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ON ωc-SETS AND ω-SETS IN TOPOLOGICAL SPACES

AJOY MUKHARJEE

Abstract. In this paper we introduce and study the notion of
ωc-set. We also study ω-sets, as complements of ωc-sets. Finally,
using the ωc-sets and ω-sets of a topological space, we introduce and
study the notion of ω-extremally disconnected topological spaces. We
obtain a result akin to Urysohn’s Lemma in the setting of ω-extremally
disconnected topological spaces.

1. Introduction

Unless otherwise mentioned, X stands for the topological space
(X,P). For a subset A of a topological spaceX, Int(A) (resp. Cl(A))
denotes the interior (resp. closure) of A with respect to the topolog-
ical space (X,P). Throughout the paper, R denotes the set of real
numbers.

————————————————
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Generalization of existing topological notions is an important con-
cern for topologists. Levine [7] generalized the concept of open sets
and introduced the notion of semi-open sets: a subset A of a topo-
logical space X is called semi-open if there exists an open set G such
that G ⊂ A ⊂ Cl(G). Equivalently, a subset A of a topological space
X is semi-open in X if and only if A ⊂ Cl(Int(A)) [7]. A new type
of set, namely pre-open set (see Mashhour et al. [9]) introduced by
Corson and Michael [3] under the name locally dense sets is originated
in the topological space X, if we change the order of application of
interior and closure operators in semi-open sets, i.e., a subset A of a
topological space X is pre-open if A ⊂ Int(Cl(A)). Generalizing both
ideas of semi-open and pre-open sets, Andrijević [1] introduced and
studied the notion of semi-pre-open sets: a subset A of a topological
space X is semi-pre-open if there exists a pre-open set U such that
U ⊂ A ⊂ Cl(U). It can be seen that a subset A of a topological space
X is semi-pre-open if and only if A ⊂ (Cl(Int(Cl(A))). Nj̊astad [8]
and El-Monsef et al. [5] independently introduced and studied β-sets
and β-open sets respectively which are same as semi-pre-open sets. In-
terchanging the role of interior and closure operators in semi-pre-open
sets, we get α-sets, i.e. a subset A of X is α-sets [8] if and only if
A ⊂ Int(Cl(Int(A))). Here we agree to call α-sets as α-open sets and
β-sets or semi-pre-open sets as β-open sets. Note that both notions
of semi-open and pre-open sets are generalization of α-open sets. In-
terestingly, concepts of semi-open and pre-open sets are independent.
Obviously, open sets are included in either of above four categories of
sets. We depict the implication relations among above type of sets in
the following diagram. The implications are not reversible.

open α-open- �
��*

HHHj

semi-open

pre-open

HHHjβ-open
���*

Note: in above diagram stands to mean ‘implies that’.‘ -’

As usual, a subset of X is called semi-closed [4], pre-closed [9], α-
closed and β-closed if its complement is semi-open, pre-open, α-open
and β-open respectively. So a subset B of a topological space X is

(1) [(i)]
(2) semi-closed if and only if Int(Cl(B)) ⊂ B [4],
(3) pre-closed if and only if Cl(Int(B)) ⊂ B [9],
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(4) α-closed if and only if Cl(Int(Cl(B))) ⊂ B,
(5) β-closed if and only if Int(Cl(Int(B))) ⊂ B.

The introduction and study of new types of sets is an active field of
research in topological spaces e.g. Modak and Islam [6] studied two
types of sets in ideal topological spaces akin to semi-open sets and
α-sets due to Levine [7] and Nj̊astad [8] respectively. We also see that
Ekici [2] introduced and studied a-open sets, A∗-sets in topological
spaces.

Section 2 and Section 3 are main parts of the paper. In Section 2, we
introduce the notions of ωc-sets and ω-sets in topological spaces and
then obtain some of their properties. Some examples are also framed
according to the necessity of contents. As we have in the literature of
topological spaces the term like α-sets [8], β-sets [8] and β-open sets
[5], we coin the term ω-sets for the new type of set introduced here
following the tradition of naming some sets in topological spaces and
its complement is then denoted by ωc-sets. Since ωc-sets are associated
with the closure of an open set of topological spaces, they are named
so and the complement of ωc-sets are simply denoted by ω-sets. In
Section 3,

∧
ωc and

∨
ω operations are defined using the concepts of

ωc-sets and ω-sets respectively. Finally, we obtain a result analogous
to Urysohn’s Lemma on ω-extremally disconnected spaces.

2. ωc-sets and ω-sets

Gazing at semi-open, pre-open, α-open and β-open sets, we notice
that for each of these sets A, there exists an open set G such that
A ⊂ Cl(G). This observation instigates us to introduce the following
notion.

Definition 1. A subset A of a topological space X with Cl(A) ̸= X
is said to be an ωc-set if there exists an open set G(̸= X) such that
A ⊂ Cl(G).

It is easy to see that all semi-open and α-open sets except X are ωc-
sets. A pre-open or β-open set A with Cl(A) ̸= X is also an ωc-set.

Example 2 (Mukharjee [10]). For a ∈ R, we define

T = {∅,R, {a}, (−∞, a), (−∞, a], [a,∞)}.
In the topological space (R,T ), we choose two subsets A and B such
that A ⊂ (−∞, a) and B ⊂ (a,∞). We see that A ∪ B is an ωc-set
but it is not β-open. It means that an ωc-set may not be a β-open set.
Since semi-open, pre-open and α-open sets are also β-open, an ωc-set
may not be a semi-open or pre-open or α-open set.
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The complement of an ωc-set is said to be an ω-set. So a subset A
of a topological space X with Int(A) ̸= ∅ is an ω-set if and only if
there exists a closed set E (̸= ∅) such that Int(E) ⊂ A.
It is easy to see that all semi-closed and α-closed sets except ∅ are

ω-sets. A pre-closed or β-closed set A with Int(A) ̸= ∅ is also an
ω-set.

In the topological space of Example 2, there exists ω-sets which are
not β-closed sets. It means that an ω-set may not be a β-closed set.
Since semi-closed, pre-closed and α-closed sets are also β-closed sets,
an ω-set may not be a semi-closed or pre-closed or α-closed set.
Slightly changing the topological space of Example 2, we have the

following space.

Example 3. For a ∈ R, we define

T = {∅,R, (−∞, a), [a,∞)}.

In the topological space (R,T ), we choose c, d ∈ R such that −∞ <
c < a < d < ∞. Then (−∞, c) and (d,∞) are ωc-sets but their
union is not an ωc-set. Also (c,∞) and (−∞, d) are ω-sets but their
intersection is not an ω-set.

So it follows that the union of even finitely many ωc-sets may not
be an ωc-set and intersection of even finitely many ω-sets may not be
an ω-set.

Theorem 4. If {Aα | α ∈ ∆} is a collection of ωc-sets in X, then⋂
α∈∆Aα is an ωc-set in X.

Proof. For each α ∈ ∆, we have an open set Gα ̸= X such that
Aα ⊂ Cl(Gα). Then

⋂
α∈∆Aα ⊂

⋂
α∈∆Cl(Gα) ⊂ Cl(Gα) for any

α ∈ ∆. So
⋂

α∈∆Aα is an ωc-set.

Theorem 5. If {Aα | α ∈ ∆} is a collection of ω-sets in X, then⋃
α∈∆Aα is an ω-set in X.

Proof. Similar to that of Theorem 4.
Alternatively, {X − Aα | α ∈ ∆} is a collection of ωc-sets in X.

By Theorem 4,
⋂

α∈∆(X − Aα) = X −
⋃

α∈∆(Aα) is an ωc-set and so⋃
α∈∆Aα is an ω-set.

Theorem 6. A subset A of a topological space X with Cl(A) ̸= X is
an ωc-set if there exists a dense open set in X.

Proof. Straightforward.
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Theorem 7. If A is an ωc-set in X and B ⊂ A, then B is also an
ωc-set in X.

Proof. We have Cl(B) ⊂ Cl(A). A being an ωc-set, Cl(A) ̸= X which
means Cl(B) ̸= X. By the ωc-setness of A, we obtain an open set
G ̸= X such that A ⊂ Cl(G) which in turn implies that B ⊂ Cl(G).

Theorem 8. If A is an ωc-set in X and B is a subset of X such that
Cl(B) = Cl(A), then B is also an ωc-set.

Proof. As A is an ωc-set, Cl(A) ̸= X and hence Cl(B) ̸= X. Due to
the ωc-setness of A, we get an open set G ̸= X such that A ⊂ Cl(G).
So we have B ⊂ Cl(B) = Cl(A) ⊂ Cl(G).

Theorem 9. For any ωc-set A in X, there exists an open set G ̸= X
such that Cl(A)−G is a nowhere dense set in X.

Proof. By the ωc-setness of A, we obtain an open set G ̸= X such
that A ⊂ Cl(G). Since Cl(G) − G is a nowhere dense set in X and
Cl(A)−G ⊂ Cl(G)−G, Cl(A)−G is a nowhere dense set in X.

Corollary 10. For any ωc-set A in X, there exists an open set G ̸= X
such that A−G is a nowhere dense set in X.

Proof. By Theorem 9, we have an open set G ̸= X such that Cl(A)−G
is a nowhere dense set in X. Since A−G ⊂ Cl(A)−G, A−G is also
a nowhere dense set in X.

Theorem 11. If A is an ωc-set in X, then Cl(A) is also an ωc-set in
X provided Cl(A) ̸= X.

Proof. By the ωc-setness of A, we obtain an open set G ̸= X such that
A ⊂ Cl(G) which implies Cl(A) ⊂ Cl(G). So Cl(A) is also an ωc-set
if Cl(A) ̸= X.

Theorem 12. For an ωc-set A in X, the following assertions hold
good in X:

(1) [(i)]
(2) A ∩B is an ωc-set in X for each subset B of X.
(3) A∪G is also an ωc-set in X for some open set G in X provided

Cl(A ∪G) ̸= X.

Proof. (i) Since A is an ωc-set in X and A ∩ B ⊂ A, by Theorem 7,
A ∩B is an ωc-set in X for each subset B of X.

(ii) There exists an open set G ̸= X in X such that A ⊂ Cl(G).
So A ∪ G ⊂ Cl(G) which means that A ∪ G is an ωc-set in X if
Cl(A ∪G) ̸= X.
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Theorem 13. If A and B are semi-open and pre-open sets respectively
in X such that Cl(A ∪B) ̸= X, then A ∪B is an ωc-set in X.

Proof. For A, we have an open set G such that G ⊂ A ⊂ Cl(G)
which in turns imply that Cl(A) = Cl(G). As B is pre-open, B ⊂
Int(Cl(B)) ⊂ Cl(B). We put H = Int(Cl(B)). So Cl(H) = Cl(B).
Now Cl(G∪H) = Cl(G)∪Cl(H) = Cl(A)∪Cl(B) = Cl(A∪B) ̸= X
which also implies that G∪H ̸= X. Since A∪B ⊂ Cl(G)∪Cl(H) =
Cl(G ∪H), A ∪B is an ωc-set in X.

Dualizing results from Theorem 6 to Theorem 13, we have results
from Theorem 14 to Theorem 21. The proofs of these results are omit-
ted as they are similar to the proofs of corresponding results already
established.

Theorem 14. A subset A of a topological space X with Int(A) ̸= ∅
is an ω-set if there exists a closed set E in X such that Int(E) = ∅.

Theorem 15. If A is an ω-set in X and A ⊂ B, then B is also an
ω-set in X.

Theorem 16. If A is an ω-set in X and B is a subset of X such that
Int(B) = Int(A), then B is also an ω-set.

Theorem 17. For any ω-set A in X, there exists a closed set E ̸= ∅
such that E − Int(A) is a nowhere dense set in X.

Corollary 18. For any ω-set A in X, there exists a closed set E ̸= ∅
such that E − A is a nowhere dense set in X.

Theorem 19. If A is an ω-set in X, then Int(A) is also an ω-set in
X provided Int(A) ̸= ∅.

Theorem 20. For an ω-set A in X, the following assertions hold good
in X:

(1) [(i)]
(2) A ∪B is an ω-set in X for each subset B of X.
(3) A∩E is also an ω-set in X for some closed set E in X provided

Int(A ∩ E) ̸= ∅.

Theorem 21. If A and B are semi-closed and pre-closed sets respec-
tively in X such that Int(A ∩ B) ̸= ∅, then A ∩ B is an ω-set in
X.

In the following theorem, we write ClX(A) to denote the closure of
A ⊂ X with respect to the topological space X.
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Theorem 22. Let Y be an open subset of the topological space X. If
A is an ωc-set in Y , then A is an ωc-set in X also.

Proof. We have an open set G ̸= Y in Y such that A ⊂ ClY (G). We
see that ClY (G) = Y ∩ ClX(G) ⊂ ClX(G). So A ⊂ ClX(G). Y being
open in X, G ̸= X also open in X. Due to the ωc-setness of A in Y ,
ClY (A) ̸= Y . If ClX(A) = X, then we get ClY (A) = Y ∩ClX(A) = Y ,
a contradiction. So ClX(A) ̸= X.

3.
∧

ωc and
∨

ω operations

For a subset A of a topological space X, we define the following two
operations:

(1) [i.]

(2)
∧

ωc(A) =


⋂
{W | A ⊂ W,W is an ωc-set}, if there exists an ωc-set

W such that A ⊂ W ;

∅, otherwise.

(3)
∨

ω(A) =


⋃
{W | W ⊂ A,W is an ω-set}, if there exists an ω-set

W such that W ⊂ A;

X, otherwise.

Since the complement of an ωc-set is an ω-set, we conclude that
X −

∧
ωc(A) =

∨
ω(X − A). For any subset A of X, we also have∨

ω(A) ⊂ A ⊂
∧

ωc(A).
By Theorem 4 and Theorem 5, it follows respectively that

∧
ωc(A)

is an ωc-set and
∨

ω(A) is an ω-set in X.

Definition 23. A topological space X is said to be ω-extremally dis-
connected if

∧
ωc(A) is an ω-set for each ω-set A in X.

Now we give following two lemmas without proofs as they are easy
to follow.

Lemma 24. If A is any subset of X and W is an ω-set in X with
A ∩W = ∅, then

∧
ωc(A) ∩W = ∅.

Lemma 25. If A is a subset of X and W is an ωc-set such that
A ⊂ W , then

∧
ωc(A) ⊂ W .

Theorem 26. The following properties are equivalent:

(1) [(i)]
(2) X is ω-extremally disconnected.
(3) For any two ω-sets A and B with A∩B = ∅, there exist ωc-sets

U, V such that A ⊂ U,B ⊂ V and U ∩ V = ∅.
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(4) If A and B are two disjoint ω-sets, then
∧

ωc(A)∩
∧

ωc(B) = ∅.

Proof. (i)⇒(ii): Let A and B be two ω-sets such that A ∩ B = ∅. By
Lemma 24,

∧
ωc(A) ∩ B = ∅. We put U =

∧
ωc(A) and V = X − U .

Obviously, U ∩ V = ∅ and A ⊂ U . We see that U is an ωc-set.
By the ω-extremal disconnectedness of X, V also is an ωc-set. From∧

ωc(A) ∩B = ∅, we get B ⊂ X − U = V .
(ii)⇒(iii): Let A and B be two ω-sets such that A∩B = ∅. By (ii),

there exists two disjoint ωc-sets U, V such that A ⊂ U and B ⊂ V .
Since U, V are ωc-sets, we have

∧
ωc(A) ⊂ U and

∧
ωc(B) ⊂ V by

Lemma 25. As U ∩ V = ∅, we see that
∧

ωc(A) ∩
∧

ωc(B) = ∅.
(iii)⇒(i): Let W be an ω-set in X. Then (X −

∧
ωc(W )) is an

ω-set with W ∩ (X −
∧

ωc(W )) = ∅. By (iii),
∧

ωc(W ) ∩
∧

ωc(X −∧
ωc(W )) = ∅ which implies that

∧
ωc(W ) ∩ (X −

∨
ω(

∧
ωc(W ))) = ∅.

Since
∧

ωc(W )∪(X−
∧

ωc(W )) = X and
∧

ωc(W ) ⊂
∨

ω(
∧

ωc(W )), we
also have

∧
ωc(W ) ∪ (X −

∨
ω(

∧
ωc(W ))) = X. Now

∧
ωc(W ) ∩ (X −∨

ω(
∧

ωc(W ))) = ∅ and
∧

ωc(W )∪ (X −
∨

ω(
∧

ωc(W ))) = X together
imply that

∧
ωc(W ) = X − (X −

∨
ω(

∧
ωc(W ))) =

∨
ω(

∧
ωc(W )).

Hence
∧

ωc(W ) is an ω-set.

Theorem 27. A topological space X is ω-extremally disconnected if
and only if for each ω-set W and each ωc-set V with W ⊂ V , there
exist an ωc-set H and an ω-set G such that W ⊂ H ⊂ G ⊂ V .

Proof. Firstly, suppose that X is ω-extremally disconnected. Let W
be an ω-set and V be an ωc-set such that W ⊂ V . We see that X−V
is an ω-set and W ∩ (X − V ) = ∅. Then by Theorem 26,

∧
ωc(W ) ∩∧

ωc(X−V ) = ∅ which implies
∧

ωc(W ) ⊂ X−
∧

ωc(X−V ) =
∨

ω(V ).
Putting H =

∧
ωc(W ) and G =

∨
ω(V ), we obtain W ⊂ H ⊂ G ⊂ V .

Conversely, let V and W be ω-sets in X such that V ∩W = ∅. Then
we have W ⊂ X − V and X − V is an ωc-set. So we obtain an ωc-set
H and an ω-set G such that W ⊂ H ⊂ G ⊂ X − V . Since H is an
ωc-set and W ⊂ H, we have

∧
ωc(W ) ⊂ H by Lemma 25. We also see

that X − G is an ωc-set and V ⊂ X − G. So by Lemma 25, we get∧
ωc(V ) ⊂ X −G. Now H ⊂ G implies that H ∩ (X −G) = ∅ which

implies
∧

ωc(W ) ∩
∧

ωc(V ) = ∅. Hence by Theorem 26, it follows that
X is ω-extremally disconnected.

Definition 28. Let X be a topological space and R be the real line
with usual topology. A function f : X → R is said to be ω-upper
semi-continuous (resp. ω-lower semi-continuous) if for each a ∈ R,
{x ∈ X : f(x) < a} (resp. {x ∈ X : f(x) > a} is an ω-set in X.
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Theorem 29. Suppose that X is an ω-extremally disconnected topo-
logical space and V,W are two ω-sets such that V ∩ W = ∅. Then
there exist an ω-upper semi-continuous and ω-lower semi-continuous
function f : X → R such that 0 ≤ f(x) ≤ 1 for all x ∈ X with
f(V ) = {0} and f(W ) = {1}.

Proof. Given that V ∩ W = ∅. It means that V ⊂ X − W . By
Theorem 27, there exist an ωc-set H(1

2
) and an ω-set G(1

2
) such that

V ⊂ H(1
2
) ⊂ G(1

2
) ⊂ X −W . Since H(1

2
) is an ωc-set and V ⊂ H(1

2
),

we obtain an ωc-set H(1
4
) and an ω-set G(1

4
) such that V ⊂ H(1

4
) ⊂

G(1
4
) ⊂ H(1

2
). Similarly, for G(1

2
) ⊂ X − W , we obtain an ωc-set

H(3
4
) and an ω-set G(3

4
) such that G(1

2
) ⊂ H(3

4
) ⊂ G(3

4
) ⊂ X − W .

Combining these two results, we get V ⊂ H(1
4
) ⊂ G(1

4
) ⊂ H(1

2
) ⊂

G(1
2
) ⊂ H(3

4
) ⊂ G(3

4
) ⊂ X −W .

Continuing the process, we obtain ωc-sets H(m
2n
) and ω-sets G(m

2n
)

(m = 1, 2, 3, . . . , 2n − 1) such that V ⊂ H( 1
2n
) ⊂ G( 1

2n
) · · ·G(m−1

2n−1 ) ⊂
H( m

2n−1 ) ⊂ G( m
2n−1 ) · · ·G(2

n−1−1
2n−1 ) ⊂ X −W . So we have ωc-sets H(m

2n
)

and ω-sets G(m
2n
) (m = 1, 2, 3, . . . , 2n−1) such that V ⊂ H(m

2n
) ⊂

G(m
2n
) ⊂ X −W .

We put t = m
2n

where (m = 1, 2, 3, . . . , 2n − 1). Then for t = t1, t2
with t1 < t2, there exist ωc-sets Ht1 , Ht2 and ω-sets Gt1 , Gt2 such that
V ⊂ Ht1 ⊂ Gt1 ⊂ Ht2 ⊂ Gt2 ⊂ X −W .

We define a mapping f : X → R such that

f(x) =

{
0, if x ∈ Gt for some t;

sup{t : t /∈ Gt}, otherwise.

It is easy to follow that 0 ≤ f(x) ≤ 1 for all x ∈ X and f(V ) =
{0}, f(W ) = {1}.
We may now have the following two cases.
Case i: For 0 < a < 1, let x ∈ f−1([0, a)) which implies 0 ≤ f(x) <

a. Hence there exists a dyadic rational number t < a of the form t = m
2n

(m = 1, 2, 3, . . . , 2n−1) such that x ∈ Gt. So f−1([0, a)) ⊂
⋃

t<aGt. If
x ∈

⋃
t<a Gt, then x ∈ Gt0 for some t0 < a. So x ∈ f−1([0, a))

which implies
⋃

t<a Gt ⊂ f−1([0, a)). Thus we conclude that
⋃

t<aGt =
f−1([0, a)). Since

⋃
t<aGt is an ω-set, the mapping f is ω-upper semi-

continuous.
Case ii: For 0 < a < 1, let x ∈ f−1((a, 1]) which implies a < f(x) ≤

1. Hence there exists a dyadic rational number t > a of the form
t = m

2n
(m = 1, 2, 3, . . . , 2n−1) such that x /∈ Ht where Ht is an ωc-set.

So f−1((a, 1]) ⊂
⋃

t>a(X−Ht). If x ∈
⋃

t>a(X−Ht), then x ∈ X−Ht
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for some t > a which in turn implies that x /∈ Gt0 for some t0 with
t > t0 > a. So f(x) > a which implies

⋃
t>a Gt ⊂ f−1((0, 1]). Thus we

conclude that
⋃

t>a(X −Ht) = f−1((a, 1]). Since
⋃

t>a(X −Ht) is an
ω-set, the mapping f is ω-lower semi-continuous.
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