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Abstract. One of the class of non-Euclidean geometries for a finite
dimensions is Minkowski geometry. As well as known, only difference
between Euclidean geometry and Minkowski geometry is the used dis-
tance function. For this reason, its unit ball of Minkowski geometry is
a closed, certain symmetric, convex set which is different from sphere
in Euclidean geometry. The truncated tetrakis hexahedron and the
truncated triakis octahedron are convex solids in the class Truncated
Catalan solids. The aim of this work is to develop two new Minkowski
geometries by dTTH−metric and dTTO−metric which unit spheres
are truncated tetrakis hexahedron and truncated triakis octahedron,
respectively and to find their isometry groups. After we derive these
metrics we also give some properties of them. Furthermore, we give
that the group of isometries of the 3−dimensional analytical space
furnished by dTTH−metric or dTTO−metric is the semi-direct product
of octahedral group Oh and translation group T(3).
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1. Introduction

Polyhedra are always in nature and art. Observing galaxies, viruses,
molecules or crystals it has seen that they have polyhedra-like struc-
tures. Designers and architects uses polyheral shapes for centuries
as it has seen by archaeological discoveries and modern architectural
works. The theory with respect to convex sets which has rich applica-
tions is one of the oldest, most interesting field of modern matematics.
Furthermore, with introducing and developing primarily polyhedra,
investigations with respect to geometric properties of convex sets was
started. Although it is so ancient it is not that easy to describe what a
polyhedron is. A polyhedron would simply be defined as a finite, con-
nected set of planar polygons. The polygons are called faces, and their
sides edges. For more detail see [4]. As stated in [3] there are many
different ways to obtain a polyhedron. Polyhedra, like polygons, may
be convex or non-convex. A polyhedron which is especially convex is
one of the most particular solid in Rn. A polyhedron which has as its
faces just one type of regular polygon, and all its vertices are congurent
is named regular. As well known the number of regular convex poly-
hedra is only five. Also, these structures are called Platonic bodies for
well-known traditional reasons. For more detail see [3]. Archimedean
solids which are called semi-regular convex polyhedra have their faces
consist of two or more different types of regular polygons meeting in
identical vertices, and the total number of their are thirteen. Also dual
polyhedra of the Archimedean solids are called Catalan solids, natu-
rally, they are all convex and exactly thirteen just like Archimedean
solids. But faces of the Catalan solids are not regular polygons on the
contrary Platonic and Archimedean solids.

One of the class of non-Euclidean geometries for a finite dimensions
is Minkowski geometry. As well as known, only difference between
Euclidean geometry and Minkowski geometry is the distance function
used. For this reason, unit ball of a Minkowski geometry is a cer-
tain symmetric, closed, convex set which is different from the sphere
in Euclidean geometry. Except for the distance function, the linear
structure of the Minkowski geometry is the same as the Euclidean
case. That is, the planes, lines and points are the same, and also the
same methodology with Euclidean case for meausure of angles is used.
(See [1] and [2])

By the studies on metric space geometry it has seen that metrics
and convex polyhedra are closely related. Unit spheres of Minkowski
geometries which are obtained by covering 3-dimensional analytical
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space with maximum and taxicab metrics are cube and octahedron,
respectively. These polyhedra clearly are two of Platonic Solids, more-
over unit sphere of 3-dimensional analytical space covered with Chi-
nese checkers metric is a deltoidal icositetrahedron which is a Catalan
Solid.
The taxicab (Manhattan) and the maximum (Chebyshev) norms are
defined as

∥(x, y, z)∥1 = |x|+ |y|+ |z|
and

∥(x, y, z)∥∞ = max {|x| , |y| , |z|} ,
respectively and they are special cases of lp-norm;

∥(x, y, z)∥p = (|x|p + |y|p + |z|p)1/p ,

where (x, y, z) ∈ R3 and CC-metric is defined as

dCC (P1, P2) = dL (P1, P2) +
(√

2− 1
)
dS (P1, P2) ,

where

dL (P1, P2) = max {|x1 − x2| , |y1 − y2| , |z1 − z2|} ,

dS (P1, P2) =
min {|x1 − x2|+ |y1 − y2| , |x1 − x2|+ |z1 − z2| , |y1 − y2|+ |z1 − z2|} ,
P1 = (x1, y1, z1) and P2 = (x2, y2, z2). So convex polyhedra are associ-
ated with some metrics. (See [6], [7], [8], [9], [10], [11], [12], [13], [15],
[16], [17], [18], [19], [20], [21], [22]). By these motivations, firstly we
present two novel metrics, and show that the spheres of Minkowski ge-
ometries constituted with these metrics are truncated tetrakis hexahe-
dron and truncated triakis octahedron, after that we give some useful
properties of these novel metrics. Furthermore, we search the answer
of the question that ”What is the isometry group of 3-dimensional
analytical space furnished by dTTH−metric or dTTO−metric?”. We
give the answer to above question as ”the relevant isometry group is
semi-direct product of octahedral group and translation group.”

2. Truncated Tetrakis Hexahedron Metric and Some
Properties

As stated in [5] and [14] there are various methods to obtain a
new polyhedron. Truncation is one of the methods that comes to the
mind first. Truncated tetrakis hexahedron is a convex solid obtained
by truncating tetrakis hexahedron which is a Catalan solid, with 24
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mirror-symmetric pentagonal and 8 regular hexagonal faces, 54 ver-
tices and 84 edges.

Figure 1: Tetrakis Hexahedron and Truncated Tetrakis Hexahedron

First we give some notions that will be used in the descriptions of
distance functions we define. For P1=(x1, y1, z1), P2=(x2, y2, z2) ∈ R3,
M and S denotes

∥(x1 − x2, y1 − y2, z1 − z2)∥∞ and ∥(x1 − x2, y1 − y2, z1 − z2)∥1 .

Moreover orientations X − Y −Z −X and Z − Y −X −Z are called
positive (+) direction and negative (-) direction, respectively. M+

and M− expresses the next term in the respective direction according
to M . For example, if M = |x1 − x2|, then M+ = |y1 − y2| and
M− = |z1 − z2|. The dTTH− metric which unit sphere is the truncated
tetrakis hexahedron is defined as following:

Definition 1. The distance function dTTH : R3×R3 −→ [0,∞) which
is defined by

dTTH (P1, P2) = max

{
9−

√
6

10
S,M +

1

2
M+,M +

1

2
M−

}
is called the truncated tetrakis hexahedron distance between P1 and P2,
where P1 = (x1, y1, z1), P2 = (x2, y2, z2) ∈ R3.

There are two separate paths from P1 to P2 with the same length
with respect to the truncated tetrakis hexahedron distance. These
paths are
i) consisting three line segments which each one is parallel to a

coordinate axis,
ii) consisting two line segments one of which is parallel to a coor-

dinate axis and the other line segment makes arctan
(
5
4

)
angle with

another coordinate axis.
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Thus the truncated tetrakis hexahedron distance between P1

and P2 is for (i) 9−
√
6

10
times of the sum of Euclidean lengths of

the three line segments or for (ii) the sum of Euclidean lengths
of the two line segments. Figure 2 illustrates the truncated
tetrakis hexahedron paths from P1 to P2 if maximum value is
9−

√
6

10
(|x1 − x2|+ |y1 − y2|+ |z1 − z2|) or |x1 − x2|+ 1

2
|y1 − y2|.

Figure 2: Some TTH way from P1 to P2

Lemma 2. Let P1 ̸= P2, P1 = (x1, y1, z1), P2 =
(x2, y2, z2) ∈ R3, M=∥(x1 − x2, y1 − y2, z1 − z2)∥∞ and
S=∥(x1 − x2, y1 − y2, z1 − z2)∥1. Then

dTTH (P1, P2) ≥ 9−
√
6

10
S

dTTH (P1, P2) ≥M + 1
2
M+

dTTH (P1, P2) ≥M + 1
2
M−

Proof. Proof would be obtained clearly from the properties of maxi-
mum function. □

Theorem 3. The distance function dTTH is a metric. Furthermore
unit sphere of dTTH is a truncated tetrakis hexahedron in R3.

Proof. Let dTTH : R3 × R3 −→ [0,∞) denotes the truncated tetrakis
hexahedron distance function and P1 = (x1, y1, z1), P2 = (x2, y2, z2)
and P3 = (x3, y3, z3) be different points in R3. To show that dTTH is a
metric in R3 it would be seen that the metric axioms satisfies for all
P1, P2 and P3 ∈ R3.
Since absolute values never have negative value dTTH (P1, P2) ≥ 0.

If dTTH (P1, P2) = 0 then

dTTH (P1, P2) = max

{
9−

√
6

10
S12,M12 +

1

2
M+

12,M12 +
1

2
M−

12

}
= 0,

where

M12 = ∥(x1 − x2, y1 − y2, z1 − z2)∥∞ and S12 = ∥(x1 − x2, y1 − y2, z1 − z2)∥1
Thus 9−

√
6

10
S12 = 0,M12+

1
2
M+

12 = 0 andM12+
1
2
M−

12 = 0. So obviously
it is obtained that x1 = x2, y1 = y2, z1 = z2. That is, P1 = P2. Thus
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the first of the metric axioms; dTTH (P1, P2) ≥ 0 and dTTH (P1, P2) = 0
if and only if P1 = P2, holds.
Since |x− y| = |y − x| for all x, y ∈ R, it is clear that

dTTH (P1, P2) = dTTH (P2, P1), that is dTTH is symmetric.
M13 and M23 denotes

∥(x1 − x3, y1 − y3, z1 − z3)∥∞ and ∥(x2 − x3, y2 − y3, z2 − z3)∥∞ ,

respectively and S13 and S23 denotes

∥(x1 − x3, y1 − y3, z1 − z3)∥1 and ∥((x2 − x3, y2 − y3, z2 − z3)∥1 ,

respectively.

dTTH (P1, P3) = max
{

9−
√
6

10
S13,M13 +

1
2
M+

13,M13 +
1
2
M−

13

}
≤ max

{
9−

√
6

10
S12 + S23, (M12 +M23) +

1
2

(
M+

12 +M+
23

)
,

(M12 + U23) +
1
2

(
M−

12 +M−
23

) }
= I

Thus by Lemma2, it is obtained that dTTH (P1, P2)+dTTH (P2, P3) ≥ I.
Thus triangle inequality dTTH (P1, P2)+dTTH (P2, P3) ≥ dTTH (P1, P3)
holds. Consequently, truncated tetrakis hexahedron distance is a met-
ric in R3.

Eventually, the unit sphere of the dTTH−metric is

STTH =

{
(x, y, z) : max

{
9−

√
6

10
S,M +

1

2
M+,M +

1

2
M−

}
= 1

}
.

Thus the graph of STTH is a truncated tetrakis hexahedron as in the
Figure 3:

Figure 3: The STTH : Truncated tetrakis hexahedron

□

Corollary 4. Let (x0, y0, z0) and r be center and radius of a sphere
in the trunceted tetrakis hexahedron space. Then the equation of the
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sphere is

max

{
9−

√
6

10
S0,M0 +

1

2
M+

0 ,M0 +
1

2
M−

0

}
= r.

This sphere is a polyhedron with 32 faces, 54 vertices and and
84 edges, where M0 = ∥(x− x0, y − y0, z − z0)∥∞ and S0 =
∥(x− x0, y − y0, z − z0)∥1. Coordinates of the vertices are transla-
tion to (x0, y0, z0) all circular shift of the three axis components and
all possible +/− sign changes of each axis component of (0, 0, C3r),

(C0r, C0r, C2r) and (C1r, C4r, C1r), where C1 = 1+
√
6

2
, C2 = 3+4

√
6

6
,

C3 =
3(1+

√
6)

4
and C4 =

1
2
.

Lemma 5. Denote by l the Euclidean line passing through P1 =
(x1, y1, z1) and P2 = (x2, y2, z2) in R3 and by dE the Euclidean metric.
Let l has the direction vector (p, q, r). Then

dTTH (P1, P2) = µ (P1P2) .dE (P1, P2)

where

µ (P1P2) =
max

{
9−

√
6

10
Sd,Md +

1
2
M+

d ,Md +
1
2
M−

d

}
√
p2 + q2 + r2

,

Md is the ∥(p, q, r)∥∞ and Sd is the ∥(p, q, r)∥1.

Proof. From equation of l one can get that x1−x2 = λp, y1−y2 = λq,
z1 − z2 = λr, λ ∈ R. Therefore,

dTTH (P1, P2) = |λ|max

{
9−

√
6

10
Sd,Md +

1

2
M+

d ,Md +
1

2
M−

d

}
whereMd is the ∥(p, q, r)∥∞ and Sd is the ∥(p, q, r)∥1, and dE (P1, P2) =

|λ|
√
p2 + q2 + r2 . By proportioning the resulting equations the re-

quired consequence is obtained. □

The next corollaries are direct consequences of the lemma 5:

Corollary 6. If P,Q and X are any collinear points in 3−dimensional
analytical space, then dE (P,X) = dE (Q,X) iff dTTH (P,X) =
dTTH (Q,X).

Corollary 7. If P,Q and X are any three collinear points in
3−dimensional analytical space, then

dTTH (X,P ) /dTTH (X,Q) = dE (X,P ) /dE (X,Q)
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Namely, the ratios of the dTTH and Euclidean distances along a line
are the same.

3. Truncated Triakis Octahedron Metric and Some
Properties

Truncated triakis octahedron is a Truncated Catalan solid obtained
by trunction operation from triakis octahedron. The truncated tri-
akis octahedron has 24 mirror-symmetric pentagonal and 6 regular
octagonal faces, 56 vertices and 84 edges.

Figure 4: Triakis octahedron, Truncated triakis octahedron

The concepts M , M+ and M− are in the same meaning as defined
in the previous section. The metric for which the unit sphere is the
truncated triakis octahedron is defined as follows:

Definition 8. The distance function dTTO : R3×R3 −→ [0,∞) which
is defined by

dTTO (P1, P2) = max
{
M,aM + b

(
M− +M+

)}
where a =

√
2 +

√
2
(

11
√
2−15
17

)
+ 3

√
2−1
17

and b =
√

2 +
√
2
(

7−4
√
2

17

)
+

5+2
√
2

17
is called the truncated triakis octahedron distance between P1

and P2 that P1 = (x1, y1, z1) and P2 = (x2, y2, z2) are two points in R3.

According to truncated triakis octahedron distance, there are two
different paths from P1 to P2 with the same length. These paths are
i) a line segment which is parallel to a coordinate axis,
ii) consisting of three line segments one of which is parallel to a

coordinate axis and the other two line segments makes π
4
angle with

the according coordinate axes.
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Thus truncated tetrakis hexahedron distance between P1 and
P2 is for (i) Euclidean length of a line segment or for (ii)√

2 +
√
2
(

11
√
2−15
17

)
+ 3

√
2−1
17

times of sum of Euclidean lengths of rel-

evant three line segments. Figure 5 illustrates truncated triakis octa-
hedron path from P1 to P2 in case of maximum value is |y1 − y2| or
a |y1 − y2| + b (|x1 − x2|+ |z1 − z2|) where a =

√
2 +

√
2
(

11
√
2−15
17

)
+

3
√
2−1
17

and b =
√
2 +

√
2
(

7−4
√
2

17

)
+ 5+2

√
2

17
.

Figure 5: Some TTO ways from P1 to P2

Lemma 9. Let P1 ̸= P2, P1 = (x1, y1, z1), P2 = (x2, y2, z2) ∈ R3,

M=∥(x1 − x2, y1 − y2, z1 − z2)∥∞, a =
√
2 +

√
2
(

11
√
2−15
17

)
+ 3

√
2−1
17

,

and b =
√

2 +
√
2
(

7−4
√
2

17

)
+ 5+2

√
2

17
. Then

dTTO (P1, P2) ≥ aM + b (M− +M+)
dTTO (P1, P2) ≥M

Proof. Proof would be obtained clearly from the properties of maxi-
mum function. □

Theorem 10. The distance function dTTO is a metric. Furthermore
according to dTTO, the unit sphere is a truncated triakis octahedron in
R3.

Proof. The proof would be done by similar way used for dTTH . □

Finally, the set of points for which the truncated triakis octahe-
dron distance from the origin is 1 (the unit sphere with respect to the
truncated triakis octahedron distance) is

STTO =
{
(x, y, z) : max

{
M,aM + b

(
M− +M+

)}
= 1

}
where a =

√
2 +

√
2
(

11
√
2−15
17

)
+ 3

√
2−1
17

and b =
√

2 +
√
2
(

7−4
√
2

17

)
+

5+2
√
2

17
. Thus the graph of STTO, the unit sphere in terms of dTTO is as

in the Figure 6:
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Figure 6: The STTO: Truncated triakis octahedron

A sphere of the truncated triakis octahedron space with center
(x0, y0, z0) and radius r is

max
{
M0, aM0 + b

(
M−

0 +M+
0

)}
= r

which is a polyhedron with 30 faces, 56 vertices and 84 edges, where
M0 is the ∥(|x− x0| , |y − y0| , |z − z0|)∥∞. Coordinates of the vertices
are translation to (x0, y0, z0) all circular shift of the three axis com-
ponents and all possible +/− sign changes of each axis component of

(C1r, 0, C3r), (C0r, C0r, C3r) and (C2r, C2r, C2r), where C0 =

√
2+

√
2

2
,

C1 =

√
2(2+

√
2)

2
, C2 =

2−
√
2+2

√
2(2−

√
2)

2
and C3 =

√
2+

√
2(2+

√
2)

2
.

Lemma 11. Denote by l the Euclidean line passing through P1 =
(x1, y1, z1) and P2 = (x2, y2, z2) in R3 and by dE the Euclidean metric.
If direction vector of l is (p, q, r), then

dTTO (P1, P2) = µ (P1P2) .dE (P1, P2)

where

µ (P1P2) =
max

{
Md, aMd + b

(
M−

d +M+
d

)}√
p2 + q2 + r2

,

and Md is the ∥(p, q, r)∥∞.

Proof. From equation of l one can get that x1−x2 = λp, y1−y2 = λq,
z1 − z2 = λr, λ ∈ R. Thus,

dTTO (P1, P2) = |λ|max
{
Md, aMd + b

(
M−

d +M+
d

)}
,

whereMd is the ∥(p, q, r)∥∞ and dE (P1, P2) = |λ|
√
p2 + q2 + r2 which

implies the required result. □

The lemma 11 states that dTTO−distance along a line is a particular
positive constant multiple of Euclidean distance along the same line,
thus the next corollaries are directly consequences of this statement:
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Corollary 12. If P,Q and X are any collinear points in
3−dimensonal analytical space, then dE (P,X) = dE (Q,X) iff
dTTO (P,X) = dTTO (Q,X).

Corollary 13. If P,Q and X are any three collinear points in
3−dimensonal analytical space, then

dTTO (X,P ) /dTTO (X,Q) = dE (X,P ) /dE (X,Q) .

Namely, the ratios of the dTTO and Euclidean distances along a line
are the same.

4. Isometry Groups of Truncated Tetrakis Hexahedron
and Truncated Triakis Octahedron

Geometric investigations can be classified into three main methods
as metric, group approach and synthetic. The method of group ap-
proach is interested in isometry groups and also convex sets play a
serious role in dedecting of the group of isometries. There are lots of
variety studies with respect to group of isometries of a space (See [10],
[11] and [16]). In [2] the author gives the following theorem:

Theorem 14. If the unit ball B of (V, ∥∥) does not intersect a two-
plane in an ellipse, then the group of isometries of (V, ∥∥) is isomorphic
to the semi-direct product of the translation group T (3) of R3 with a
finite subgroup of the group of linear transformations with determinant
±1.

By Theorem 14, there only left to determine what the pertinent
subgroup is.

To find that the isometries of the 3−dimensional analytical space
furnished by dTTH−metric or dTTO−metric is the semi-direct product
of Oh and T (3) we first give the following definition. In the rest of the
article we take ∆1 = TTH and ∆2 = TTO. That is, ∆i ∈ {∆1,∆2},
i = 1, 2.

Definition 15. Let P , Q be two points in R3
∆i
, i = 1, 2. The least

distance set of the points Q, P is defined as follows:

{X : d∆i
(X,P ) + d∆i

(X,Q) = d∆i
(Q,P ) , i = 1, 2}

and denoted by [QP ]∆i
, i = 1, 2.

[PQ]TTH stands for a hexagonal dipyramid in R3
TTH and [PQ]TTO

stands for a octagonal dipyramid in R3
TTO as shown in Figure(7a) and

Figure(7b).
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Figure 7(a) Figure 7(b)

Proposition 16. Let ψ : R3
∆i

−→ R3
∆i
, be an isometry and let [PQ]∆i

be the least distance set of the points Q, P where i = 1, 2. Then
ψ
(
[PQ]∆i

)
= [ψ (P )ψ (Q)]∆i

, i = 1, 2.

Proof. Let Y ∈ ψ
(
[PQ]∆i

)
, i = 1, 2. Then, there exists

X ∈ [PQ]∆i
such that Y = ψ (X). d∆i

(P,X) + d∆i
(Q,X) =

d∆i
(P,Q), i = 1, 2, since X ∈ [PQ]∆i

. Thus d∆i
(ψ (P ) , ψ (X)) +

d∆i
(ψ (Q) , ψ (X)) = d∆i

(ψ (P ) , ψ (Q)), which means Y = ψ(X) ∈
[ψ (P )ψ (Q)]∆i

, where i = 1, 2. By similar way one can easily prove

that [ψ (P )ψ (Q)]∆i
⊂ ψ

(
[PQ]∆i

)
, i = 1, 2. So ψ

(
[PQ]∆i

)
=

[ψ (P )ψ (Q)]∆i
, i = 1, 2, is obtained. □

Corollary 17. Let ψ : R3
∆i

−→ R3
∆i
, be an isometry and let [PQ]∆i

be the least distance set of points Q, P where i = 1, 2. Then ψ leaves
invariant the lengths of the edges of [PQ]∆i

, i = 1, 2 and maps vertices
to vertices.

Proposition 18. Let ψ : R3
∆i

−→ R3
∆i

be an isometry such that
ψ (O) = O, where i = 1, 2. Then ψ ∈ Oh.

Proof. There are two possibilities for ∆i, i = 1, 2. For ∆1 =

TTH, C0 = 6+4
√
6

45
, C1 = 2

3
, C2 = 42−2

√
6

45
, C3 = 2

√
6−2
15

and
let P1 = (C0, C0, C2), P2 = (C2, C0, C0), P3 = (C0, C2, C0),
P4 = (C1, C3, C1), P5 = (C1, C1, C3), P6 = (C3, C1, C1) and R =(

36+4
√
6

45
, 36+4

√
6

45
, 36+4

√
6

45

)
be seven points in R3

TTH . Consider [OR]TTH

which is the hexagonal dipyramid (Figure 8(a)).
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Figure 8(a) Figure 8(b)

Morever P1, P2, P3, P4, P5, P6 lie on unit sphere centered at ori-
gin and minimum distance set [OR]TTH . Furthermore these points Pi

for i = 1, ..., 6 are the vertices of a truncated tetrakis hexahedron’s
hexagonal face. ψ maps points Pi (i = 1, 2, ..., 6) to the vertices of a
truncated tetrakis hexahedron by Corollary 17. Since ψ preserves the
lenghts of the edges and truncated tetrakis hexahedron has 8 hexag-
onal faces and for each face there are 6 possibilities to the points Pi

(i = 1, 2, ..., 6) which they can map to, the total number of possibilities
is 48. By dealing with each possibility it would seem that all of the
elements of pertinent subgroup are found.

If ∆2 = TTO, C0 =
√
2 +

√
2
(√

2
2
− 1

)
+ 1, C1 =√

2 +
√
2
(
1−

√
2
)
+

√
2, C2 =

√
2 +

√
2
(
2
√
2− 3

)
+ 1, C3 = 1

and let P1 = (C1, 0, C3), P2 = (−C1, 0, C3), P3 = (0, C1, C3),
P4 = (0,−C1, C3), P5 = (C0, C0, C3), P6 = (C0,−C0, C3), P7 =
(−C0, C0, C3), P8 = (−C0,−C0, C3) and R = (0, 0, 2) be nine points
in R3

TTO. Consider [OR]TTO which is the octagonal dipyramid (Figure
8(b)).Also points P1, P2, P3, P4, P5, P6, P7, P8 lie on least distance set
[OR]TTO and the unit sphere centered at origin. Furthermore points
Pi (i = 1, 2, ..., 8) are the vertices of a truncated triakis octahedron’s
octagonal face. ψ maps points Pi (i = 1, 2, ..., 8) to the vertices of a
truncated triakis octahedron by Corollary 17. Since ψ preserves the
lenghts of the edges and truncated triakis octahedron has 6 octagonal
faces and for each face there are 8 possibilities to the points which
they can map to, the total number of possibilities is 48. By dealing
with each possibility it would seem that all of the elements of pertinent
subgroup are found. □
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Theorem 19. Let ψ : R3
∆i

−→ R3
∆i
, i = 1, 2, be an isometry. Then

there exists a unique TA ∈ T (3) and ϕ ∈ Oh where ϕ = TA ◦ ψ.

Proof. Let ψ maps O to A such that A = (a1, a2, a3) . Also ϕ is defined
suct that ϕ = T−A ◦ψ. furthermore it is known that ψ (O) = O and ϕ
is an isometry. Thus, ψ ∈ Oh and ϕ = TA ◦ ϕ by Proposition 18. The
uniqueness of TA is obvious. □
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