ′ − β′)

= (m− β′) δ −mβ −m2 + β′m+ βδ′

≤ (m− β′)m−mβ −m2 + β′m+ βm = 0.

Thus, 0 ≤ γ(m−β′)+βγ′

∆
= S ≤ 1.

(i) When S = 0, then a1,n = 0 which is a contradiction.
(ii) When 0 < S ≤ 1 we have a1,n = bS. If arg a1,n ̸= π or a1,n < b,
then a1,n ̸= cb (0 < c ≤ 1) which is a contradiction. Hence, ma2,n ̸=
α′a1,n + β′a2,n + γ′1b

′
1,n + γ′2b

′
2,n + · · ·+ γ′l′b

′
l′,n.



THE HYPER-ORDER OF SOLUTIONS OF HOMOGENEOUS LDE 57

3. Proof of the Theorem 1.1

Assume that f ( ̸≡ 0) is a meromorphic solution of equation (1.3) with
all poles are of uniformly bounded multiplicities.
First step. We prove that ρ (f) = +∞. First of all, we prove that
equation (1.3) can not have a meromorphic solution f ( ̸≡ 0) with ρ (f)
< n. Assume that there exists a meromorphic solution with ρ (f) < n.
We can rewrite (1.3) in the following form
(3.1)
Bk−1e

Qk−1(z)f (k−1) + · · ·+B1e
Q1(z)f ′ +

(
A1e

P1(z) + A2e
P2(z)

)
f = H,

with H = −
(
f (k) +Dk−1f

(k−1) + · · ·+D1f
′ +D0f

)
. By the condi-

tions of Theorem 1.1, we have a1,na2,n ̸= 0, a1,n ̸= a2,n and bj,n = cja1,n
(0 < cj < 1) , thus

deg (P1 − P2) = n,

deg (Qj − Pi) = deg (Qj −Ql) = n

with j ̸= l; j = 1, ..., k − 1; l = 1, ..., k − 1; i = 1, 2. Then, by Lemma
2.1 and (3.1) , we find that the order of growth of the left side of
equation (3.1) is n. On the other hand, ρ (f) < n, ρ

(
f (j)
)
< n,

j = 1, ..., k, so ρ (H) < n, which is a contradiction. Consequently,
every meromorphic solution f (̸≡ 0) of equation (1.3) is transcendental
with order ρ (f) ≥ n. Now, we prove that ρ (f) = +∞. Suppose that
ρ (f) = ρ < +∞. By equation (1.3), we get∣∣A1e

P1(z) + A2e
P2(z)

∣∣ ≤ ∣∣∣∣f (k)

f

∣∣∣∣+ (|Dk−1|+
∣∣Bk−1e

Qk−1(z)
∣∣) ∣∣∣∣f (k−1)

f

∣∣∣∣
(3.2) + · · ·+

(
|D1|+

∣∣B1e
Q1(z)

∣∣) ∣∣∣∣f ′

f

∣∣∣∣+ |D0| .

Set ρ1 = max
i=1,2

j=1,...,k−1
m=0,...,k−1

{ρ (Ai) , ρ (Bj) , ρ (Dm)} < n. By Lemma 2.2, for any

given ε (0 < ε < n− ρ1) , there exists a set E1 ⊂ (1,+∞) that has
finite linear measure and finite logarithmic measure such that when
|z| = r /∈ [0, 1] ∪ E1, r → +∞, we have
(3.3)
|Ai(z)| ≤ exp

{
rρ1+ε

}
, |Bj(z)| ≤ exp

{
rρ1+ε

}
, |Dm(z)| ≤ exp

{
rρ1+ε

}
.

By Lemma 2.3, there exists a set E2 ⊂ [−π
2
, 3π

2
) of linear measure zero,

such that if θ ∈ [−π
2
, 3π

2
)\E2, then there is a constant R0 = R0(θ) > 1,
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such that for all z satisfying arg z = θ and |z| = r ≥ R0, we have

(3.4)

∣∣∣∣f (j) (z)

f (z)

∣∣∣∣ ≤ |z|j(ρ−1+ε) (j = 1, ..., k) .

Set z = reiθ, a1,n = |a1,n| eiθ1 , a2,n = |a2,n| eiθ2 , θ1, θ2 ∈ [−π
2
, 3π

2
). Then

(3.5) δ (P1, θ) = |a1,n| cos (nθ + θ1) , δ (P2, θ) = |a2,n| cos (nθ + θ2) .

Since bj,n = cja1,n (0 < cj < 1) (j ∈ I1) and cj are distinct numbers,
then

(3.6) δ (Qj, θ) = cjδ (P1, θ) .

Case 1. If θ1 = arg a1,n ̸= π which is θ1 ̸= π.
(i) Assume that θ1 ̸= θ2. By Lemma 2.4, for any given ε with
(0 < ε < min

{
n− ρ1,

1
2

(
1−c
1+c

)}
), there is a ray arg z = θ with

θ ∈ [− π
2n
, π
2n
)\(E2 ∪ E5 ∪ E6) such that

δ (P1, θ) > 0, δ (P2, θ) < 0

or

δ (P1, θ) < 0, δ (P2, θ) > 0.

a) When δ (P1, θ) > 0, δ (P2, θ) < 0, we have δ (P2, θ) < δ (P1, θ) . For
sufficiently large r, we get by Lemma 2.5∣∣A1e

P1(z) + A2e
P2(z)

∣∣ ≥ ∣∣A1e
P1(z)| − |A2e

P2(z)
∣∣

≥ exp {(1− ε) δ (P1, θ) r
n} − exp {(1− ε) δ (P2, θ) r

n}

(3.7) ≥ 1

2
exp {(1− ε) δ (P1, θ) r

n} .

For j ∈ I1, by (3.6) , we have
(3.8)∣∣Bje

Qj(z)
∣∣ ≤ exp {(1 + ε) cjδ (P1, θ) r

n} ≤ exp {(1 + ε) cδ (P1, θ) r
n} ,

and for j ∈ I2, we have

Bje
Qj(z) = Bje

Qj(z)−bj,nz
n

ebj,nz
n

= hj (z) e
bj,nz

n

,

where hj (z) = Bje
Qj(z)−bj,nz

n
with ρ2 = ρ (hj) ≤

max {n− 1, ρ (Bj)} < n. By Lemma 2.2, for any given ε with

0 < ε < min

{
n− ρ1, n− ρ2,

1

2

(
1− c

1 + c

)}
when |z| = r /∈ [0, 1] ∪ E1, r → +∞, we have

|hj(z)| ≤ exp
{
rρ2+ε

}
.
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Then ∣∣Bje
Qj(z)

∣∣ = ∣∣hj (z) ebj,nzn∣∣ ≤ exp
{
rρ2+ε

} ∣∣ebj,nzn∣∣
(3.9) = exp

{
rρ2+ε

}
ebj,nr

n cosnθ ≤ exp
{
rρ2+ε

}
because bj,n ≤ 0 and cosnθ > 0. Substituting (3.3) , (3.4) , (3.7) , (3.8) ,
(3.9) into (3.2) , we obtain

1

2
exp {(1− ε) δ (P1, θ) r

n} ≤ rk(ρ−1+ε)

+
(
exp

{
rρ1+ε

}
+
∣∣Bk−1e

Qk−1(z)
∣∣) rk(ρ−1+ε)

+ · · ·+
(
exp

{
rρ1+ε

}
+
∣∣B1e

Q1(z)
∣∣) rk(ρ−1+ε) + exp

{
rρ1+ε

}
≤ (k + 1) rk(ρ−1+ε) exp

{
rρ1+ε + rρ2+ε

}
exp {(1 + ε) cδ (P1, θ) r

n}
which gives

exp {(1− ε) δ (P1, θ) r
n}

(3.10)
≤ 2 (k + 1) rk(ρ−1+ε) exp

{
rρ1+ε + rρ2+ε

}
exp {(1 + ε) cδ (P1, θ) r

n} .
From (3.10) and 0 < ε < 1

2

(
1−c
1+c

)
, we obtain

(3.11)

exp

{(
1− c

2

)
δ (P1, θ) r

n

}
≤ 2 (k + 1) rk(ρ−1+ε) exp

{
rρ1+ε + rρ2+ε

}
which is a contradiction because

δ (P1, θ) > 0 and 0 < ε < min {n− ρ1, n− ρ2} .
b) When δ (P1, θ) < 0, δ (P2, θ) > 0, we have δ (P1, θ) < δ (P2, θ) . For
sufficiently large r and the above ε, we get by Lemma 2.5∣∣A1e

P1(z) + A2e
P2(z)

∣∣ ≥ ∣∣A2e
P2(z)| − |A1e

P1(z)
∣∣

≥ exp {(1− ε) δ (P2, θ) r
n} − exp {(1− ε) δ (P1, θ) r

n}

(3.12) ≥ 1

2
exp {(1− ε) δ (P2, θ) r

n} .

For j ∈ I1, by (3.6) , we have

(3.13)
∣∣Bje

Qj(z)
∣∣ ≤ exp {(1− ε) cjδ (P1, θ) r

n} < 1

and for j ∈ I2, (3.9) holds. Substituting (3.3) , (3.4) , (3.9) , (3.12) ,
(3.13) into (3.2) , we obtain

exp {(1− ε) δ (P2, θ) r
n} ≤ 2 (k + 1) rk(ρ−1+ε) exp

{
rρ1+ε + rρ2+ε

}
which is a contradiction because

δ (P2, θ) > 0 and 0 < ε < min {n− ρ1, n− ρ2} .
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(ii) Assume that θ1 = θ2. By Lemma 2.4, for any given ε with

0 < ε < min
{
n− ρ1, n− ρ2,

δ(P2,θ)−δ(P1,θ)
δ(P2,θ)+δ(P1,θ)

}
, there is a ray arg z = θ

such that θ ∈ [− π
2n
, π
2n
)\ (E2 ∪ E5 ∪ E6) and δ (P1, θ) > 0. Since

|a1,n| ≤ |a2,n|, a1,n ̸= a2,n and θ1 = θ2, then |a1,n| < |a2,n|, thus
0 < δ (P1, θ) < δ (P2, θ) . For sufficiently large r, we have by Lemma
2.5 ∣∣A1e

P1(z) + A2e
P2(z)

∣∣ ≥ ∣∣A2e
P2(z)| − |A1e

P1(z)
∣∣

≥ exp {(1− ε) δ (P2, θ) r
n} − exp {(1 + ε) δ (P1, θ) r

n}

(3.14) = (exp {αrn} − 1) exp {(1 + ε) δ (P1, θ) r
n} ,

where

α = (1− ε) δ (P2, θ)− (1 + ε) δ (P1, θ) .

Since 0 < ε < δ(P2,θ)−δ(P1,θ)
δ(P2,θ)+δ(P1,θ)

, then

α = δ (P2, θ)− δ (P1, θ)− ε (δ (P2, θ) + δ (P1, θ))

> δ (P2, θ)− δ (P1, θ)−
δ (P2, θ)− δ (P1, θ)

δ (P2, θ) + δ (P1, θ)
(δ (P2, θ) + δ (P1, θ)) = 0.

We get by (3.14)

(3.15)
∣∣A1e

P1(z) + A2e
P2(z)

∣∣ ≥ 1

2
exp {αrn} exp {(1 + ε) δ (P1, θ) r

n} .

On the other hand, by Lemma 2.2 and Lemma 2.5, we get (3.8) and
(3.9) . Substituting (3.3) , (3.4) , (3.8) , (3.9) , (3.15) into (3.2) , we ob-
tain

1

2
exp (αrn) exp {(1 + ε) δ (P1, θ) r

n} ≤ (k + 1) rk(ρ−1+ε)

(3.16) × exp
{
rρ1+ε + rρ2+ε

}
exp {(1 + ε) cδ (P1, θ) r

n} .
By (3.16) , we get

exp {(1 + ε) (1− c) δ (P1, θ) r
n + αrn} ≤ 2 (k + 1) rk(ρ−1+ε)

× exp
{
rρ1+ε + rρ2+ε

}
.

which is a contradiction because δ (P1, θ) > 0, α > 0 and 0 < ε <
min{n− ρ1, n− ρ2}.
Case 2. If a1,n <

b
1−c

. which is θ1 = π.
(i) Assume that θ1 ̸= θ2, then θ2 ̸= π. By Lemma 2.4, for any given

ε (0 < ε < min
{
n− ρ1, n− ρ2,

(1−c)
2(1+c)

}
), there is a ray arg z = θ such

that θ ∈ [− π
2n
, π
2n
)\ (E2 ∪ E5 ∪ E6) and δ (P2, θ) > 0. On the other
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hand, we have δ (P1, θ) = |a1,n| cos (nθ + θ1) = −|a1,n| cos (nθ) < 0
because cos (nθ) > 0. For sufficiently large r, we obtain by Lemma 2.5∣∣A1e

P1(z) + A2e
P2(z)

∣∣ ≥ ∣∣A2e
P2(z)| − |A1e

P1(z)
∣∣

≥ exp {(1− ε) δ (P2, θ) r
n} − exp {(1− ε) δ (P1, θ) r

n}

(3.17) ≥ 1

2
exp {(1− ε) δ (P2, θ) r

n}

and (3.9) , (3.13) hold. Substituting (3.3) , (3.4) , (3.9) , (3.13) , (3.17)
into (3.2) , we obtain

1

2
exp {(1− ε) δ (P2, θ) r

n} ≤ (k + 1) rk(ρ−1+ε) exp
{
rρ1+ε + rρ2+ε

}
× exp {(1 + ε) cδ (P1, θ) r

n}
(3.18)

≤ (k + 1) rk(ρ−1+ε) exp
{
rρ1+ε + rρ2+ε

}
exp {(1 + ε) cδ (P2, θ) r

n} .

By 0 < ε < (1−c)
2(1+c)

and (3.16) , we get

exp

{
(1− c)

2
δ (P2, θ) r

n

}
≤ 2 (k + 1) rk(ρ−1+ε) exp

{
rρ1+ε + rρ2+ε

}
which is a contradiction because δ (P2, θ) > 0, 1− c > 0 and 0 < ε <
min {n− ρ1, n− ρ2} .
(ii) Assume that θ1 = θ2, then θ2 = π. By Lemma 2.4, for any

given ε
(
0 < ε < min

{
n− ρ1,

δ(P2,θ)−δ(P1,θ)
δ(P2,θ)+δ(P1,θ)

})
, there is a ray arg z = θ

such that θ ∈ [ π
2n
, 3π
2n
)\ (E2 ∪ E5 ∪ E6), then cosnθ < 0, δ (P1, θ) =

|a1,n| cos (nθ + θ1) = −|a1,n| cos (nθ) > 0. Because |a1,n| ≤ |a2,n|,
a1,n ̸= a2,n, we get |a1,n| < |a2,n|, thus 0 < δ (P1, θ) < δ (P2, θ) . For
sufficiently large r, we get (3.8) and (3.15) holds. For j ∈ I2, we have

Bje
Qj(z) = Bje

Qj(z)−bj,nz
n

ebj,nz
n

= hj (z) e
bj,nz

n

,

where hj (z) = Bje
Qj(z)−bj,nz

n
with ρ2 = ρ (hj) ≤ max (n− 1, ρ (Bj)) <

n. By Lemma 2.2, for any given ε (0 < ε < n− ρ2), when |z| = r /∈
[0, 1] ∪ E1, r → +∞, we have

|hj(z)| ≤ exp
{
rρ2+ε

}
.

Then ∣∣Bje
Qj(z)

∣∣ = ∣∣hj (z) ebj,nzn∣∣ ≤ exp
{
rρ2+ε

} ∣∣ebj,nzn∣∣
(3.19) = exp

{
rρ2+ε

}
ebj,nr

n cosnθ
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because bj,n ≤ 0 and cosnθ < 0, b = min {bj,n, j ∈ I2} , from (3.19) ,
we get

(3.20)
∣∣Bje

Qj(z)
∣∣ ≤ exp

{
rρ2+ε

}
ebr

n cosnθ.

Substituting (3.3) , (3.4) , (3.8) , (3.15) , (3.20) into (3.2) , we obtain

1

2
exp {(1 + ε) δ (P1, θ) r

n + αrn} ≤ (k + 1) rk(ρ−1+ε)

× exp
{
rρ1+ε + rρ2+ε

}
ebr

n cosnθ exp {(1 + ε) cδ (P1, θ) r
n}

which gives

exp {((1− c) (1 + ε) δ (P1, θ) + α− b cosnθ) rn} ≤ 2 (k + 1) rk(ρ−1+ε)

× exp
{
rρ1+ε + rρ2+ε

}
.

Set γ = (1− c) (1 + ε) δ (P1, θ) + α− b cosnθ, we obtain

(3.21) exp {γrn} ≤ 2 (k + 1) rk(ρ−1+ε) exp
{
rρ1+ε + rρ2+ε

}
.

Since α > 0, cosnθ < 0, δ (P1, θ) = −|a1,n| cos (nθ) , a1,n < b
1−c

and
b ≤ 0, then

γ = (1− c) (1 + ε) δ (P1, θ) + α− b cosn

= − [(1− c) (1 + ε) |a1,n|+ b] cosnθ + α

> −
[
(1− c) (1 + ε)

|b|
(1− c)

+ b

]
cosnθ + α = α + bε cosnθ > 0.

Since 0 < ε < min {n− ρ1, n− ρ2} and γ > 0, then (3.21) is a
contradiction. Concluding the above proof, we obtain ρ (f) = +∞.
Second step. We prove that ρ2 (f) = n. By

max =
{
ρ(Dj +Bje

Qj(z)) (j = 1, ..., k − 1),

ρ(D0 + A1e
P1(z) + A2e

P2(z))
}
= n

and Lemma 2.6, we obtain ρ2 (f) ≤ n. Remains to show that ρ2 (f) ≥
n. By Lemma 2.7, there exists a set E9 ⊂ (1,+∞) having finite loga-
rithmic measure and a constant B > 0, such that for all z satisfying
|z| = r /∈ [0, 1] ∪ E9, we have

(3.22)

∣∣∣∣f (j) (z)

f (z)

∣∣∣∣ ≤ B (T (2r, f))j+1 .

Case 1. If θ1 = arg a1,n ̸= π which is θ1 ̸= π.
(i) if θ1 ̸= θ2. By Lemma 2.4, for any given ε with

0 < ε < min

{
n− ρ1, n− ρ2,

1

2

(
1− c

1 + c

)}
,
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there is a ray arg z = θ such that θ ∈ [− π
2n
, π
2n
)\(E2 ∪ E5 ∪ E6) such

that

δ (P1, θ) > 0, δ (P2, θ) < 0

or

δ (P1, θ) < 0, δ (P2, θ) > 0.

a) When δ (P1, θ) > 0, δ (P2, θ) < 0, we have δ (P2, θ) < δ (P1, θ) . For
sufficiently large r, using the same reasoning as in Case 1((i) , (a)), we
get

(3.23)
∣∣A1e

P1(z) + A2e
P2(z)

∣∣ ≥ 1

2
exp {(1− ε) δ (P1, θ) r

n} .

Substituting (3.3) , (3.8) , (3.9) , (3.22) , (3.23) into (3.2) , we obtain
for all z = reiθ satisfying |z| = r /∈ [0, 1] ∪ E9, θ ∈
[− π

2n
, π
2n
)\ (E2 ∪ E5 ∪ E6)

1

2
exp {(1− ε) δ (P1, θ) r

n} ≤ B (T (2r, f))k+1

+B
(
exp

{
rρ1+ε

}
+
∣∣Bk−1e

Qk−1(z)
∣∣) (T (2r, f))k

+ · · ·+B
(
exp

{
rρ1+ε

}
+
∣∣B1e

Q1(z)
∣∣) (T (2r, f))2 + exp

(
rρ1+ε

)
(3.24)

≤ B (k + 1) (T (2r, f))k+1 exp
{
rρ1+ε + rρ2+ε

}
exp {(1 + ε) cδ (P1, θ) r

n} .

By 0 < ε < (1−c)
2(1+c)

and (3.24) , we get

exp

{(
1− c

2

)
δ (P1, θ) r

n

}
≤ 2B (k + 1) exp

{
rρ1+ε + rρ2+ε

}
(3.25) × (T (2r, f))k+1 .

Since δ (P1, θ) > 0, 0 < ε < min {n− ρ1, n− ρ2}, then by using
Lemma 2.8 and (3.25), we obtain ρ2 (f) ≥ n, hence ρ2 (f) = n.
b) When δ (P1, θ) < 0, δ (P2, θ) > 0, we have δ (P1, θ) < δ (P2, θ) . For
sufficiently large r and the above ε, we get by Lemma 2.4∣∣A1e

P1(z) + A2e
P2(z)

∣∣ ≥ ∣∣A2e
P2(z)| − |A1e

P1(z)
∣∣

≥ exp {(1− ε) δ (P2, θ) r
n} − exp {(1− ε) δ (P1, θ) r

n}

(3.26) ≥ 1

2
exp {(1− ε) δ (P2, θ) r

n} .
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Substituting (3.3) , (3.9) , (3.13) , (3.22) , (3.26) into (3.2) , we obtain
for all z = reiθ satisfying |z| = r /∈ [0, 1] ∪ E9, θ ∈
[− π

2n
, π
2n
)\ (E2 ∪ E5 ∪ E6)

exp {(1− ε) δ (P2, θ) r
n} ≤ 2B (k + 1)

(3.27) × exp
{
rρ1+ε + rρ2+ε

}
(T (2r, f))k+1 .

Since δ (P2, θ) > 0, 0 < ε < min {n− ρ1, n− ρ2}, then by using
Lemma 2.8 and (3.27), we obtain ρ2 (f) ≥ n, hence ρ2 (f) = n.
(ii) Assume that θ1 = θ2. By Lemma 2.4, for the above ε, there is a ray
arg z = θ such that θ ∈ [− π

2n
, π
2n
)\ (E2 ∪ E5 ∪ E6) satisfying δ (P1, θ) >

0. Since |a1n| ≤ |a2n|, a1n ̸= a2n and θ1 = θ2, then |a1n| < |a2n|, thus
δ (P2, θ) > δ (P1, θ) > 0. For sufficiently large r, we have by Lemma
2.5, we get (3.15) hold. Substituting (3.3) , (3.8) , (3.9) , (3.15) , (3.22)
into (3.2) , we obtain for all z = reiθ satisfying |z| = r /∈ [0, 1] ∪ E9,
θ ∈ [− π

2n
, π
2n
)\ (E2 ∪ E5 ∪ E6)

exp {(1 + ε) δ (P1, θ) r
n + αrn} ≤ 2B (k + 1) exp

{
rρ1+ε + rρ2+ε

}
× (T (2r, f))k+1 exp {(1 + ε) cδ (P1, θ) r

n} .
Then

exp {((1− c) (1 + ε) δ (P1, θ) + α) rn}

(3.28) ≤ 2B (k + 1) exp
{
rρ1+ε + rρ2+ε

}
(T (2r, f))k+1 .

Since 0 < ε < min {n− ρ1, n− ρ2} , δ (P1, θ) > 0, α > 0, then by
using Lemma 2.8 and (3.28), we obtain ρ2 (f) ≥ n, hence ρ2 (f) = n.
Case 2. If a1,n <

b
1−c

.
(i) Assume that θ1 = θ2. In first step, we have proved that there
is a ray arg z = θ such that θ ∈ [ π

2n
, 3π
2n
)\ (E2 ∪ E5 ∪ E6) satisfying

δ (P2, θ) > δ (P1, θ) > 0. By Lemma 2.5, and for sufficiently large
r, we get (3.15) holds. Substituting (3.3) , (3.8) , (3.15) , (3.20) , (3.22)
into (3.2) , we obtain for all z = reiθ satisfying |z| = r /∈ [0, 1] ∪ E9,
θ ∈ [ π

2n
, 3π
2n
)\ (E2 ∪ E5 ∪ E6)

exp {(1 + ε) δ (P1, θ) r
n + αrn} ≤ 2B (k + 1) exp

{
rρ1+ε + rρ2+ε

}
× (T (2r, f))k+1 exp {(1 + ε) cδ (P1, θ) r

n} exp {brn cosnθ} .
Then

exp {((1− c) (1 + ε) δ (P1, θ) + α− b cosnθ) rn}

(3.29) ≤ 2B (k + 1) exp
{
rρ1+ε + rρ2+ε

}
(T (2r, f))k+1 .
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Set γ = (1− c) (1 + ε) δ (P1, θ) + α− b cosnθ, we obtain

(3.30) exp {γrn} ≤ 2B (k + 1) exp
{
rρ1+ε + rρ2+ε

}
(T (2r, f))k+1 .

Since 0 < ε < min {n− ρ1, n− ρ2} and γ > 0, then by using Lemma
2.8 and (3.30), we obtain ρ2 (f) ≥ n, hence ρ2 (f) = n.
(i) Assume that θ1 ̸= θ2. In first step, we have proved that there is a ray
arg z = θ where θ ∈ [− π

2n
, π
2n
)\ (E2 ∪ E5 ∪ E6) satisfying δ (P2, θ) >

0, δ (P1, θ) < 0. By Lemma 2.5, and for sufficiently large r, we get
(3.17) holds. Using the same reasoning as in second step (Case 1 (i),
(b)), we can get ρ2 (f) = n. Concluding the above proof, we obtain
that every meromorphic solution f (̸≡ 0) whose poles are of uniformly
bounded multiplicities of equation (1.3) satisfies ρ2 (f) = n. The proof
of Theorem 1.1 is complete.

4. Proofs of Corollary 1.2 and Corollary 1.3

Using the same reasoning as in the proof of Theorem 1.1, we can obtain
Corollary 1.1 and Corollary 1.2.

5. Proof of Theorem 1.2

First step. We prove that

λ (f − φ) = λ (f − φ) = ρ (f) = +∞,

λ2 (f − φ) = λ2 (f − φ) = ρ2 (f) = n.

Set F0 = D0+A1e
P1(z)+A2e

P2(z), Fj = Dj+Bje
Qj(z) (j = 1, ..., k − 1) .

Assume that f ( ̸≡ 0) is a meromorphic solution whose poles are of
uniformly bounded multiplicities of equation (1.3), then by Theorem
1.1, we have ρ (f) = +∞. Set g0 (z) = f (z) − φ (z) with ρ (φ) < n.
We have g0 (z) is a meromorphic function with ρ (g0) = ρ (f) = +∞
and ρ2 (g0) = ρ2 (f) = n. Substituting f (z) = g0 (z)+φ (z) into (1.3),
we obtain

(4.1) g
(k)
0 + Fk−1g

(k−1)
0 + · · ·+ F1g

′
0 + F0g0 = K,

where K = −
[
φ(k) + Fk−1φ

(k−1) + · · ·+ F1φ
′ + F0φ

]
. We have K ̸≡

0. In fact, if K ≡ 0, then

(4.2) φ(k) + Fk−1φ
(k−1) + · · ·+ F1φ

′ + F0φ = 0,

thus, φ ( ̸≡ 0) is a solution of equation (1.3) and by Theorem 1.1, φ
must be of infinite order, which is a contradiction with ρ (φ) < n.
Hence, K ̸≡ 0. By Lemma 2.9, we have

λ (g0) = λ (g0) = ρ (g0) = +∞, λ2 (g0) = λ2 (g0) = ρ2 (g0) = n.
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Then

λ (f − φ) = λ (f − φ) = ρ (f) = +∞,

λ2 (f − φ) = λ2 (f − φ) = ρ2 (f) = n.

Second step. Now, we prove that

λ (f ′ − φ) = λ (f ′ − φ) = ρ (f) = +∞,

λ2 (f
′ − φ) = λ2 (f

′ − φ) = ρ2 (f) = n.

Set g1 (z) = f ′ (z) − φ (z) with ρ (φ) < n. We have g1 (z) is a mero-
morphic function with ρ (g1) = ρ (f ′) = +∞ and ρ2 (g1) = ρ2 (f) = n.
Using Lemma 2.10, we get that f ′ (z) is a solution of the equation

(4.3) (f ′)
(k)

+ F 1
k−1 (f

′)
(k−1)

+ · · ·+ F 1
1 (f

′)
′
+ F 1

0 f
′ = 0,

where F 1
j (z) , (j = 0, 1, ..., k − 1) are defined by (2.4) . By (4.3) , we

obtain

(4.4) f (k+1) + F 1
k−1f

(k) + · · ·+ F 1
1 f

′′ + F 1
0 f

′ = 0.

Substituting f (j+1) (z) = g
(j)
1 (z) + φ(j) (z) , (j = 0, 1, ..., k) into (4.4),

we obtain

(4.5) g
(k)
1 + F 1

k−1g
(k−1)
1 + · · ·+ F 1

1 g
′
1 + F 1

0 g1 = h1,

where

(4.6) h1 = −
[
φ(k) + F 1

k−1φ
(k−1) + · · ·+ F 1

1φ
′ + F 1

0φ
]
.

We can get

(4.7) F 1
j =

Nj

F0

(j = 0, 1, ..., k − 1) ,

where

(4.8)
N0 = F ′

1F0 + F 2
0 − F1F

′
0,

Nj = (Fj+1)
′ F0 + FjF0 − Fj+1 (F0)

′ , (j = 1, ..., k − 2) ,
Nk−1 = Fk−1F0 − F ′

0.

Now, we prove that h1 ̸≡ 0. In fact, if h1 ≡ 0, then h1

φ
≡ 0. By (4.6)

and (4.7) , we have

(4.9)
φ(k)

φ
F0 +Nk−1

φ(k−1)

φ
+ · · ·+N1

φ′

φ
+N0 = 0,
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with φ(j)

φ
(j = 1, ..., k) are meromorphic functions with ρ

(
φ(j)

φ

)
< n

(j = 1, ..., k). Using (2.4) and (4.8) , we can rewrite (4.9) in the form

2A1A2e
P1(z)+P2(z) + A2

1e
2P1(z) + A2

2e
2P2(z) +

k−1∑
j=1

f1,je
P1(z)+Qj(z)

(4.10) +
k−1∑
j=1

f2,je
P2(z)+Qj(z) + f1,0e

P1(z) + f2,0e
P2(z) =M,

where M = D0 + D1 + Dk−1 +
k−2∑
j=0

(
D′

j+1 +Dj −Dj+1

)
φ(j)

φ
, f1,j, f2,j

(j = 0, ..., k − 1) are meromorphic functions of order less than n. Set

J1 = {a1,n, a2,n, 2a1,n, 2a2,n, a1,n + a2,n,

a1,n + bjn, a2,n + bjn (j = 1, ..., k − 1)} .
Because  2a1,n ̸= a1,n,

2a1,n ̸= a1,n + a2,n,
2a1,n ̸= 2a2,n,

then by Lemma 2.13, we have 2a1,n ̸= a1,n + bjn (j = 1, ..., k − 1) .
(i) If 2a1,n ̸= a2,n, 2a1,n ̸= a2,n + bjn (j = 1, ..., k − 1) , then we can
rewrite (4.10) in the form

A2
1e

2P1(z) +
k−1∑
β∈Γ

αβe
Rβ(z) =M,

where Γ ⊆ J1\ {2a1,n} , αβ (β ∈ Γ) , M are meromorphic functions
of order less than n and Rβ (z) are non-constant polynomials with
degree n . By Lemma 2.11 and Lemma 2.12, we get A1 ≡ 0, which is
a contradiction.
(ii) If 2a1,n = η such that η ∈ {a2,n, a2,n + bjn (j = 1, ..., k − 1)} , then
by Lemma 2.14, we obtain 2a2,n ̸= λ ∈ J1\ {2a2,n} . Hence, we can
rewrite (4.10) in the form

A2
2e

2P2(z) +
k−1∑
β′∈Γ′

αβ′eRβ′ (z) =M,

where Γ′ ⊆ J1\ {2a2,n} , αβ′ (β′ ∈ Γ′) , M are meromorphic functions
of order less than n and Rβ′ (z) are non-constant polynomials with
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degree n. By Lemma 2.11 and Lemma 2.12, we get A2 ≡ 0, which is a
contradiction. Thus, h1 ̸≡ 0 is proved. By Lemma 2.9, we have

λ (g1) = λ (g1) = ρ (g1) = +∞, λ2 (g1) = λ2 (g1) = ρ2 (g1) = n.

Then
λ (f ′ − φ) = λ (f ′ − φ) = ρ (f) = +∞,

λ2 (f
′ − φ) = λ2 (f

′ − φ) = ρ2 (f) = n.

Third step. Now, we prove that

λ (f ′′ − φ) = λ (f ′′ − φ) = ρ (f) = +∞,

λ2 (f
′′ − φ) = λ2 (f

′′ − φ) = ρ2 (f) = n.

Set g2 (z) = f ′′ (z) − φ (z) with ρ (φ) < n. We have g2 (z) is a mero-
morphic function with ρ (g2) = ρ (f ′′) = +∞ and ρ2 (g2) = ρ2 (f) = n.
Using Lemma 2.10, we get that f ′′ (z) is a solution of the equation

(4.11) (f ′′)
(k)

+ F 2
k−1 (f

′′)
(k−1)

+ · · ·+ F 2
1 (f

′′)
′
+ F 2

0 f
′′ = 0,

where F 2
j (z) , (j = 0, 1, ..., k − 1) are defined by (2.4) . By (4.11) , we

obtain

(4.12) f (k+2) + F 2
k−1f

(k+1) + · · ·+ F 2
1 f

(3) + F 2
0 f

′′ = 0.

Substituting f (j+2) (z) = g
(j)
2 (z) + φ(j) (z) , (j = 0, 1, ..., k) into (4.12),

we obtain

(4.13) g
(k)
2 + F 2

k−1g
(k−1)
2 + · · ·+ F 2

1 g
′
2 + F 2

0 g2 = h2,

where

(4.14) h2 = −
[
φ(k) + F 2

k−1φ
(k−1) + · · ·+ F 2

1φ
′ + F 2

0φ
]
.

Now, we prove that F 1
0 ̸≡ 0. Suppose that F 1

0 ≡ 0. Then, we have

2A1A2e
P1(z)+P2(z) + A2

1e
2P1(z) + A2

2e
2P2(z) + f1e

P1(z)+Q1(z)

+f2e
P2(z)+Q1(z) + f1,0e

P1(z) + f2,0e
P2(z) = D,

where D = D2
0 +D1D

′
0 +D0D

′
1, f1, f2 are meromorphic functions of

order less than n. By using the same reasoning as above, we can get
a contradiction. Hence, F 1

0 ̸≡ 0. In this case, we can get

(4.15) F 2
j =

Mj

F 1
0

(j = 0, 1, ..., k − 1) ,

where

(4.16)
M0 = (F 1

1 )
′
F 1
0 + (F 1

0 )
2 − F 1

1 (F
1
0 )

′
,

Mj =
(
F 1
j+1

)′
F 1
0 + F 1

j F
1
0 − F 1

j+1 (F
1
0 )

′
, (j = 1, ..., k − 2) ,

Mk−1 = F 1
k−1F

1
0 − (F 1

0 )
′
.
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We can denote equations (4.13) and (4.14) by the following form

(4.17) F 1
0 g

(k)
2 +Mk−1g

(k−1)
2 + · · ·+M1g

′
2 +M0g2 = h2,

where

(4.18) h2 = −
[
φ(k)F 1

0 +Mk−1φ
(k−1) + · · ·+M1φ

′ +M0φ
]
.

Now we prove that h2 ̸≡ 0. In fact, if h2 ≡ 0, then h2

φ
≡ 0. By (4.18) ,

we have

(4.19) F 1
0

φ(k)

φ
+Mk−1

φ(k−1)

φ
+ · · ·+M1

φ′

φ
+M0 = 0,

with φ(j)

φ
(j = 1, ..., k) are meromorphic functions with ρ

(
φ(j)

φ

)
< n

(j = 1, ..., k). Using (2.4) and (4.16) , we can rewrite (4.19) in the form

A3
1e

3P1(z) + A3
2e

3P2(z) + 3A2
1A2e

2P1(z)+P2(z) + 3A1A
2
2e

P1(z)+2P2(z)

+f1,0e
2P1(z) + f2,0e

2P2(z) + f3,0e
P1(z)+P2(z) +

k−1∑
j=1

f1,je
2P1(z)+Qj(z)

+
k−1∑
j=1

f2,je
2P2(z)+Qj(z) +

k−1∑
j=1

f3,je
P1(z)+P2(z)+Qj(z)

+l1,0e
P1(z)+Q1(z) + l2,0e

P2(z)+Q1(z)

(4.20) +
k−1∑
j=1

l1,je
P1(z)+Q1(z)+Qj(z) +

k−1∑
j=1

l2,je
P2(z)+Q1(z)+Qj(z) = H

with
H = H0 +H1 (1 +D′′

2 +D′
1) +H2 (−D′

2 −D1)

+

(
H1

(
k−1∑
j=1

Hj

)
+H2

(
k−1∑
j=1

Kj

))
φ(j)

φ
,

where 
H0 = D′′

2 +D′
1 +H1 +H2 (−D′

2 −D1) ,
H1 = D′

1 +D0,
H2 = D′′

1 +D′
0,

Hj = D′′
j+1 +D′

j+2 +Dj,
Kj = D′

j+1 −Dj

and f1,j, f2,j, f3,j,l1,j, l2,j (j = 0, 1, ..., k− 1) are meromorphic functions
of order less than n. Set

J2 = {3a1,n, 3a2,n, 2a1,n + a2,n, a1,n + 2a2,n, 2a1,n, 2a2,n, a1,n + a2,n,
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2a1,n + bjn, 2a2,n + bjn, a1,n + a2,n + bjn, a1,n + b1n,

a2,n + b1n, a1,n + b1,n + bjn, a2,n + b1,n + bjn (j = 1, ..., k − 1)} .
Because 

3a1,n ̸= 2a1,n,
3a1,n ̸= 2a1,n + a2,n,

3a1,n ̸= 3a2,n,
3a1,n ̸= a1,n + 2a2,n,

then by Lemma 2.13, we have 3a1,n ̸= a1,n+b1n, 2a1,n+bjn, a1,n+a2,n+
bjn (j = 1, ..., k − 1) .
(i) If 3a1,n ̸= 2a2,n, a1,n+a2,n, a2,n+b1,n, 2a2,n+bjn, a1,n+a2,n+bjn, a2,n+
b1,n + bjn (j = 1, ..., k − 1) , then we can rewrite (4.20) in the form

A3
1e

3P1(z) +
k−1∑
β∈Γ

αβe
Sβ(z) = H,

where Γ ⊆ J2\ {3a1,n} , αβ (β ∈ Γ) , H are meromorphic functions of
order less than n and Sβ (z) are non-constant polynomials with degree
n. By Lemma 2.11 and Lemma 2.12, we get A1 ≡ 0, which is a
contradiction.
(ii) If 3a1,n = η such that

η ∈ {2a2,n, a1,n + a2,n, a2,n + b1n, 2a2,n + bjn, a1,n + a2,n + bjn,

a2,n + b1,n + bjn (j = 1, ..., k − 1)} ,
then by Lemma 2.14, we obtain 3a2,n ̸= λ for all λ ∈ J2\ {3a2,n} .
Hence, we can rewrite (4.20) in the form

A3
2e

3P2(z) +
k−1∑
β′∈Γ′

αβ′eSβ′ (z) = H,

where Γ′ ⊆ J2\ {3a2,n} , αβ′ (β′ ∈ Γ′) , M are meromorphic functions
of order less than n and Sβ′ (z) are non-constant polynomials with
degree n. By Lemma 2.11 and Lemma 2.12, we get A2 ≡ 0, which is a
contradiction. Thus, h2 ̸≡ 0 is proved. By Lemma 2.9, we have

λ (g2) = λ (g2) = ρ (g2) = +∞, λ2 (g2) = λ2 (g2) = ρ2 (g2) = n.

Then

λ (f ′′ − φ) = λ (f ′′ − φ) = ρ (f) = +∞,

λ2 (f
′′ − φ) = λ2 (f

′′ − φ) = ρ2 (f) = n.
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