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NEW TYPES OF FUZZY CONTINUITY VIA
β-SEMIOPEN SET

ANJANA BHATTACHARYYA

Abstract. This paper deals with a new type of fuzzy open-like sets,
viz., fuzzy β-semiopen sets, the class of which is strictly larger than
that of fuzzy semiopen sets [1], but strictly smaller than the classes of
fuzzy β-open sets [8], respectively of fuzzy e∗-open sets [4]. It is shown
that the collection fuzzy β-semiopen sets does not form a fuzzy topol-
ogy. In Section 4, a new type of continuous-like function, viz., fuzzy
(β-semi, r)-continuous function is introduced and studied. In Section
5, some applications of this new type of function are established.

1. Introduction

After introduction of the notion of fuzzy open set by Chang [7],
several classes of fuzzy open-like sets have been studied, in connection
with generalized form of fuzzy continuity [1, 2, 4, 5, 6]. In this context
we have to mention [1, 2, 4, 5, 6, 8]. In [4], fuzzy δ-semiopen, fuzzy
e-open, fuzzy e∗-open, fuzzy a-open sets are introduced and studied.
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Here we introduce fuzzy β-semiopen set the class of which is strictly
larger than that of fuzzy semiopen sets, fuzzy δ-semiopen sets, fuzzy
a-open sets, fuzzy δ-open sets [9], fuzzy α-open sets [6], fuzzy preopen
sets [12], fuzzy γ-open sets [5] and strictly smaller than the class of
fuzzy e∗-open sets and fuzzy β-open sets [8]. It is also shown that
the concept fuzzy β-semiopen set is independent concept of fuzzy δ-
preopen set [2], fuzzy e-open set. Next we introduce fuzzy (β-semi,
r)-continuity, fuzzy β-continuity, fuzzy almost β-continuity and estab-
lish the mutual relationships of the newly defined functions with the
functions defined in [4]. Lastly a new type of separation axiom is in-
troduced and studied in connection with fuzzy (β-semi, r)-continuity.

2. Preliminaries

Throughout the paper, (X, τ) or simply by X we shall mean a fuzzy
topological space (fts, for short) in the sense of Chang [7]. In [15],
Zadeh introduced fuzzy set as follows : A fuzzy set A in an fts X is
a mapping from a non-empty set X into the closed interval I = [0, 1],
i.e., A ∈ IX . The support [15] of a fuzzy set A, denoted by suppA and
is defined by suppA = {x ∈ X : A(x) ̸= 0}. The fuzzy set with the
singleton support {x} ⊆ X and the value t (0 < t ≤ 1) will be denoted
by xt. 0X and 1X are the constant fuzzy sets taking values 0 and 1 re-
spectively in X. The complement [15] of a fuzzy set A in X is denoted
by 1X \A and is defined by (1X \A)(x) = 1−A(x), for each x ∈ X [15].
For any two fuzzy sets A,B in X, A ≤ B means A(x) ≤ B(x), for all
x ∈ X [15] while AqB means A is quasi-coincident (q-coincident, for
short) [13] with B, i.e., there exists x ∈ X such that A(x)+B(x) > 1.
The negation of these two statements will be denoted by A ̸≤ B and
A ̸ qB respectively. For a fuzzy set A, clA and intA stand for fuzzy
closure and fuzzy interior of A in X [7]. A ∈ IX is called fuzzy
regular open [1] (resp., fuzzy semiopen [1], fuzzy preopen [12], fuzzy
α-open [6], fuzzy β-open [8], fuzzy γ-open [5]) if A = int(clA) (resp.,
A ≤ cl(intA), A ≤ int(clA), A ≤ int(cl(intA)), A ≤ cl(int(clA)),
A ≤ (clintA)

∨
(intclA)). The complement of fuzzy regular open

(resp., fuzzy semiopen, fuzzy preopen, fuzzy α-open, fuzzy β-open,
fuzzy γ-open) set is called fuzzy regular closed [1] (resp., fuzzy semi-
closed [1], fuzzy preclosed [12], fuzzy α-closed [6], fuzzy β-closed [8],
fuzzy γ-closed [5]) set. The fuzzy δ-closure and fuzzy δ-interior [9] of
a fuzzy set A in X are defined as : δclA = {xα ∈ X : Aq(int(clU)),
for all U ∈ τ with xαqU}, δintA =

∨
{W : W is fuzzy regular open

in X,W ≤ A}. A ∈ IX is called fuzzy δ-preopen if A ≤ int(δclA) [2].
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The complement of a fuzzy δ-preopen set is called fuzzy δ-preclosed
[2]. The smallest fuzzy semiclosed (resp., fuzzy preclosed, fuzzy α-
closed, fuzzy β-closed, fuzzy γ-closed, fuzzy δ-preclosed) set contain-
ing a fuzzy set A in X is called fuzzy semiclosure [1] (resp., fuzzy
prelosure [12], fuzzy α-closure [6], fuzzy β-closure [8], fuzzy γ-closure
[5], fuzzy δ-preclosure [2]) of A, denoted by sclA (resp., pclA, αclA,
βclA, γclA, δpclA). A ∈ IX is fuzzy semiclosed (resp., fuzzy pre-
closed, fuzzy α-closed, fuzzy β-closed, fuzzy γ-closed, fuzzy δ-closed,
fuzzy δ-preclosed) if A = sclA (resp., A = pclA, A = αclA, A = βclA,
A = γclA, A = δclA, A = δpclA). The collection of all fuzzy regu-
lar open (resp., fuzzy semiopen, fuzzy preopen, fuzzy α-open, fuzzy
β-open, fuzzy γ-open, fuzzy δ-open, fuzzy δ-preopen) sets in X is de-
noted by FRO(X) (rssp., FSO(X), FPO(X), FαO(X), FβO(X),
FγO(X), FδO(X), FδPO(X)) and the collection of all fuzzy reg-
ular closed (resp., fuzzy semiclosed, fuzzy preclosed, fuzzy α-closed,
fuzzy β-closed, fuzzy γ-closed, fuzzy δ-closed, fuzzy δ-preclosed) sets
in X is denoted by FRC(X) (rssp., FSC(X), FPC(X), FαC(X),
FβC(X), FγC(X), FδC(X), FδPC(X)). For a fuzzy open set A in
X, sclA = int(clA) [3].

3. Fuzzy β-Semiopen Set : Some Characterizations

In this section we first recall some definition from [4]

Definition 3.1 [4]. Let (X, τ) be an fts and A ∈ IX . A fuzzy point
xα in X is said to be fuzzy θ-semicluster point of A if clUqA for all
U ∈ FSO(X) with xαqU . The union of all fuzzy θ-semicluster points
of A is called fuzzy θ-semiclosure of A and is denoted by θ-sclA.
A(∈ IX) is fuzzy θ-semiclosed if A = θ-sclA. The complement of a
fuzzy θ-semiclosed set is called fuzzy θ-semiopen.

Definition 3.2 [4]. Let (X, τ) be an fts and A ∈ IX . Then r-kernel
of A, denoted by r-KerA, is defined as follows :

r-KerA =
∧
{U : U ∈ FRO(X), A ≤ U}.

Definition 3.3 [4]. Let (X, τ) be an fts and A ∈ IX . Then A is
said to be fuzzy
(i) δ-semiopen if A ≤ cl(δintA),
(ii) e-open if A ≤ cl(δintA)

∨
int(δclA),

(iii) e∗-open if A ≤ cl(int(δclA)),
(iv) a-open if A ≤ int(cl(δintA)).
The complements of the above mentioned fuzzy sets are called their
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respective closed sets.

Let us now introduce the following concept.

Definition 3.4. A fuzzy set A in an fts (X, τ) is called fuzzy
β-semiopen if A ≤ cl(int(sclA)).
The complement of a fuzzy β-semiopen set is called fuzzy β-semiclosed.

Note 3.5. The collection of all fuzzy δ-semiopen (resp., fuzzy
e-open, fuzzy e∗-open, fuzzy a-open, fuzzy β-semiopen) sets in
X is denoted by FδSO(X) (resp., FeO(X), Fe∗O(X), FaO(X),
FβSO(X)). The collection of all fuzzy δ-semiclosed (resp., fuzzy
e-closed, fuzzy e∗-closed, fuzzy a-closed, fuzzy β-semiclosed) sets in
X is denoted by FδSC(X) (resp., FeC(X), Fe∗C(X), FaC(X),
FβSC(X)).

Remark 3.6. The union of any two fuzzy β-semiopen sets is also
so. But the intersection of any two fuzzy β-semiopen sets may not be
so, as it seen from the following example.

Example 3.7. Let X = {a, b}, τ = {0X , 1X , A,B} where
A(a) = 0.5, A(b) = 0.4, B(a) = 0.7, B(b) = 0.5. Then (X, τ)
is an fts. Here FSO(X) = {0X , 1X , U, V } where A ≤ U
≤ 1X \ A, V ≥ B and FSC(X) = {0X , 1X , 1X \ U, 1X \ V } where
A ≤ 1X \U ≤ 1X \A, 1X \V ≤ 1X \B. Consider two fuzzy sets C and
D defined by C(a) = 0.5, C(b) = 0.3, D(a) = 0.3, D(b) = 0.6. Then
cl(int(sclC)) = cl(int(sclD)) = 1X \ A and 1X \ A ≥ C, 1X \ A ≥ D.
So C and D are fuzzy β-semiopen sets in (X, τ). Let E = C

∧
D.

Then E(a) = E(b) = 0.3. But cl(int(sclE)) = 0X ̸≥ E implies that
E ̸∈ FβSO(X).

Remark 3.8. It is clear from definitions that
(i) fuzzy open set implies fuzzy semiopen set implies fuzzy β-semiopen
set implies fuzzy e∗-open set,
(ii) FPO(X), FαO(X), FγO(X), F δO(X), F δSO(X), FaO(X) ⊆
FβSO(X),
(iii) as for any fuzzy set A ∈ IX , sclA ≤ clA, FβSO(X) ⊆ FβO(X),
(iv) fuzzy β-semiopen is an independent concept of fuzzy e-open and
fuzzy δ-preopen sets, as follow from the following examples.
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Example 3.9. FβSO(X) ⊃ τ where τ is the topology of an fts
(X, τ)
Let X = {a, b}, τ = {0X , 1X , A} where A(a) = A(b) = 0.5.
Then (X, τ) is an fts. Consider the fuzzy set B defined by
B(a) = 0.5, B(b) = 0.4. Then B ̸∈ τ . But as cl(int(sclB)) = A ≥ B,
B ∈ FβSO().

Example 3.10. FβSO(X) ⊃ FSO(X), FαO(X)
Let X = {a, b}, τ = {0X , 1X , A} where A(a) = 0.5, A(b) = 0.4.
Then (X, τ) is an fts. Consider the fuzzy set B defined by
B(a) = 0.5, B(b) = 0.3. Then cl(int(sclB)) = 1X \ A ≥ B im-
plies that B ∈ FβSO(X). But cl(intB) = 0X ̸≥ B implies that
B ̸∈ FSO(X). Also int(cl(intB)) = 0X ̸≥ B and so B ̸∈ FαO(X).

Example 3.11. FβSO(X) ⊃ FγO(X)
Let X = {a, b}, τ = {0X , 1X , A,B} where A(a) = 0.5, A(b) =
0.4, B(a) = 0.7.B(b) = 0.5. Then (X, τ) is an fts. Consider
the fuzzy set C defined by C(a) = 0.4, C(b) = 0.5. Then
(intclC)

∨
(clintC) = A ̸≥ C implies that C ̸∈ FγO(X). But

cl(int(sclC)) = 1X \ A ≥ C and so C ∈ FβSO(X).

Example 3.12. FβSO(X) ⊃ FPO(X)
Let X = {a, b}, τ = {0X , 1X , A,B} where A(a) = 0.5, A(b) =
0.6, B(a) = 0.5, B(b) = 0. Then (X, τ) is an fts. Consider the fuzzy
set C defined by C(a) = 0.5, C(b) = 0.3. Then int(clC) = B ̸≥ C
implies that C ̸∈ FPO(X). But cl(int(sclC)) = 1X \ A ≥ C. Hence
C ∈ FβSO(X).

Example 3.13. Fe∗O(X) ⊃ FβSO(X)
Let X = {a, b}, τ = {0X , 1X , A} where A(a) = 0.5, A(b) = 0.6.
Then (X, τ) is an fts. Consider the fuzzy set B defined by
B(a) = 0.5, B(b) = 0.3. Then clearly B ∈ Fe∗O(X). But as
cl(int(sclB)) = 0X ̸≥ B, B ̸∈ FβSO(X).

Example 3.14. FβSO(X) ⊃ FδO(X)
Let X = {a, b}, τ = {0X , 1X , A} where A(a) = 0.5, A(b) = 0.4.
Then (X, τ) is an fts. Consider the fuzzy set B defined
by B(a) = B(b) = 0.4. Clearly B ̸∈ FδO(X). But
cl(int(sclB)) = 1X \ A ≥ B and so B ∈ FβSO(X).
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Example 3.15. FδPO(X) ⊃ FβSO(X)
Let X = {a, b}, τ = {0X , 1X , A,B} where A(a) = 0.5, A(b) =
0.4, B(a) = 0.5, B(b) = 0.45. Then (X, τ) is an fts. Consider
the fuzzy set C defined by C(a) = 0.5, C(b) = 0.59. Then
cl(int(sclC)) = 1X \ B ̸≥ C implies that C ̸∈ FβSO(X). But
int(δclC) = 1X > C. Hence C ∈ FδPO(X).

Example 3.16. FβSO(X) ⊃ FδPO(X)
Let X = {a, b}, τ = {0X , 1X , A,B,C} where A(a) = 0.3, A(b) =
0.4, B(a) = B(b) = 0.4, C(a) = 0.6, C(b) = 0.5. Then (X, τ) is an
fts. Consider the fuzzy set D defined by D(a) = 0.46, D(b) = 0.6.
Then cl(int(sclD)) = 1X \ B ≥ Dand so D ∈ FβSO(X). But
int(δclD) = C ̸≥ D and consequently, D ̸∈ FδPO(X).

Example 3.17. FeO(X) ⊃ FβSO(X)
Let X = {a, b}, τ = {0X , 1X , A,B} where A(a) = 0.5, A(b) =
0.4, B(a) = 0.5, B(b) = 0.7. Then (X, τ) is an fts. Consider
the fuzzy set C defined by C(a) = 0.5, C(b) = 0.3. Then
cl(int(sclC)) = 0X ̸≥ C implies that C ̸∈ FβSO(X). But as
int(δclC) = A ≥ C, (clδintC)

∨
(intδclC) ≥ C. Hence C ∈ FeO(X).

Example 3.18. FβSO(X) ⊃ FeO(X), FaO(X), F δSO(X)
Let X = {a, b}, τ = {0X , 1X , A,B,C} where A(a) = 0.3, A(b) =
0.4, B(a) = B(b) = 0.4, C(a) = 0.6, C(b) = 0.5. Then (X, τ) is a
fts. Consider the fuzzy set D defined by D(a) = 0.56, D(b) = 0.6.
Then cl(int(sclD)) = 1X \ B ≥ D implies that D ∈ FβSO(X).
Now (clδintD)

∨
(intδclD) = C ̸≥ D and so D ̸∈ FeO(X).

Also D ̸∈ FδSO(X). Again int(cl(δintD)) = B ̸≥ D. Hence
D ̸∈ FaO(X).

Note 3.19. For a fuzzy semiclosed set A, A ∈ FβSO(X) implies
that A ∈ FSO(X).

Theorem 3.20. Let (X, τ) be an fts. Then the union of any
collection of fuzzy β-semiopen sets in X is fuzzy β-semiopen in X.

Proof. Let G = {Gα : α ∈ Λ} be any collection of fuzzy
β-semiopen sets in X. Then for any α ∈ Λ, Gα ≤ cl(int(sclGα)).

Also, Gα ≤
∨
α∈Λ

Gα. Then sclGα ≤ scl(
∨
α∈Λ

Gα) implies that
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Gα ≤ cl(int(sclGα)) ≤ cl(int(scl(
∨
α∈Λ

Gα))), and this is true for all

α ∈ Λ. Taking union on both sides,
∨
α∈Λ

Gα ≤ cl(int(scl(
∨
α∈Λ

Gα))).

Hence
∨
α∈Λ

Gα is a fuzzy β-semiopen in X.

Let us now introduce a new type of closure-like operator.

Definition 3.21. Let (X, τ) be an fts and A ∈ IX . Then
fuzzy β-semiclosure of A, denoted by βsclA, is defined by
βsclA =

∧
{U ∈ IX : A ≤ U,U ∈ FβSC(X)}.

Lemma 3.22. Let (X, τ) be an fts. Then the following statements
are true :
(i) for any fuzzy point xα in X and any U ∈ IX , xα ∈ βsclU and so
for any V ∈ FβSO(X) with xαqV , V qU ,
(ii) for any two fuzzy sets U, V where V ∈ FβSO(X), U ̸ qV . Hence
βsclU ̸ qV .

Proof (i). Let xα ∈ βsclU and V ∈ FβSO(X) with xαqV . Then
xα ̸∈ 1X \ V ∈ FβSC(X). Then U ̸≤ 1X \ V implies that UqV .
(ii). If possible, let βsclUqV , but U ̸ qV . Then there exists x ∈ X
such that (βsclU)(x) + V (x) > 1 and so V (x) + t > 1 where
t = (βsclU)(x). Then xt ∈ βsclU where xtqV, V ∈ FβSO(X). By
definition, V qU , a contradiction.

Let us now recall the following Lemma from [4] for ready references.

Lemma 3.23 [4]. Let (X, τ) be an fts and A ∈ IX . Then the
following statements hold.:
(i) for any A ∈ FRO(X), θ-sclA = A,
(ii) for any A ∈ FβO(X), clA = αclA,
(iii) for any A ∈ FSO(X), clA = pclA,
(iv) for any A ∈ τ, sclA = θ-sclA.

4. Fuzzy (β-semi, r)-Continuous Function : Some
Characterizations

In this section we introduce and characterize three different
types of fuzzy continuous functions and establish the mutual relation-
ships of these newly defined functions with the functions defined in [4].
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We first recall the following definitions from [4] for ready references.

Definition 4.1 [4]. Let (X, τ) and (Y, τ1) be two fts’s and
f : X → Y be a function. Then f is called fuzzy
(i) (δ, r)-continuous if f−1(A) ∈ FδC(X) for all A ∈ FRO(Y ),
(ii) (δ-semi, r)-continuous if f−1(A) ∈ FδSC(X) for all A ∈ FRO(Y ),
(iii) (δ-pre, r)-continuous if f−1(A) ∈ FδPC(X) for all A ∈ FRO(Y ),
(iv) (e∗, r)-continuous if f−1(A) ∈ Fe∗C(X) for all A ∈ FRO(Y ),
(v) (e, r)-continuous if f−1(A) ∈ FeC(X) for all A ∈ FRO(Y ),
(vi) (a, r)-continuous if f−1(A) ∈ FaC(X) for all A ∈ FRO(Y ).

Let us now introduce the following concept.

Definition 4.2. Let (X, τ) and (Y, τ1) be two fts’s. Then
f : X → Y is called fuzzy (β-semi, r)-continuous function if
f−1(A) ∈ FβSC(X), for all A ∈ FRO(Y ).

Remark 4.3. (i) Fuzzy (β-semi, r)-continuity implies fuzzy
(e∗, r)-continuity,
(ii) fuzzy (a, r)-continuity, fuzzy (δ-semi, r)-continuity imply fuzzy
(β-semi, r)-continuity.
But the reverse implications are not true, in general, follow from the
next examples.
(iii) Fuzzy (β-semi, r)-continuity is independent concept of fuzzy
(e, r)-continuity and fuzzy (δ-pre, r)-continuity follow from the
following examples.

Example 4.4. Fuzzy (e∗, r)-continuity, fuzzy (e, r)-continuity does
not imply fuzzy (β-semi, r)-continuity
Let X = {a, b}, τ1 = {0X , 1X , A,B,C}, τ2 = {0X , 1X , D} where
A(a) = 0.5, A(b) = 0.6, B(a) = B(b) = 0.4, C(a) = 0.45, C(b) =
0.4, D(a) = 0.4, D(b) = 0.5. Then (X, τ1) and (X, τ2) are fts’s.
Consider the identity function i : (X, τ1) → (X, τ2). Now D ∈
FRO(X, τ2). i−1(D) = D. Now FSO(X, τ1) = {0X , 1X , U, V } where
A ≤ U ≤ 1X \C,B ≤ V ≤ 1X \A. Then intτ1(clτ1(sintτ1D)) = C ̸≤ D
implies that D ̸∈ FβSC(X, τ1) and so i is not fuzzy (β-semi, r)-
continuous function. But intτ1(clτ1(δintτ1D)) = 0X ≤ D implies that
D ∈ Fe∗C(X, τ1). So i is fuzzy (e∗, r)-continuous function. Again
(clτ1δintτ1D)

∧
(intτ1δclτ1D) = 0X ≤ D. Hence D ∈ FeC(X, τ1)
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implies that i is fuzzy (e, r)-continuous function.

Example 4.5. Fuzzy (β-semi, r)-continuity does not imply fuzzy
(e, r)-continuity, fuzzy (δ-pre, r)-continuity
Let X = {a, b}, τ1 = {0X , 1X , A,B,C}, τ2 = {0X , 1X , B,D} where
A(a) = 0.3, A(b) = 0.4, B(a) = B(b) = 0.4, C(a) = 0.6, C(b) =
0.5, D(a) = 0.54, D(b) = 0.4. Then (X, τ1) and (X, τ2) are fts’s. Con-
sider the identity function i : (X, τ1) → (X, τ2). Now FRO(X, τ2) =
τ2. Then i−1(D) = D, intτ1(clτ1(sintτ1D)) = B ≤ D implies that
D ∈ FβSC(X, τ1). Also i−1(B) = B, intτ1(clτ1(sintτ1B)) = B ≤ B
and so B ∈ FβSC(X, τ1). Hence i is fuzzy (β-semi, r)-continuous
function. But (intτ1δclτ1D)

∧
(clτ1δintτ1D) = 1X \ C ̸≤ D. Then

D ̸∈ FeC(X, τ1) which shows that i is not fuzzy (e, r)-continuous
function. Again clτ1(δintτ1D) = 1X \ C ̸≤ D. SoD ̸∈ FδPC(X, τ1).
Hence i is not fuzzy (δ-pre, r)-continuous function.

Example 4.6. Fuzzy (δ-pre, r)-continuity does not imply fuzzy
(β-semi, r)-continuity
Let X = {a, b}, τ1 = {0X , 1X , A,B}, τ2 = {0X , 1X , C} where A(a) =
0.5, A(b) = 0.4, B(a) = 0.5, B(b) = 0.45, C(a) = 0.5, C(b) = 0.41.
Then (X, τ1) and (X, τ2) are fts’s. Consider the identity function
i : (X, τ1) → (X, τ2). Here C ∈ FRO(X, τ2). i−1(C) = C. Since
clτ1(δintτ1C) = 0X < C. So C ∈ FδPC(X, τ1). Then i is fuzzy (δ-pre,
r)-continuous function. But intτ1(clτ1(sintτ1C)) = B ̸≤ C implies
that C ̸∈ FβSC(X, τ1). Hence i is not fuzzy (β-semi, r)-continuous
function.

Example 4.7. Fuzzy (β-semi, r)-continuity does not imply fuzzy
(a, r)-continuity, fuzzy (δ-semi, r)-continuity, fuzzy (δ, r)-continuity
Let X = {a, b}, τ1 = {0X , 1X , A,B,C}, τ2 = {0X , 1X , D} where
A(a) = 0.3, A(b) = 0.4, B(a) = B(b) = 0.4, C(a) = 0.6, C(b) =
0.5, D(a) = 0.44, D(b) = 0.4. Then (X, τ1) and (X, τ2) are
fts’s. Consider the identity function i : (X, τ1) → (X, τ2). Now
D ∈ FRO(X, τ2), i

−1(D) = D. Now intτ1(clτ1(sintτ1D)) = B ≤ D im-
plies D ∈ FβSC(X, τ1). So i is fuzzy (β-semi, r)-continuous function.
But clτ1(intτ1(δclτ1D)) = 1X \B ̸≤ D and so D ̸∈ FaC(X, τ1). Hence i
is not fuzzy (a, r)-continuous function. Again intτ1(δclτ1D) = C ̸≤ D.
Then D ̸∈ FδSC(X, τ1). So i is not fuzzy (δ-semi, r)-continuous
function. Also δclτ1D ̸= D and so D ̸∈ FδC(X, τ1) which shows that
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i is not fuzzy (δ, r)-continuous function.

Let us now recall the following definition and theorem from [4] for
ready references.

Definition 4.8 [4]. An fts (X, τ) is called fuzzy e∗-T 1
2
-space if

every fuzzy e∗-closed set in X is fuzzy δ-closed in X.

Theorem 4.9 [4]. Let (X, τ) and (Y, τ1) be two fts’s. where (X, τ)
is fuzzy e∗-T 1

2
-space and f : X → Y be a function. Then the following

statements are equivalent :
(i) f is fuzzy (e∗, r)-continuous,
(ii) f is fuzzy (e, r)-continuous,
(iii) f is fuzzy (δ-semi, r)-continuous,
(iv) f is fuzzy (δ-pre, r)-continuous,
(v) f is fuzzy (a, r)-continuous,
(vi) f is fuzzy (δ, r)-continuous.

Theorem 4.10. Let (X, τ) and (Y, τ1) be two fts’s. where (X, τ) is
fuzzy e∗-T 1

2
-space and f : X → Y be a function. Then the following

statements are equivalent :
(i) f is fuzzy (β-semi, r)-continuous,
(ii) f is fuzzy (e∗, r)-continuous,
(iii) f is fuzzy (e, r)-continuous,
(iv) f is fuzzy (δ-semi, r)-continuous,
(v) f is fuzzy (δ-pre, r)-continuous,
(vi) f is fuzzy (a, r)-continuous,
(vii) f is fuzzy (δ, r)-continuous.
Proof (i)⇒ (ii). Let V ∈ FRO(Y ). Then by (i),

f−1(V ) ∈ FβSC(X). By Remark 3.8 (i), f−1(V ) ∈ Fe∗C(X)
and hence f is fuzzy (e∗, r)-continuous function.
(ii)⇒ (vi). Follows from Theorem 4.9 (i)⇒ (v).
(vi)⇒ (i). Let V ∈ FRO(Y ). By (vi), f−1(V ) ∈ FaC(X). By
Remark 3.8 (ii), f−1(V ) ∈ FβSC(X) and so f is fuzzy (β-semi,
r)-continuous function.
The rest follows from Theorem 4.9.

Theorem 4.11. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y
be a function. Then the following statements are equivalent :
(i) f is fuzzy (β-semi, r)-continuous,
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(ii) f−1(A) ∈ FβSO(X), for all A ∈ FRC(Y ),
(iii) f(βsclτU) ≤ r-ker(f(U)), for all U ∈ IX ,
(iv) βsclτ (f

−1(A)) ≤ f−1(r-ker(A)), for all A ∈ IY ,
(v) for each fuzzy point xα in X and each A ∈ FSO(Y ) with f(xα)qA,
there exists U ∈ FβSO(X) with xαqU , f(U) ≤ clτ1A,
(vi) f(βsclτP )) ≤ θ-sclτ1(f(P )), for all P ∈ IX ,
(vii) βsclτ (f

−1(R)) ≤ f−1(θ-sclτ1R)), for all R ∈ IY .
(viii) βsclτ (f

−1(R)) ≤ f−1(θ-sclτ1R)), for all R ∈ τ1,
(ix) βsclτ (f

−1(R)) ≤ f−1(sclτ1R)), for all R ∈ τ1.
(x) βsclτ (f

−1(R)) ≤ f−1(intτ1(clτ1R)), for all R ∈ τ1.
(xi) for each fuzzy point xα in X and each A ∈ FSO(Y ) with
f(xα) ∈ A, there exists U ∈ FβSO(X) such that xα ∈ U and
f(U) ≤ clτ1A,
(xii) f−1(A) ≤ βsintτ (f

−1(clτ1A)), for all A ∈ FSO(Y ),
(xiii) f−1(intτ1(clτ1A)) ∈ FβSC(X), for all A ∈ τ1,
(xiv) f−1(clτ1(intτ1F )) ∈ FβSO(X), for all F ∈ τ c1 ,
(xv) f−1(clτ1U) ∈ FβSO(X), for all U ∈ FβO(Y ),
(xvi) f−1(clτ1U) ∈ FβSO(X), for all U ∈ FSO(Y ),
(xvii) f−1(intτ1(clτ1U)) ∈ FβSC(X), for all U ∈ FPO(Y ),
(xviii) f−1(αclτ1U) ∈ FβSO(X), for all U ∈ FβO(Y ),
(xix) f−1(pclτ1U) ∈ FβSO(X), for all U ∈ FSO(Y ),
(xx) βsclτ (f

−1(R)) ≤ f−1(θ-sclτ1R)), for all R ∈ FSO(Y ),
(xxi) βsclτ (f

−1(R)) ≤ f−1(θ-sclτ1R)), for all R ∈ FPO(Y ),
(xxii) βsclτ (f

−1(R)) ≤ f−1(θ-sclτ1R)), for all R ∈ FβO(Y ).
Proof (i) ⇒ (ii). Let W ∈ FRC(Y ). Then 1Y \ W ∈ FRO(Y ).

By (i), f−1(1Y \ W ) = 1X \ f−1(W ) ∈ FβSC(X). Hence
f−1(W ) ∈ FβSO(X).
(ii) ⇒ (i). Let W ∈ FRO(Y ). Then 1Y \ W ∈ FRC(Y ).
By (ii), f−1(1Y \ W ) = 1X \ f−1(W ) ∈ FβSO(X). Hence
f−1(W ) ∈ FβSC(X).
(ii) ⇒ (iii). Let U ∈ IX and suppose that yα be a fuzzy point
in Y with yα ̸∈ r-ker(f(U)). Then there exists V ∈ FRO(Y )
such that f(U) ≤ V and yα ̸∈ V , which implies V (y) < α
and so yαq(1Y \ V ) ∈ FRC(Y ) and 1Y \ f(U) ≥ 1Y \ V .
So f(U) /q(1Y \ V ) implies that U /qf−1(1Y \ V ). By (ii),
f−1(1Y \ V ) = 1X \ f−1(V ) ∈ FβSO(X). By Lemma
3.22(ii), βsclτU /q(1X \ f−1(V )). Then βsclτU ≤ f−1(V ). So
f(βsclτU) ≤ V implies that 1Y \ f(βsclτU) ≥ 1Y \ V . So
1 − f(βsclτU)(y) ≥ 1 − V (y) > 1 − α Then α > f(βsclτU)(y). Then
yα ̸∈ f(βsclτU). Therefore, f(βsclτU) ≤ r-ker(f(U)).
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(iii) ⇒ (iv). Let A ∈ IY . Then f−1(A) ∈ IX . By (iii),
f(βsclτf

−1(A)) ≤ r-ker(f(f−1(A))) ≤ r-ker(A) implies that
βsclτ (f

−1(A)) ≤ f−1(r-ker(A)).
(iv) ⇒ (i). Let A ∈ FRO(Y ). By (iv), βsclτ (f

−1(A)) ≤ f−1(r-
ker(A)) = f−1(A). But f−1(A) ≤ βsclτ (f

−1(A)) and so
f−1(A) = βsclτ (f

−1(A)) and so f−1(A) ∈ FβSC(X). Hence f
is fuzzy (β-semi, r)-continuous function.
(v) ⇒ (vi). Let P ∈ IX and xα be any fuzzy point in X such that
xα ∈ βsclτP and let G ∈ FSO(Y ) with f(xα)qG. By (v), there
exists U ∈ FβSO(X) with xαqU , f(U) ≤ clτ1G. As xα ∈ βsclτP ,
by Lemma 3.22(i), UqP and so f(U)qf(P ). Then f(P )qclτ1G. Then
f(xα) ∈ θ-sclτ1(f(P )). Hence f(βsclτP ) ≤ θ-sclτ1(f(P )).
(vi) ⇒ (vii). Let R ∈ IY . Then f−1(R) ∈ IX . By (vi),
f(βsclτ (f

−1(R))) ≤ θ-sclτ1(f(f
−1(R))) ≤ θ-sclτ1R and so

βsclτ (f
−1(R)) ≤ f−1(θ-sclτ1R).

(vii) ⇒ (v). Let xα be any fuzzy point in X and A ∈ FSO(Y )
with f(xα)qA. Since, clτ1A /q(1Y \ clτ1A), by definition f(xα) ̸∈ θ-
sclτ1(1Y \ clτ1A) and so xα ̸∈ f−1(θ-sclτ1(1Y \ clτ1A)). By (vii),
xα ̸∈ βsclτ (f

−1(1Y \ clτ1A)). So there exists U ∈ FβSO(X) with
xαqU , U /qf−1(1Y \ clτ1A) implies that f(U) /q(1Y \ clτ1A). Hence
f(U) ≤ clτ1A.
(vii) ⇒ (viii). Let A ∈ τ1. By (vii), βsclτ (f

−1(A)) ≤ f−1(θ-sclτ1A).
(viii) ⇒ (ix). Follows from Lemma 3.23 (iv).
(ix) ⇒ (x). Obvious.
(x) ⇒ (i). Let A ∈ FRO(Y ). By (x), βsclτ (f

−1(A)) ≤
f−1(intτ1(clτ1A)) = f−1(A) implies that f−1(A) ∈ FβSC(X).
Hence f is fuzzy (β-semi, r)-continuous function.
(i) ⇒ (x). Let A ∈ τ1. Then intτ1(clτ1A) ∈ FRO(Y ). By
(i), f−1(intτ1(clτ1A)) ∈ FβSC(X) and so βsclτ (f

−1(A)) ≤
βsclτ (f

−1(intτ1(clτ1A)) = f−1(intτ1(clτ1A)) = f−1(sclτ1A).
(x) ⇒ (ix). Obvious.
(ix) ⇒ (viii). Follows from Lemma 3.23 (iv).
(vii) ⇒ (i). Let R ∈ FRO(Y ). By (vii), βsclτ (f

−1(R)) ≤ f−1(θ-
sclτ1R) = f−1(R) implies that f−1(R) ∈ FβSC(X). Hence f is fuzzy
(β-semi, r)-continuous function.
(v) ⇒ (xii). Let A ∈ FSO(Y ) and xα be any fuzzy point in
X such that xαqf

−1(A). Then f(xα)qA. By (v), there exists
U ∈ FβSO(X) such that xαqU , f(U) ≤ clτ1A ⇒ xαqU ≤ f−1(clτ1A)
and so sαqU = βsintτU ≤ βsintτ (f

−1(clτ1A)) implies that
xαqβsintτ (f

−1(clτ1A)) as βsintτ (f
−1(clτ1A)) is the union of all
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fuzzy β-semiopen sets in X contained in f−1(clτ1A) and hence
f−1(A) ≤ βsintτ (f

−1(clτ1A)).
(xii) ⇒ (v). Let xα be any fuzzy point in X and A ∈ FSO(Y ) with
f(xα)qA. Then xαqf

−1(A) ≤ βsintτ (f
−1(clτ1A)) (by (xii)) implies

that there exists U ∈ FβSO(X) with xαqU , U ≤ f−1(clτ1A). Hence
f(U) ≤ clτ1A.
(xi) ⇒ (xii). Let A ∈ FSO(Y ) and xα be any fuzzy point in
X such that xα ∈ f−1(A). Then f(xα) ∈ A. By (xi), there
exists U ∈ FβSO(X) with xα ∈ U and f(U) ≤ clτ1A implies that
U ≤ f−1(clτ1A) and so xα ∈ U = βsintτU ≤ βsintτ (f

−1(clτ1A)).
Hence f−1(A) ≤ βsintτ (f

−1(clτ1A)).
(xii) ⇒ (xi). Let xα be any fuzzy point in X and A ∈ FSO(Y ) with
f(xα) ∈ A. Then xα ∈ f−1(A) ≤ βsintτ (f

−1(clτ1A)) (by (xii)) implies
that there exists U ∈ FβSO(X) with xα ∈ U and U ≤ f−1(clτ1A).
Hence f(U) ≤ clτ1A.
(i) ⇒ (xiii). Let A ∈ τ1. Then intτ1(clτ1A) ∈ FRO(Y ) and so by (i),
f−1(intτ1(clτ1A)) ∈ FβSC(X).
(xiii) ⇒ (i). Let A ∈ FRO(Y ) implies that A ∈ τ1 and so by (xiii),
f−1(A) = f−1(intτ1(clτ1A) ∈ FβSC(X).
(xii) ⇒ (ii). Let F ∈ FRC(Y ) implies that F ∈ FSO(Y ). By (xii),
f−1(F ) ≤ βsintτ (f

−1(clτ1F )) = βsintτ (f
−1(F )).

(ii) ⇒ (xiv). Let F ∈ τ c1 . Then clτ1intτ1F ∈ FRC(Y ). By (ii),
f−1(clτ1(intτ1F )) ∈ FβSO(X).
(xiv) ⇒ (ii). Let F ∈ FRC(Y ). By (xiv), f−1(F ) =
f−1(clτ1(intτ1F )) ∈ FβSO(X).
(ii) ⇒ (xv). Let U ∈ FβO(Y ). Then U ≤ clτ1(intτ1(clτ1U)) ≤ clτ1U
implies that clτ1U ≤ clτ1(clτ1(intτ1(clτ1U))) = clτ1(intτ1(clτ1U)) ≤
clτ1(clτ1U) = clτ1U . So clτ1U = clτ1(intτ1(clτ1U)). Then
clτ1U ∈ FRC(Y ) and so by (ii), f−1(clτ1U) ∈ FβSO(X).
(xv) ⇒ (xvi). Since FSO(Y ) ⊆ FβO(Y ), by (xv),
f−1(clτ1U) ∈ FβSO(X), for all U ∈ FSO(Y ).
(xvi) ⇒ (xvii). Let U ∈ FPO(Y ). Then U ≤
intτ1(clτ1U). We claim that intτ1(clτ1U) ∈ FRO(Y ). In-
deed, intτ1(clτ1U) ≤ intτ1(clτ1(intτ1(clτ1U))) ≤ intτ1(clτ1U)
implies that intτ1(clτ1U) = intτ1(clτ1(intτ1(clτ1U))). So
⇒ 1Y \ intτ1(clτ1U) ∈ FRC(Y ). So 1Y \ intτ1(clτ1U) ∈ FSO(Y ).
By (xvi), f−1(clτ1(1Y \ intτ1(clτ1U))) ∈ FβSO(X). Then
1X \ f−1(intτ1(intτ1(clτ1U))) = 1X \ f−1((intτ1(clτ1U)) ∈ FβSO(X).
Hence f−1(intτ1(clτ1U)) ∈ FβSC(X).
(xvii) ⇒ (i). Let U ∈ FRO(Y ). Then U ∈ FPO(Y ). By (xvii),
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f−1(intτ1(clτ1U)) ∈ FβSC(X). Hence f−1(U) = f−1(intτ1(clτ1U)) ∈
FβSC(X). Then (i) follows.
(xv) ⇔ (xviii). The proof follows from Lemma 3.23(ii).
(xv) ⇔ (xix). The proof follow from Lemma 3.23(iii).
(vii) ⇒ (xx). Obvious.
(xx) ⇒ (viii). Let A ∈ τ1. Since FSO(Y ) ⊇ τ1, by (xx),
βsclτ (f

−1(A)) ≤ f−1(θ-sclτ1A).
(vii) ⇒ (xxii). Obvious.
(xxii) ⇒ (xx). Since FSO(Y ) ⊆ FβO(Y ), the result follows.
(vii) ⇒ (xxi). Obvious.
(xxi) ⇒ (viii). Since τ1 ⊆ FPO(Y ), the result follows.

Let us now recall the following definition from [4] for ready
references.

Definition 4.12 [4]. Let (X, τ) and (Y, τ1) be two fts’s and
f : X → Y be a function. Then f is said to be fuzzy
(i) e∗-continuous if f−1(A) ∈ Fe∗O(X), for all A ∈ τ1,
(ii) almost e∗-continuous if f−1(A) ∈ Fe∗O(X), for all A ∈ FRO(Y ),
(iii) almost e-continuous if f−1(A) ∈ FeO(X), for all A ∈ FRO(Y ),
(iv) almost a-continuous if f−1(A) ∈ FaO(X), for all A ∈ FRO(Y ).

Let us now introduce the following concept.

Definition 4.13. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y
be a function. Then f is said to be fuzzy
(i) β-semicontinuous if f−1(A) ∈ FβSO(X), for all A ∈ τ1,
(ii) almost β-semicontinuous if f−1(A) ∈ FβSO(X), for all
A ∈ FRO(Y ).

Remark 4.14. (i) Fuzzy β-semicontinuity implies fuzzy almost
β-semicontinuity.
(ii) Fuzzy almost a-continuity implies fuzzy β-semicontinuity as well
as fuzzy almost β-semicontinuity,
(iii) Fuzzy β-semicontinuity implies fuzzy e∗-continuity and hence
fuzzy almost e∗-continuity. Also fuzzy almost β-semicontinuity
implies fuzzy almost e∗-continuity.
But the reverse implications are not necessarily true, follow from the
following examples.
(iv) Fuzzy almost e-continuity is an independent concept of fuzzy
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β-semicontinuity as well as fuzzy almost β-semicontinuity, follow from
the next examples.

Example 4.15. Fuzzy almost β-semicontinuity, fuzzy e∗-continuity,
fuzzy almost e∗-continuity, fuzzy almost e-continuity, fuzzy almost
a-continuity do not imply fuzzy β-semicontinuity
Let X = {a, b}, τ1 = {0X , 1X , A,B}, τ2 = {0X , 1X , C} where
A(a) = A(b) = 0.4, B(a) = B(b) = 0.5, C(a) = 0.5, C(b) = 0.6.
Then (X, τ1) and (X, τ2) are fts’s. Consider the identity function i :
(X, τ1) → (X, τ2). Now C ∈ τ2, i

−1(C) = C ̸≤ clτ1(intτ1(sclτ1C)) = B
implies that C ̸∈ FβSO(X, τ1) and so i is not fuzzy β-semicontinuous
function. But clearly i is fuzzy almost β-semicontinuous, fuzzy almost
a-continuous, fuzzy almost e-continuous, fuzzy almost e∗-continuous
function. Now clτ1(intτ1(δclτ1C)) = 1X > C and so C ∈ Fe∗O(X, τ1).
Hence i is fuzzy e∗-continuous function.

Example 4.16. Fuzzy β-semicontinuity, fuzzy almost β-
semicontinuity do not imply fuzzy almost a-continuity
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B} where
A(a) = A(b) = 0.5, B(a) = 0.5, B(b) = 0.4. Then (X, τ1) and
(X, τ2) are fts’s. Consider the identity function i : (X, τ1) → (X, τ2).
Now B ∈ FRO(X, τ2). i−1(B) = B ̸≤ intτ1(clτ1(δintτ1B)) = 0X
implies that B ̸∈ FaO(X, τ1). Hence i is not fuzzy almost a-
continuous function. But clτ1(intτ1(sclτ1B)) = A ≥ B implies that
B ∈ FβSO(X, τ1). So i is fuzzy β-semicontinuous as well as fuzzy
almost β-semicontinuous function.

Example 4.17. Fuzzy β-semicontinuity, fuzzy almost β-
semicontinuity do not imply fuzzy almost e-continuity
Let X = {a, b}, τ1 = {0X , 1X , A,B.C}, τ2 = {0X , 1X , D,E}
where A(a) = 0.3, A(b) = 0.4, B(a) = B(b) = 0.4, C(a) =
0.6, C(b) = 0.5, D(a) = 0.56, D(b) = 0.6, E(a) = E(b) = 0.3.
Then (X, τ1) and (X, τ2) are fts’s. Consider the identity
function i : (X, τ1) → (X, τ2). Now D ∈ FRO(X, τ2).
i−1(D) = D. Now (clτ1δintτ1D)

∨
(intτ1δclτ1D) = C ̸≥ D and

so D ̸∈ FeO(X, τ1). Then i is not fuzzy almost e-continuous function.
But clτ1(intτ1(sclτ1D)) = 1X \ B ≥ D. Then D ∈ FβSO(X, τ1). Also
E ∈ FRO(X, τ2). i−1(E) = E < 1X \ C = clτ1(intτ1(sclτ1E)), So
E ∈ FβSO(X, τ1). Hence i is fuzzy β-semicontinuous as well as fuzzy
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almost β-semicontinuous function.

Example 4.18. Fuzzy almost e-continuity does not imply fuzzy
β-semicontinuity, fuzzy almost β-semicontinuity
Let X = {a, b}, τ1 = {0X , 1X , A,B}, τ2 = {0X , 1X , C} where A(a) =
0.5, A(b) = 0.4, B(a) = 0.5, B(b) = 0.7, C(a) = 0.5, C(b) = 0.3.
Then (X, τ1) and (X, τ2) are fts’s. Consider the identity function
i : (X, τ1) → (X, τ2). Now C ∈ FRO(X, τ2). i−1(C) = C. Now
clτ1(intτ1(sclτ1C)) = 0X ̸≥ C and so C ̸∈ FβSO(X, τ1). Hence i is
not fuzzy β-semicontinuous as well as fuzzy almost β-semicontinuous
function. But (clτ1δintτ1C)

∨
(intτ1δclτ1C) = A ≥ C implies that

C ∈ FeO(X, τ1). Hence i is fuzzy almost e-continuous function.

Definition 4.19 [11]. An fts (X, τ) is said to be fuzzy extremally
disconnected if the closure of ever fuzzy open set in X is fuzzy open
in X.

Theorem 4.20. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y
be a function. If (Y, τ1) is fuzzy extremally disconnected, then f
is fuzzy (β-semi, r)-continuous if and only if f is fuzzy almost β-
semicontinuous function.

Proof. First suppose that f is fuzzy (β-semi, r)-continuous func-
tion. Let U ∈ FRO(Y ). Then U = intτ1(clτ1U). As Y is fuzzy
extremally disconnected, clτ1U ∈ τ1 and so U = intτ1clτ1U = clτ1U =
clτ1intτ1U implies that U ∈ FRC(Y ). By hypothesis, f−1(U) ∈
FβSO(X) and so f is fuzzy almost β-semicontinuous function.
Conversely, let U ∈ FRC(Y ). As Y is fuzzy extremally discon-

nected, U ∈ FRO(Y ). By hypothesis, f−1(U) ∈ FβSO(X). Hence f
is fuzzy (β-semi, r)-continuous function.

5. Applications of Fuzzy (β-semi, r)-Continuous and
Fuzzy β-Semicontinuous Functions

In this section we first introduce a new type of compactness in an
fts and then introduce a new type of separation axiom. Afterwards,
the applications of the functions defined in Section 4 are established.

First we recall some definitions from [7, 10] for ready references.

Definition 5.1. Let A be a fuzzy set in X. A collection U of fuzzy
sets in X is called a fuzzy cover of A if sup{U(x) : U ∈ U} = 1, for
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each x ∈ suppA [10]. In particular, if A = 1X , we get the definition
of fuzzy cover of X [7].

Definition 5.2. A fuzzy cover U of a fuzzy set A in X is said to
have a finite subcover U0 if U0 is a finite subcollection of U such that⋃

U0 ≥ A, i.e., U0 is also a fuzzy cover of A [10]. In particular, if
A = 1X , we get

⋃
U0 = 1X [7].

Definition 5.3. A fuzzy set A in an fts (X, τ) is said to be fuzzy
compact [10] if every fuzzy covering U of A by fuzzy open sets in X
has a finite subcovering U0 of U . In particular, if A = 1X , we get the
definition of fuzzy compact [7] space.

Definition 5.4. An fts (X, τ) is said to be fuzzy s-closed [14]
(resp. fuzzy nearly compact [11]) if every fuzzy covering of X by
fuzzy regular closed (resp., fuzzy regular open) sets of X contains a
finite subcovering.

Let us now introduce the following concept.

Definition 5.5. A fuzzy set A in an fts (X, τ) is called fuzzy
β-semicompact if every fuzzy covering of A by fuzzy β-semiopen sets
of X has a finite subcovering. In particular, if A = 1X , we get the
definition of fuzzy β-semicompact space.

Result 5.6. It is clear from above discussion that fuzzy β-
semicompact space is fuzzy compact. But the converse is not
necessarily true follows from the next example.

Example 5.7. Let X = {a}, τ = {0X , 1X}. The clearly (X, τ)
is a fuzzy compact space. Here every fuzzy set is fuzzy β-semiopen
set in X. Consider the fuzzy cover U = {Un : n ∈ N} where
Un(a) = { n

n+1
: n ∈ N}. Then U is a fuzzy β-semiopen cover of X.

But it does not have any subcovering of X. Hence X is not fuzzy
β-semicompact space.

Theorem 5.8. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y
be surjective, fuzzy (β-semi, r)-continuous function. If X is fuzzy
β-semicompact space, then Y is fuzzy s-closed space.
Proof. Let U = {Uα : α ∈ Λ} be a fuzzy covering of Y
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by fuzzy regular closed sets of Y . As f is fuzzy (β-semi, r)-
continuous, V = {f−1(Uα) : α ∈ Λ} covers X by fuzzy β-semiopen
sets of X. As X is fuzzy β-semicompact, there exists a fi-

nite subset Λ0 of Λ such that 1X =
∨
α∈Λ0

f−1(Uα) implies that

1Y = f(
∨
α∈Λ0

f−1(Uα)) =
∨
α∈Λ0

f(f−1(Uα)) ≤
∨
α∈Λ0

Uα. Hence Y is

fuzzy s-closed space.

Theorem 5.9. Every fuzzy β-semiclosed set A in a fuzzy β-
semicompact space X is fuzzy β-semicompact.
Proof. Let A be a fuzzy β-semiclosed set in a fuzzy β-semicompact
space X. Let U be a fuzzy covering of A by fuzzy β-semiopen
sets in X. Then V = U

⋃
(1X \ A) is a fuzzy β-semiopen cov-

ering of X. By hypothesis, there exists a finite subcollection V0

of V which also covers X. If V0 contains 1X \ A, we omit it and
get a finite subcovering of A. Consequently, A is fuzzy β-semicompact.

Theorem 5.10. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y
be fuzzy β-semicontinuous function. If A is fuzzy β-semicompact set
relative to X, then the image f(A) is fuzzy compact relative to Y .
Proof. Let A be fuzzy β-semicompact relative to X and
U = {Uα : α ∈ Λ} be a fuzzy covering of f(A) by fuzzy open sets of

Y , i.e, f(A) ≤
∨
α∈Λ

Uα implies that A ≤ f−1(
∨
α∈Λ

Uα) =
∨
α∈Λ

f−1(Uα). So

V = {f−1(Uα) : α ∈ Λ} is a fuzzy covering of A by fuzzy β-semiopen
sets in X. As A is fuzzy β-semicompact set relative to X, there
exists a finite subcollection V0 = {f−1(Uαi

) : 1 ≤ i ≤ n} of V such

that A ≤
n∨

i=1

f−1(Uαi
). Then f(A) ≤ f(

n∨
i=1

f−1(Uαi
)) =

n∨
i=1

f(f−1(Uαi
))

≤
n∨

i=1

Uαi
implies that U0 = {Uαi

: 1 ≤ i ≤ n} is a finite subcovering

of f(A). Hence the proof.

Theorem 5.11. Let (X, τ) and (Y, τ) be two fts’s and f : X → Y
be fuzzy almost β-semicontinuous function. If A is fuzzy β-
semicompact relative to X, then the image f(A) is fuzzy nearly
compact relative to Y .
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Proof. The proof is similar to that of Theorem 5.10.

Let us now introduce the following concept.

Definition 5.12. Let (X, τ) be an fts. Then X is said to be
fuzzy β-semi-T2-space if for each pair of distinct fuzzy points xα, yβ :
when x ̸= y, there exist fuzzy β-semiopen sets U1, U2, V1, V2 such that
xα ∈ U1, yβqV1 and U1 ̸ qV1 and xαqU2, yβ ∈ V2 and U2 ̸ qV2 ; when
x = y, α < β (say), there exist fuzzy β-semiopen sets U, V in X such
that xα ∈ U, yβqV and U ̸ qV .

Definition 5.13 [4]. An fts (X, τ) is said to be fuzzy s-Urysohn
if for each pair of distinct fuzzy points xα, yβ : when x ̸= y, there
exist fuzzy semiopen sets U1, U2, V1, V2 in X such that xα ∈ U1, yβqV1

and clU1 ̸ qclV1 and xαqU2, yβ ∈ V2 and clU2 ̸ qclV2 ; when x = y,
α < β (say), there exist fuzzy semiopen sets U, V in X such that
xα ∈ U, yβqV and clU ̸ qclV .

Theorem 5.14. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y
be injective, fuzzy (β-semi, r)-continuous function and Y is fuzzy
s-Urysohn space. Then X is fuzzy β-semi-T2-space.
Proof. Let xα and yβ be two distinct fuzzy points in X where

x ̸= y. Then as f is injective, f(xα) ̸= f(yβ). As Y is fuzzy s-
Urysohn, there exist fuzzy semiopen sets U1, U2, V1, V2 in Y such that
f(xα) ∈ U1, f(yβ)qV1 and clτ1U1 ̸ qclτ1V1 and f(xα)qU2, f(yβ) ∈ V2

and clτ1U2 ̸ qclτ1V2. By Theorem 4.11, there exist W1,W2 ∈ FβSO(X)
such that xα ∈ W1,W1 ≤ f−1(clτ1U1), yβqW2,W2 ≤ f−1(clτ1V1) or
xαqW2,W2 ≤ f−1(clτ1U2), yβ ∈ W1,W1 ≤ f−1(clτ1V2).We claim that
W1 ̸ qW2. Indeed, clτ1U1 ̸ qclτ1V1 and clτ1U2 ̸ qclτ1V2 implies that
f−1(clτ1U1) ̸ qf−1(clτ1V1) and f−1(clτ1U2) ̸ qf−1(clτ1V2).
Similarly, when x = y, α < β (say), there exist U1, U2 ∈ FSO(Y )
such that f(xα) ∈ U1, f(yβ)qU2 and clτ1U1 ̸ qclτ1U2. By Theo-
rem 4.11 (i) ⇔ (xi), there exist W1,W2 ∈ FβSO(X) such that
xα ∈ W1,W1 ≤ f−1(clτ1U1), yβqW2,W2 ≤ f−1(clτ1U2). Then as above,
W1 ̸ qW2. Hence X is fuzzy β-semi-T2-space.
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