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APPLICATIONS OF fπg-CLOSED SETS IN FUZZY
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Abstract.In [8], fuzzy π-closed set is introduced. Using this concept
as a basic tool, in [9] the notion of fuzzy π generalized closed set (fπg-
closed set, for short) is introduced and studied. Afterwards, a new
type of generalized version of fuzzy closure operator, viz., fπg-closure
operator is introduced which is an idempotent operator. Next we
introduce a new type of generalized version of fuzzy open and closed-
like functions, viz., fπg-open and fπg-closed functions and charac-
terize these two functions by using fπg-closure operator. Next we
introduce fπg-continuous function and fπg-irresolute function. Next
we introduce two new types of separation axioms, viz., fπg-regularity,
fπg-normality and a new type of compactness, viz., fπg-compactness.
It is shown that under fπg-irresolute function , fπg-regularity, fπg-
normality and fπg-compactness remain invariant. Lastly, a new of
fuzzy T2-space, viz., fπg-T2 space is introduced and it is shown that
inverse image of fuzzy T2-space [20] (resp., fπg-T2 space) under fπg-
continuous (resp., fπg-irresolute) function is fπg-T2 space.
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1. Introduction

In [2, 3], generalized version of fuzzy closed set is introduced. Af-
terwards, several types of generalized version of fuzzy closed sets
are introduced and studied. In this context, we have to mention
[3, 5, 6, 7, 8, 9, 10, 11]. In this paper we study fuzzy πg-closed
set and several properties of this set are established and the mu-
tual relationships of this newly defined set with the sets defined in
[3, 5, 6, 7, 8, 9, 10, 11] are established. With the help of fπ-
closure operator a new type of neighbourhood structure in a fuzzy
topological space is introduced and studied. Here we introduce fπg-
continuous function, the collection of which is strictly larger than that
of fuzzy continuous function [14], fg-continuous function [3], fgs∗-
continuous function [5], fs∗g-continuous function [6], but weaker than
frwg-continuous function [9]. Also it is shown that fπg-continuity is
independent concept of fgs-continuous function [3], fsg-continuous
function [3], fgα-continuous function [3], fαg-continuous function
[3], fgβ-continuous function [8], fβg-continuous function [8], fgp-
continuous function [3], fpg-continuous function [3], fgγ-continuous
function [10], fgγ∗-continuous function [11], fswg-continuous function
[9], fmg-continuous function [9], fwg-continuous function [9].

2. Preliminaries

Throughout this paper (X, τ) or simply by X we shall mean a fuzzy
topological space (fts, for short) in the sense of Chang [14]. In [26],
L.A. Zadeh introduced fuzzy set as follows: A fuzzy set A is a function
from a non-empty set X into the closed interval I = [0, 1], i.e., A ∈ IX .
The support [26] of a fuzzy set A, denoted by suppA and is defined
by suppA = {x ∈ X : A(x) ̸= 0}. The fuzzy set with the singleton
support {x} ⊆ X and the value t (0 < t ≤ 1) will be denoted by xt. 0X
and 1X are the constant fuzzy sets taking values 0 and 1 respectively
in X. The complement [26] of a fuzzy set A in X is denoted by 1X \A
and is defined by (1X \ A)(x) = 1 − A(x), for each x ∈ X. For any
two fuzzy sets A,B in X, A ≤ B means A(x) ≤ B(x), for all x ∈ X
[26] while AqB means A is quasi-coincident (q-coincident, for short)
[24] with B, i.e., there exists x ∈ X such that A(x) + B(x) > 1. The
negation of these two statements will be denoted by A ̸≤ B and A ̸ qB
respectively. For a fuzzy point xt and a fuzzy set A, xt ∈ A means
A(x) ≥ t, i.e., xt ≤ A. For a fuzzy set A, clA and intA will stand for
fuzzy closure [14] and fuzzy interior [14] respectively. A fuzzy set A
is called a fuzzy neighbourhood (fuzzy nbd, for short) [24] of a fuzzy
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point xα if there exists a fuzzy open set U in X such that xα ∈ U ≤ A.
If, in addition, A is fuzzy open, then A is called fuzzy open nbd [24] of
xα. A fuzzy set A is called a fuzzy quasi neighbourhood (fuzzy q-nbd,
for short) [24] of a fuzzy point xα in an fts X if there is a fuzzy open set
U in X such that xαqU ≤ A. If, in addition, A is fuzzy open, then A is
called fuzzy open q-nbd [24] of xα. A fuzzy set A in X is called fuzzy
regular open [1] (resp., fuzzy semiopen [1], fuzzy preopen [23], fuzzy α-
open [13], fuzzy β-open [17], fuzzy γ-open [4]) if A = int(clA) (resp.,
A ≤ cl(intA), A ≤ int(clA), A ≤ int(cl(intA)), A ≤ cl(int(clA)),
A ≤ cl(intA)

∨
int(clA)). A fuzzy set A is called fuzzy π-open [8] if A

is the union of finite number of fuzzy regular open sets. The comple-
ment of a fuzzy regular open (resp., fuzzy semiopen, fuzzy preopen,
fuzzy α-open, fuzzy β-open, fuzzy γ-open) set is called fuzzy regular
closed [1] (resp., fuzzy semiclosed [1], fuzzy preclosed [23], fuzzy α-
closed [13], fuzzy β-closed [17], fuzzy γ-closed [4]). The intersection
of all fuzzy semiclosed (resp., fuzzy preclosed, fuzzy α-closed, fuzzy
β-closed, fuzzy γ-closed) sets containing a fuzzy set A is called fuzzy
semiclosure [1] (resp., fuzzy preclosure [23], fuzzy α-closure [13], fuzzy
β-closure [17], fuzzy γ-closure [4]) of A, to be denoted by sclA (resp.,
pclA, αclA, βclA, γclA). The collection of all fuzzy open (resp., fuzzy
regular open, fuzzy semiopen, fuzzy preopen, fuzzy α-open, fuzzy β-
open, fuzzy γ-open, fuzzy π-open) sets in an fts (X, τ) is denoted by τ
(resp., FRO(X, τ), FSO(X, τ), FPO(X, τ), FαO(X, τ), FβO(X, τ),
FγO(X, τ), FπO(X, τ)). The collection of all fuzzy closed (resp.,
fuzzy regular closed, fuzzy semiclosed, fuzzy preclosed, fuzzy α-closed,
fuzzy β-closed, fuzzy γ-closed, fuzzy π-closed) sets in an fts X is de-
noted by τ c (resp., FRC(X, τ), FSC(X, τ), FPC(X, τ), FαC(X, τ),
FβC(X, τ), FγC(X, τ), FπC(X, τ)).

3. fπg-Closed Set: Some Properties

In [9], fπg-closed set is introduced. In this section some important
properties of this set is studied first. Then a new type of fuzzy neigh-
bourhood system is introduced and studied using fπg-closed set as
a basic tool. Lastly the mutual relationship of this set with the sets
defined in [2, 3, 5, 6, 7, 9, 10, 11] are established.

First we recall the following definition from [9] for ready references.
Definition 3.1 [9]. Let (X, τ) be an fts and A ∈ IX . Then A is

called fuzzy π-generalized closed (fπg-closed, for short) set in X if
clA ≤ U whenever A ≤ U ∈ FπO(X, τ).

The complement of the above mentioned fuzzy set is called fuzzy
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π-generalized open (fπg-open, for short) set.
Remark 3.2. It is clear from definition that union of two fπg-

closed sets is also so. But the intersection of two fπg-closed sets need
not be so, in general, as the following example shows.

Example 3.3. Let X = {a, b}, τ = {0X , 1X , A,B} where
A(a) = 0.5, A(b) = 0.6, B(a) = 0.3, B(b) = 0.5. Then (X, τ) is an
fts. Consider two fuzzy sets C and D defined by C(a) = 0.4, C(b) =
0.5, D(a) = 0.3, D(b) = 0.6. Here 1X ∈ FπO(X, τ) only containing
C and D and so clearly C and D are fπg-closed sets in (X, τ). Let
E = C

∧
D. Then E(a) = 0.3, E(b) = 0.5. Now E ≤ B ∈ FπO(X, τ).

But clE = 1X \ B ̸≤ B which implies that E is not fπg-closed set in
(X.τ).

So we can conclude that the set of all fπg-open sets cannot form a
fuzzy topology.

Theorem 3.4. Let (X, τ) be an fts and A,B ∈ IX . If A ≤ B ≤ clA
and A is fπg-closed set in X, then B is also fπg-closed set in X.
Proof. Let U ∈ FπO(X, τ) be such that B ≤ U . Then by hy-

pothesis, A ≤ B ≤ U . As A is fπg-closed set in X, clA ≤ U and so
A ≤ B ≤ clA ≤ U implies that clA ≤ clB ≤ cl(clA) = clA ≤ U Then
clB ≤ U . Consequently, B is fπg-closed set in X.
Theorem 3.5. Let (X, τ) be an fts and A,B ∈ IX . If intA ≤ B ≤

A and A is fπg-open set in X, then B is also fπg-open set in X.
Proof. intA ≤ B ≤ A So 1X \A ≤ 1X \B ≤ 1X \ intA = cl(1X \A)

where 1X \A is fπg-closed set in X. By Theorem 3.4, 1X \B is fπg-
closed set in X. Hence B is fπg-open set in X.
Theorem 3.6. Let (X, τ) be an fts and A ∈ IX . Then A is

fπg-open set in X if and only if K ≤ intA whenever K ≤ A and
K ∈ FπC(X, τ).

Proof. Let A(∈ IX) be fπg-open set in X and K ≤ A where
K ∈ FπC(X, τ). Then 1X \ A ≤ 1X \K where 1X \ A is fπg-closed
set in X and 1X \ K ∈ FπO(X, τ). So cl(1X \ A) ≤ 1X \ K implies
that 1X \ intA ≤ 1X \K and so K ≤ intA.
Conversely, let K ≤ intA whenever K ≤ A, K ∈ FπC(X, τ). Then

1X \ A ≤ 1X \ K ∈ FπO(X, τ). Now 1X \ intA ≤ 1X \ K. Then
cl(1X \A) ≤ 1X \K and so 1X \A is fπg-closed set in X. Hence A is
fπg-open set in X.

Theorem 3.7. Let (X, τ) be an fts and A(∈ IX). If A is fuzzy
regular open set as well as fπg-closed set in X, then A is fuzzy closed
set in X.

Proof. Now A ≤ A ∈ FRO(X, τ) ⊆ FπO(X, τ). By hypothesis,
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clA ≤ A (as A is fπg-closed set in X) and so A = clA Hence A is
fuzzy closed set in X.
Theorem 3.8. Let (X, τ) be an fts and A(∈ IX) ∈ FπO(X, τ) as

well as A is fπg-closed set in X, then A is fuzzy closed set in X.
Proof. Follows from Theorem 3.7.
Theorem 3.9. Let (X, τ) be an fts and A(∈ IX) be fπg-closed set

in X and B ∈ FπC(X, τ) with A ̸ qB. Then clA ̸ qB.
Proof. Now A ̸ qB Then A ≤ 1X \B ∈ FπO(X, τ). By assumption,

clA ≤ 1X \B and so clA ̸ qB.
Remark 3.10. The converse of Theorem 3.9 may not be true, in

general, as the following example shows.
Example 3.11. Let X = {a, b}, τ = {0X , 1X , A,B} where

A(a) = 0.5, A(b) = 0.6, B(a) = 0.5, B(b) = 0.3. Then (X, τ) is
an fts. Here Fπo(X, τ) = τ . Consider the fuzzy set C defined
by C(a) = 0.5, C(b) = 0.2. Then C < B ∈ FπO(X, τ). But
clC = 1X \A ̸≤ B which implies that C is not fπg-closed set in (X, τ).
Again C ̸ q(1X \ A) ∈ FπC(X, τ) and clC = (1X \ A) ̸ q(1X \ A).

Now we introduce a new type of generalized version of neighbour-
hood system in an fts.

Definition 3.12. Let (X, τ) be an fts and xα, a fuzzy point in X. A
fuzzy set A is called a fuzzy π-generalized neighbourhood (fπg-nbd,
for short) of xα, if there exists an fπg-open set U in X such that
xα ≤ U ≤ A. If, in addition, A is fπg-open set in X, then A is called
an fπg-open nbd of xα.
Definition 3.13. Let (X, τ) be an fts and xα, a fuzzy point in X. A

fuzzy set A is called a fuzzy π-generalized quasi neighbourhood(fπg-
q-nbd, for short) of xα if there is an fπg-open set U in X such that
xαqU ≤ A. If, in addition, A is fπg-open set in X, then A is called
an fπg-open q-nbd of xα.
Note 3.14. It is clear from definitions that every fπg-open set is

an fπg-open nbd of each of its points. But every fπg-nbd of xα may
not be an fπg-open set containing xα as the following example shows.

Example 3.15. Let X = {a, b}, τ = {0X , 1X , A} where A(a) =
0.5, A(b) = 0.4. Then (X, τ) is an fts. Here FπO(X, τ) = τ .
Now consider the fuzzy point a0.4 and the fuzzy set B defined by
B(a) = 0.5, B(b) = 0.3. Then a0.4 ≤ 1X \B and B < A ∈ FπO(X, τ),
but clB = 1X \ A ̸≤ A which implies that B is not fπg-closed set in
(X, τ) and so 1X \B is not fπg-open set in (X, τ). Now consider the
fuzzy set C defined by C(a) = C(b) = 0.5. Then 1X ∈ FπO(X, τ)
only containing C and so C is fπg-closed set in X and so 1X \C = C



38 ANJANA BHATTACHARYYA

is fπg-open set in X. Now a0.4 ≤ C < 1X \B which shows that 1X \B
is an fπg-neighbourhood of a0.4 though 1X \ B is not fπg-open set
containing a0.4.
Note 3.16. Every fuzzy open nbd (resp., fuzzy open q-nbd) of a

fuzzy point xα is an fπg-open nbd (resp., fπg-open q-nbd) of xα, but
converses are not true, in general, as the following example shows.

Example 3.17. Consider Example 3.15 and the fuzzy set D defined
by D(a) = 0.4, D(b) = 0.7. As 1X ∈ FπO(X, τ) containing D only,
clearly D is fπg-closed set in (X, τ). Now consider the fuzzy point
a0.56. So a0.56 ≤ 1X \ D implies that 1X \ D is an fπg-open nbd of
a0.56. But 1X \D is not a fuzzy open nbd of a0.56. Next consider the
fuzzy point a0.5. Then as a0.5q(1X \D), 1X \D is an fπg-open q-nbd
of a0.5. But 1X \D is not a fuzzy open q-nbd of a0.5.
Theorem 3.18. Let (X, τ) be an fts and xt, a fuzzy point in X.

If F (∈ IX) be an fπg-closed set in X with xt ∈ 1X \ F . Then there
exists an fπg-nbd G of xt in X such that G ̸ qF .
Proof. Let xt ∈ 1X \ F where 1X \ F be an fπg-open set in X.

Then 1X \ F is an fπg-open nbd of xt. So by definition, there exists
an fπg-open set G in X such that xt ∈ G ≤ 1X \ F . Hence G is an
fπg-nbd of xt with G ̸ qF .

Definition 3.19. The set of all fπg-nbds of a fuzzy point xt

(0 < t ≤ 1) in an fts (X, τ) is called fuzzy π-generalized neighbour-
hood (fπg-nbd, for short) system at xt, denoted by fπg-N(xt).

Theorem 3.20. For a fuzzy point xt in an fts (X, τ), the following
statements hold :
(i) fπg-N(xt) ̸= ϕ,
(ii) G ∈ fπg-N(xt) implies xt ∈ G,
(iii) G ∈ fπg-N(xt) and F ≥ G implies F ∈ fπg-N(xt),
(iv) F,G ∈ fπg-N(xt) implies F

∧
G ∈ fπg-N(xt),

(v) G ∈ fπg-N(xt). Then there exists F ∈ fπg-N(xt) such that
F ≤ G and F ∈ fπg-N(yt′) for every yt′ ∈ F .

Proof. (i) Since 1X being an fπg-open set is an fπg-nbd of xt

(0 < t ≤ 1), fπg-N(xt) ̸= ϕ.
(ii) and (iii) are obvious.
(iv) Since intersection of two fπg-open sets is fπg-open, (iv) is obvi-
ous.
(v) Follows from Note 3.16 and Definition 3.19.

Theorem 3.21. Let xt be a fuzzy point in an fts (X, τ). Let
fπg-N(xt) be a non-empty collection of fuzzy sets in X satisfying the
following conditions :
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(1) G ∈ fπg-N(xt) implies xt ∈ G,
(2) F,G ∈ fπg-N(xt) implies F

∧
G ∈ fπg-N(xt).

Let τ consist of 0X and all those non-empty fuzzy sets G of X having
the property that xt ∈ G. Then there exists an F ∈ fπg-N(xt) such
that xt ∈ F ≤ G. Then τ is a fuzzy topology on X.

Proof. (i) By hypothesis, 0X ∈ τ .
(ii) It is clear from the given property of τ that 1X ∈ τ as 1X ∈ fπg-
N(xt) for any fuzzy point xt (0 < t ≤ 1) in an fts X (by (1)).
(iii) Let G1, G2 ∈ τ . If G1

∧
G2 = 0X , then by construction of τ ,

G1

∧
G2 ∈ τ . Suppose G1

∧
G2 ̸= 0X . Let xt ∈ G1

∧
G2 where

0 < t ≤ 1. Then G1(x) ≥ t, G2(x) ≥ t. Since G1, G2 ∈ τ , by defi-
nition of τ , there exist F1, F2 ∈ fπg-N(xt) such that xt ∈ F1 ≤ G1,
xt ∈ F2 ≤ G2. Then xt ∈ F1

∧
F2 ≤ G1

∧
G2. By (2), F1

∧
F2 ∈ fπg-

N(xt) and so G1

∧
G2 ∈ τ by construction of τ .

(iv) Let G = {Gα : α ∈ Λ} where Gα ∈ τ , for each α ∈ Λ. Let

xt ∈
∨
α∈Λ

Gα. Then there exists β ∈ Λ such that xt ∈ Gβ. By definition

of τ , there exists Fβ ∈ fπg-N(xt) such that xt ∈ Fβ ≤ Gβ ≤
∨
α∈Λ

Gα

which implies that
∨
α∈Λ

Gα ∈ τ .

It follows that τ is a fuzzy topology on X.
Next we recall the following definitions of different types of fuzzy

generalized version of closed sets from [2, 3, 5, 6, 7, 9, 10, 11] and then
establish the mutual relationships of these sets with the set mentioned
in this section.

Definition 3.22. Let (X, τ) be an fts and A ∈ IX . Then A is
called
(i) fg-closed set [2, 3] if clA ≤ U whenever A ≤ U ∈ τ ,
the complement of fg-closed set is called fg-open set,
(ii) fgp-closed set [3] if pclA ≤ U whenever A ≤ U ∈ τ ,
(iii) fpg-closed set [3] if pclA ≤ U whenever A ≤ U ∈ FPO(X, τ),
(iv) fgα-closed set [3] if αclA ≤ U whenever A ≤ U ∈ τ ,
(v) fαg-closed set [3] if αclA ≤ U whenever A ≤ U ∈ FαO(X, τ),
(vi) fgβ-closed set [7] if βclA ≤ U whenever A ≤ U ∈ τ ,
(vii) fβg-closed set [7] if βclA ≤ U whenever A ≤ U ∈ FβO(X, τ),
(viii) fgs-closed set [3] if sclA ≤ U whenever A ≤ U ∈ τ ,
(ix) fsg-closed set [3] if sclA ≤ U whenever A ≤ U ∈ FSO(X, τ),
(x) fgs∗-closed set [5] if clA ≤ U whenever A ≤ U ∈ FSO(X, τ),
(xi) fs∗g-closed set [6] if clA ≤ U whenever A ≤ U where U is fg-open
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set in X,
(xii) fswg-closed set [9] if cl(intA) ≤ U whenever A ≤ U ∈
FSO(X, τ),
(xiii) frwg-closed set [9] if cl(intA) ≤ U whenever A ≤ U ∈
FRO(X, τ),
(xiv) fmg-closed set [9] if cl(intA) ≤ U whenever A ≤ U where U is
fg-open set in X,
(xv) fwg-closed set [9] if cl(intA) ≤ U whenever A ≤ U ∈ τ ,
(xvi) fgγ-closed set [10] if γclA ≤ U whenever A ≤ U ∈ τ ,
(xvii) fgγ∗-closed set [11] if γclA ≤ U whenever A ≤ U ∈ FSO(X, τ).

Remark 3.23. It is clear from Definition 3.1 and Definition 3.19
that
(i) fuzzy closed set is fπg-closed set, fg-closed set is fπg-closed set,
fgs∗-closed set is fπg-closed set, fs∗g-closed set is fπg-closed set and
fπg-closed set is frwg-closed set. But the converses are not true, in
general, as the following examples show.
(ii) fπg-closed set is independent concept of fgp-closed set, fpg-closed
set, fgα-closed set, fαg-closed set, fgβ-closed set, fβg-closed set,
fgs-closed set, fsg-closed set, fswg-closed set, fmg-closed set, fwg-
closed, fgγ-closed set, fgγ∗-closed set follow from the following exam-
ples.

Example 3.24. fπg-closed set may not be fuzzy closed set, fg-
closed set, fgβ-closed set, fβg-closed set, fgα-closed set, fαg-closed
set, fgs-closed set, fsg-closed set, fgs∗-closed set, fpg-closed set,
fgγ∗-closed set, fswg-closed set
Let X = {a, b}, τ = {0X , 1X , A} where A(a) = 0.5, A(b) = 0.6.
Then (X, τ) is an fts. Here FπO(X, τ) = {0X , 1X}, FSO(X, τ) =
FαO(X, τ) = {0X , 1X , U} where U ≥ A, FPO(X, τ) = {0X , 1X , V }
where V ̸≤ 1X \ A. Consider the fuzzy set B defined by B(a) =
B(b) = 0.5. As 1X ∈ FπO(X, τ) only containing B, clearly B is
fπg-closed set in (X, τ). Also B is not a fuzzy closed set in (X, τ).
Now B ≤ A ∈ τ , but clB = 1X ̸≤ A implies that B is not fg-closed
set in (X, τ). Again B ≤ A ∈ FαO(X, τ) as well as B ≤ A ∈ τ .
But as αclB = 1X ̸≤ A, B is not fαg-closed as well as fgα-closed
set in (X, τ). Again B ≤ A ∈ FSO(X, τ) and B ≤ A ∈ τ . But
sclB = 1X ̸≤ A and so B is not fsg-closed as well as fgs-closed set
in (X, τ). Also clB = 1X ̸≤ A and so B is not fgs∗-closed set in
(X, τ). Next consider the fuzzy set C defined by C(a) = C(b) = 0.6.
Then as 1X ∈ FπO(X, τ) only containing C, clearly C is fπg-closed
set in (X, τ). Now C ≤ C ∈ FPO(X, τ). But pclC = 1X ̸≤ C.
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So C is not fpg-closed set in (X, τ). Again C ≤ C ∈ FSO(X, τ)
and γclC = 1X ̸≤ C So C is not fgγ∗-closed set in (X, τ). Again
C ≤ C ∈ FSO(X, τ). But cl(intC) = 1X ̸≤ C. Consequently, C
is not fswg-closed set in (X, τ). Now taking the fuzzy set A, we
see that 1X ∈ FπO(X, τ) only containing A so that A is fπg-closed
set in (X, τ). Now A ≤ cl(int(clA)) and so A ∈ FβO(X, τ) and so
A ≤ A ∈ FβO(X, τ) as well A ≤ A ∈ τ . But βclA = 1X ̸≤ A. Hence
A is not fβg-closed as well as fgβ-closed set in (X, τ).
Example 3.25. fπg-closed set may not be fgp-closed set, fgγ-

closed set, fwg-closed set
Let X = {a, b}, τ = {0X , 1X , A,B} where A(a) = 0.5, A(b) =
0.6, B(a) = 0.3, B(b) = 0.5. Then (X, τ) is an fts. Here FπO(X, τ) =
{0X , 1X , B}. Consider the fuzzy set C defined by C(a) = 0.4, C(b) =
0.5. Then as 1X ∈ FπO(X, τ) only containing C, clearly C is fπg-
closed set in (X, τ). Now C < A ∈ τ . But pclA ̸≤ A. So C is not
fgp-closed set in (X, τ). Again cl(intC) = 1X \B ̸≤ A implies that C
is not fwg-closed set in (X, τ). Next consider the fuzzy set D defined
by D(a) = 0.5, D(b) = 0.55. Then as 1X ∈ FπO(X, τ) only contain-
ing D, clearly D is fπg-closed set in (X, τ). Now D < A ∈ τ . But
γclD = 1X \ B ̸≤ A. Then D is not fgγ-closed set in (X, τ). Now
the collection of all fg-open sets in (X, τ) is {0X , 1X ,W, T} where
0.5 ≤ W (a) < 0.7,W (b) ≥ 0.6, T ̸≥ 1X \ A. Consider the fuzzy set F
defined by F (a) = F (b) = 0.5. As 1X ∈ FπO(X, τ) only containing F ,
clearly F is fπg-closed set in (X, τ). Here F < A where A is fg-open
set in (X, τ). But clF = 1X \B ̸≤ A implies that B is not fs∗g-closed
set in (X, τ). Also cl(intF ) = 1X \B ̸≤ A. Hence F is not fmg-closed
set in (X, τ).

Example 3.26. fgα-closed set, fαg-closed set, fgγ-closed set,
fgγ∗-closed set, fswg-closed set, frwg-closed set, fmg-closed set,
fwg-closed set, fgβ-closed set, fβg-closed set, fgs-closed set, fsg-
closed set, fgp-closed set, fpg-closed set do not necessarily imply fπg-
closed set
Consider Example 3.22 and the fuzzy set E defined by E(a) =
0.2, E(b) = 0.4. Since E < B ∈ FπO(X, τ), but clE = 1X \ A ̸≤ B
implies that E is not fπg-closed set in (X, τ).
Now cl(int(clE)) = 0X . Then E ∈ FαC(X, τ) and so E is fgα-closed
as well as fαg-closed set in (X, τ).
Again int(cl(intE)) = 0X implies that E ∈ FβC(X, τ) and so E is
fgβ-closed as well as fβg-closed set in (X, τ).
Also (cl(intE))

∧
(int(clE)) = 0X < E. Then E ∈ FγC(X, τ) and so



42 ANJANA BHATTACHARYYA

E is fgγ-closed as well as fgγ∗-closed set in (X, τ).
Also cl(intE) = 0X < E Then E ∈ FPC(X, τ) and so E is fgp-closed
as well as fpg-closed set in (X, τ). Again as cl(intE) = 0X , E is fmg-
closed, fwg-closed, fswg-closed, frwg-closed set in (X, τ).
Again int(clE) = 0X < E implies that E ∈ FSC(X, τ) and so E is
fgs-closed as well as fsg-closed set in (X, τ).
Now we recall the definitions of some spaces from [3, 8, 9, 10, 11]

in which the sets defined in [2, 3, 5, 6, 7, 9, 10, 11] are fπg-closed set
and some partial converses are true.

Definition 3.27. An fts (X, τ) is said to be
(i) fβTb-space [8] if every fβg-closed set in X is fuzzy closed set in X,
(ii) fTβ-space [8] if every fgβ-closed set in X is fuzzy closed set in X,
(iii) fTα-space [3] if every fgα-closed set in X is fuzzy closed set in
X,
(iv) fαTb-space [3] if every fαg-closed set in X is fuzzy closed set in
X,
(v) fTb-space [3] if every fgs-closed set in X is fuzzy closed set in X,
(vi) fTsg-space [3] if every fsg-closed set in X is fuzzy closed set in
X,
(vii) fTγ-space [10] if every fgγ-closed set in X is fuzzy closed set in
X,
(viii) fTγ∗-space [11] if every fgγ∗-closed set in X is fuzzy closed set
in X,
(ix) frTg-space [9] if every frwg-closed set in X is fuzzy closed set in
X,
(x) fsTg-space [9] if every fswg-closed set in X is fuzzy closed set in
X,
(xi) fTp-space [3] if every fgp-closed set in X is fuzzy closed set in X,
(xii) fpTb-space [3] if every fpg-closed set in X is fuzzy closed set in
X,
(xiii) fmTg-space [9] if every fmg-closed set in X is fuzzy closed set
in X,
(xiv) fTw-space [8] if every fwg-closed set in X is fuzzy closed set in
X,
(xv) fTπ-space [9] if every fπg-closed set in X is fuzzy closed set in
X.

Remark 3.28 (i) In fβTb-space (resp., fTβ-space, fTα-space,
fαTb-space, fTb-space, fTsg-space, fTγ-space, fTγ∗-space, frTg-
space, fsTg-space, fTp-space, fpTb-space, fmTg-space, fTw-space)
fβg-closed (resp., fgβ-closed, fgα-closed, fαg-closed, fgs-closed,
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fsg-closed, fgγ-closed, fgγ∗-closed, frwg-closed, fswg-closed, fgp-
closed, fpg-closed, fmg-closed, fwg-closed) set is fπg-closed set.
(ii) In fTπ-space, fπg-closed set is fg-closed, fgs∗-closed, fs∗g-
closed, fgβ-closed, fβg-closed, fgα-closed, fαg-closed, fgp-closed,
fpg-closed, fgs-closed, fsg-closed, fgγ-closed, fgγ∗-closed set.

4. fπg-Closure Operator and fπg-Open, fπg- Closed
Functions

A new type of generalized version of closure operator in an fts, viz.,
fπg-closure operator is introduced here which is an idempotent oper-
ator. Then introduce fπg-open and fπg-closed functions which are
characterized by fπg-closure operator.
Definition 4.1. Let (X, τ) be an fts and A ∈ IX . Then fπg-closure

and fπg-interior of A, denoted by fπgcl(A) and fπgint(A), are de-
fined as follows:

fπgcl(A) =
∧
{F : A ≤ F, F is fπg-closed set in X},

fπgint(A) =
∨
{G : G ≤ A,G is fπg-open set in X}.

Remark 4.2. It is clear from definition that for any A ∈ IX ,
A ≤ fπgcl(A) ≤ clA. If A is fπg-closed set in an fts X, then
A = fπgcl(A). Similarly, intA ≤ fπgint(A) ≤ A. If A is fπg-open
set in an fts X, then A = fπgint(A). It follows from Remark 3.2 that
fπgcl(A) (resp., fπgint(A)) may not be fπg-closed (resp., fπg-open)
set in an fts X.

Theorem 4.3. Let (X, τ) be an fts and A ∈ IX . Then for a fuzzy
point xt in X, xt ∈ fπgcl(A) if and only if every fπg-open q-nbd U
of xt, UqA.

Proof. Let xt ∈ fπgcl(A) for any fuzzy set A in an fts X and F be
any fπg-open q-nbd of xt. Then xtqF implies that xt ̸∈ 1X \ F which
is fπg-closed set in X. Then by Definition 4.1, A ̸≤ 1X \ F . Then
there exists y ∈ X such that A(y) > 1− F (y). Hence AqF .
Conversely, let for every fπg-open q-nbd F of xt, FqA. If possible,

let xt ̸∈ fπgcl(A). Then by Definition 4.1, there exists an fπg-closed
set U in X with A ≤ U , xt ̸∈ U . Then xtq(1X \ U) which being fπg-
open set in X is fπg-open q-nbd of xt. By assumption, (1X \ U)qA.
Then (1X \ A)qA, a contradiction.
Theorem 4.4. Let (X, τ) be an fts and A,B ∈ IX . Then the fol-

lowing statements are true:
(i) fπgcl(0X) = 0X ,
(ii) fπgcl(1X) = 1X ,
(iii) A ≤ B implies fπgcl(A) ≤ fπgcl(B),
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(iv) fπgcl(A
∨

B) = fπgcl(A)
∨

fπgcl(B),
(v) fπgcl(A ∧ B) ≤ fπgcl(A) ∧ fπgcl(B), equality does not hold, in
general, follows from Example 3.3,
(vi) fπgcl(fπgcl(A)) = fπgcl(A).

Proof. (i), (ii) and (iii) are obvious.
(iv) From (iii), fπgcl(A)

∨
fπgcl(B) ≤ fπgcl(A

∨
B).

To prove the converse, let xα ∈ fπgcl(A
∨
B). Then by Theorem 4.3,

for any fπg-open set U in X with xαqU , Uq(A
∨
B), there exists y ∈

X such that U(y)+max{A(y), B(y)} > 1. Then either U(y)+A(y) > 1
or U(y)+B(y) > 1. So either UqA or UqB. Then either xα ∈ fπgcl(A)
or xα ∈ fπgcl(B). Hence xα ∈ fπgcl(A)

∨
fπgcl(B).

(v) Follows from (iii).
(vi) As A ≤ fπgcl(A), for any A ∈ IX , fπgcl(A) ≤ fπgcl(fπgcl(A))
(by (iii)).

Conversely, let xα ∈ fπgcl(fπgcl(A)) = fπgcl(B) where B =
fπgcl(A). Let U be any fπg-open set in X with xαqU . Then UqB
implies that there exists y ∈ X such that U(y) + B(y) > 1. Let
B(y) = t. Then ytqU and yt ∈ B = fπgcl(A) implies UqA. So
xα ∈ fπgcl(A). Then fπgcl(fπgcl(A)) ≤ fπgcl(A). Consequently,
fπgcl(fπgcl(A)) = fπgcl(A).

Theorem 4.5. Let (X, τ) be an fts and A ∈ IX . Then the following
statements hold:
(i) fπgcl(1X \ A) = 1X \ fπgint(A)
(ii) fπgint(1X \ A) = 1X \ fπgcl(A).

Proof (i). Let xt ∈ fπgcl(1X \A) for a fuzzy set A in an fts (X, τ).
If possible, let xt ̸∈ 1X \ fπgint(A). Then 1 − (fπgint(A))(x) < t
implies [fπgint(A)](x) + t > 1 and so fπgint(A)qxt. Then there ex-
ists at least one fπg-open set F ≤ A with xtqF and so xtqA. As
xt ∈ fπgcl(1X \ A), F q(1X \ A) which implies that Aq(1X \ A), a
contradiction. Hence

fπgcl(1X \ A) ≤ 1X \ fπgint(A)...(1)

Conversely, let xt ∈ 1X \ fπgint(A). Then 1− [(fπgint(A)](x) ≥ t.
Then xt /q(fπgint(A)) and so xt /qF for every fπg-open set F contained
in A ... (2).
Let U be any fπg-closed set in X such that 1X \ A ≤ U . Then
1X \ U ≤ A. Now 1X \ U is fπg-open set in X contained in A. By
(2), xt /q(1X \ U). Then xt ∈ U implies xt ∈ fπgcl(1X \ A) and so

1X \ fπgint(A) ≤ fπgcl(1X \ A)...(3).
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Combining (1) and (3), (i) follows.
(ii) Putting 1X \A for A in (i), we get fπgcl(A) = 1X \fπgint(1X \A)
implies fπgint(1X \ A) = 1X \ fπgcl(A).
Let us now recall the following definition from [25] for ready refer-

ences.
Definition 4.6 [25]. A function f : X → Y is called fuzzy open

(resp., fuzzy closed) if f(U) is fuzzy open (resp., fuzzy closed) set in
Y for every fuzzy open (resp., fuzzy closed) set U in X.

Let us now introduce the following concept.
Definition 4.7. A function h : X → Y is called fuzzy π-generalized

open (fπg-open, for short) function if h(U) is fπg-open set in Y for
every fuzzy open set U in X.
Remark 4.8. It is clear that fuzzy open function is fπg-open func-

tion. But the converse need not be true, as the following example
shows.

Example 4.9. fπg-open function may not necessarily fuzzy open
function
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X} where A(a) =
0.4, A(b) = 0.5. Then (X, τ1) and (X, τ2) are fts’s. Consider the
identity function i : (X, τ1) → (X, τ2). Since every fuzzy set in (X, τ2)
is fπg-open set in (X, τ2), clearly i is fπg-open function. But A ∈ τ1,
i(A) = A ̸∈ τ2 implies that i is not a fuzzy open function.
Theorem 4.10. For a bijective function h : X → Y , the following

statements are equivalent:
(i) h is fπg-open,
(ii) h(intA) ≤ fπgint(h(A)), for all A ∈ IX ,
(iii) for each fuzzy point xα in X and each fuzzy open set U in X
containing xα, there exists an fπg-open set V in Y containing h(xα)
such that V ≤ h(U).

Proof (i) ⇒ (ii). Let A ∈ IX . Then intA is a fuzzy open set in
X. By (i), h(intA) is fπg-open set in Y . Since h(intA) ≤ h(A) and
fπgint(h(A)) is the union of all fπg-open sets contained in h(A), we
have h(intA) ≤ fπgint(h(A)).
(ii) ⇒ (i). Let U be any fuzzy open set in X. Then h(U) = h(intU) ≤
fπgint(h(U)) (by (ii)) implies h(U) is fπg-open set in Y and hence h
is fπg-open function.
(ii) ⇒ (iii). Let xα be a fuzzy point in X, and U , a fuzzy open set in
X such that xα ∈ U . Then h(xα) ∈ h(U) = h(intU) ≤ fπgint(h(U))
(by (ii)). Then h(U) is fπg-open set in Y . Let V = h(U). Then
h(xα) ∈ V and V ≤ h(U).
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(iii) ⇒ (i). Let U be any fuzzy open set in X and yα, any fuzzy
point in h(U), i.e., yα ∈ h(U). Then there exists unique x ∈ X
such that h(x) = y (as h is bijective). Then [h(U)](y) ≥ α implies
U(h−1(y)) ≥ α and so U(x) ≥ α. Then xα ∈ U . By (iii), there ex-
ists fπg-open set V in Y such that h(xα) ∈ V and V ≤ h(U). Then
h(xα) ∈ V = fπgint(V ) ≤ fπgint(h(U)). Since yα is taken arbitrarily
and h(U) is the union of all fuzzy points in h(U), h(U) ≤ fπgint(f(U))
implies h(U) is fπg-open set in YHence h is an fπg-open function.

Theorem 4.11. If h : X → Y is fπg-open, bijective function, then
the following statements are true:
(i) for each fuzzy point xα in X and each fuzzy open q-nbd U of
xα in X, there exists an fπg-open q-nbd V of h(xα) in Y such that
V ≤ h(U),
(ii) h−1(fπgcl(B)) ≤ cl(h−1(B)), for all B ∈ IY .
Proof (i). Let xα be a fuzzy point in X and U be any fuzzy open
q-nbd of xα in X. Then xαqU = intU implies h(xα)qh(intU) ≤
fπgint(h(U)) (by Theorem 4.10 (i)⇒(ii)) implies that there exists
at least one fπg-open q-nbd V of h(xα) in Y with V ≤ h(U).
(ii) Let xα be any fuzzy point in X such that xα ̸∈ cl(h−1(B)) for any
B ∈ IY . Then there exists a fuzzy open q-nbd U of xα in X such that
U /qh−1(B). Now

h(xα)qh(U)...(1)

where h(U) is fπg-open set in Y . Now h−1(B) ≤ 1X \ U which is
a fuzzy closed set in X and so B ≤ h(1X \ U) (as h is injective)
≤ 1Y \ h(U). Then B /qh(U). Let V = 1Y \ h(U). Then B ≤ V which
is fπg-closed set in Y . We claim that h(xα) ̸∈ V . If possible, let
h(xα) ∈ V = 1Y \ h(U). Then 1 − [h(U)](h(x)) ≥ α. So h(U) /qh(xα),
contradicting (1). So h(xα) ̸∈ V . Then h(xα) ̸∈ fπgcl(B) and so
xα ̸∈ h−1(fπgcl(B)) Hence h−1(fπgcl(B)) ≤ cl(h−1(B)).
Theorem 4.12. An injective function h : X → Y is fπg-open

if and only if for each B ∈ IY and F , a fuzzy closed set in X with
h−1(B) ≤ F , there exists an fπg-closed set V in Y such that B ≤ V
and h−1(V ) ≤ F .
Proof. Let B ∈ IY and F , a fuzzy closed set in X with h−1(B) ≤ F .
Then 1X \h−1(B) ≥ 1X \F where 1X \F is a fuzzy open set in X. So
h(1X \F ) ≤ h(1X \h−1(B)) ≤ 1Y \B (as h is injective) where h(1X \F )
is an fπg-open set in Y . Let V = 1Y \ h(1X \ F ). Then V is fπg-
closed set in Y such that B ≤ V . Now h−1(V ) = h−1(1Y \h(1X \F )) =
1X \ h−1(h(1X \ F )) ≤ F .
Conversely, let F be a fuzzy open set in X. Then 1X \ F is a fuzzy
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closed set in X. We have to show that h(F ) is an fπg-open set in Y .
Now h−1(1Y \h(F )) ≤ 1X \F (as h is injective). By assumption, there
exists an fπg-closed set V in Y such that

1Y \ h(F ) ≤ V...(1)

and h−1(V ) ≤ 1X \ F . Therefore, F ≤ 1X \ h−1(V ) implies that

h(F ) ≤ h(1X \ h−1(V )) ≤ 1Y \ V...(2)
(as h is injective). Combining (1) and (2), h(F ) = 1Y \ V which is an
fπg-open set in Y . Hence h is fπg-open function.

Definition 4.13. A function h : X → Y is called fuzzy π-
generalized closed (fπg-closed, for short) function if h(A) is fπg-closed
set in Y for each fuzzy closed set A in X.

Remark 4.14. It is obvious that every fuzzy closed function is
fπg-closed function, but the converse may not be true as it seen in
Example 4.9. Here 1X \ A ∈ τ c1 , but i(1X \ A) = 1X \ A ̸∈ τ c2 and so i
is not a fuzzy closed function. But since every fuzzy set in (X, τ2) is
fπg-closed set in (X, τ2), clearly i is fπg-closed function.
Theorem 4.15. A bijective function h : X → Y is fπg-closed

function if and only if fπgcl(h(A)) ≤ h(clA), for all A ∈ IX .
Proof. Let us suppose that h : X → Y be an fπg-closed func-

tion and A ∈ IX . Then h(cl(A)) is fπg-closed set in Y . Since
h(A) ≤ h(clA) and fπgcl(h(A)) is the intersection of all fπg-closed
sets in Y containing h(A), we have fπgcl(h(A)) ≤ h(clA).
Conversely, let for any A ∈ IX , fπgcl(h(A)) ≤ h(clA). Let U be

any fuzzy closed set inX. Then h(U) = h(clU) ≥ fπgcl(h(U)) implies
h(U) is an fπg-closed set in Y . Hence h is an fπg-closed function.

Theorem 4.16. If h : X → Y is an fπg-closed bijective function,
then the following statements hold:
(i) for each fuzzy point xα in X and each fuzzy closed set U in X with
xα /qU , there exists an fπg-closed set V in Y with h(xα) /qV such that
V ≥ h(U),
(ii) h−1(fπgint(B)) ≥ int(h−1(B)), for all B ∈ IY .
Proof (i). Let xα be a fuzzy point in X and U be any fuzzy closed set
in X with xα /qU = clU . So h(xα) /qh(clU) ≥ fπgcl(h(U)) (by Theorem
4.15). Then h(xα) /qV for some fπg-closed set V in Y with V ≥ h(U).
(ii). Let B ∈ IY and xα be any fuzzy point in X such that
xα ∈ int(h−1(B)). Then there exists a fuzzy open set U in X with
U ≤ h−1(B) such that xα ∈ U . Then 1X \ U ≥ 1X \ h−1(B) implies
h(1X \ U) ≥ h(1X \ h−1(B)) where h(1X \ U) is an fπg-closed set in
Y . Let V = 1Y \ h(1X \ U). Then V is an fπg-open set in Y and
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V = 1Y \ h(1X \ U) ≤ 1Y \ h(1X \ h−1(B)) ≤ 1Y \ (1Y \ B) = B
(as h is injective). Now U(x) ≥ α. So xα /q(1X \ U). Then
h(xα) /qh(1X \ U) implies that h(xα) ≤ 1Y \ h(1X \ U) = V . Then
h(xα) ∈ V = fπgint(V ) ≤ fπgint(B). So xα ∈ h−1(fπgint(B)).
Since xα is taken arbitrarily, int(h−1(B)) ≤ h−1(fπgint(B)), for all
B ∈ IY .

Remark 4.17. Composition of two fπg-closed (resp., fπg-open)
functions need not be so, as it seen from the following example.

Example 4.18. Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X},
τ3 = {0X , 1X , B} where A(a) = 0.8, A(b) = 0.5, B(a) = 0.3, B(b) =
0.5. Then (X, τ1), (X, τ2) and (X, τ3) are fts’s. Consider two identity
functions i1 : (X, τ1) → (X, τ2) and i2 : (X, τ2) → (X, τ3). Clearly i1
and i2 are fπg-closed functions. Let i3 = i2 ◦ i1 : (X, τ1) → (X, τ3).
We claim that i3 is not fπg-closed function. Here FπO(X, τ3) = τ3.
Now 1X \ A ∈ τ c1 . (i2 ◦ i1)(1X \ A) = 1X \ A < B ∈ FπO(X, τ3). But
clτ3(1X \ A) = 1X \ B ̸≤ B implies that 1X \ A is not fπg-closed set
in (X, τ3). Hence i2 ◦ i1 is not fπg-closed function.

Similarly we can show that i2 ◦ i1 is not fπg-open function though
i1 and i2 are so.

Theorem 4.19. If h1 : X → Y is fuzzy closed (resp., fuzzy open)
function and h2 : Y → Z is fπg-closed (resp., fπg-open) function,
then h2 ◦ h1 : X → Z is fπg-closed (resp., fπg-open) function.
Proof. Obvious.
Now to establish the mutual relationships of fπg-closed function

with the functions defined in [3, 5, 6, 7, 9, 10, 11]. We have to recall
he following definitions first.

Definition 4.20. Let (X, τ1) → (Y, τ2) be a function. Then h is
called an
(i) fg-closed function [3] if h(A) is fg-closed set in Y for every A ∈ τ c1 ,
(ii) fgβ-closed function [7] if h(A) is fgβ-closed set in Y for every
A ∈ τ c1 ,
(iii) fβg-closed function [7] if h(A) is fβg-closed set in Y for every
A ∈ τ c1 ,
(iv) fgα-closed function [3] if h(A) is fgα-closed set in Y for every
A ∈ τ c1 ,
(v) fαg-closed function [3] if h(A) is fαg-closed set in Y for every
A ∈ τ c1 ,
(vi) fgp-closed function [3] if h(A) is fgp-closed set in Y for every
A ∈ τ c1 ,
(vii) fpg-closed function [3] if h(A) is fpg-closed set in Y for every
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A ∈ τ c1 ,
(viii) fgs-closed function [3] if h(A) is fgs-closed set in Y for every
A ∈ τ c1 ,
(ix) fsg-closed function [3] if h(A) is fsg-closed set in Y for every
A ∈ τ c1 ,
(x) fgs∗-closed function [5] if h(A) is fgs∗-closed set in Y for every
A ∈ τ c1 ,
(xi) fs∗g-closed function [6] if h(A) is fs∗g-closed set in Y for every
A ∈ τ c1 ,
(xii) fgγ-closed function [10] if h(A) is fgγ-closed set in Y for every
A ∈ τ c1 ,
(xiii) fgγ∗-closed function [11] if h(A) is fgγ∗-closed set in Y for every
A ∈ τ c1 ,
(xiv) fswg-closed function [9] if h(A) is fswg-closed set in Y for every
A ∈ τ c1 ,
(xv) frwg-closed function [9] if h(A) is frwg-closed set in Y for every
A ∈ τ c1 ,
(xvi) fmg-closed function [9] if h(A) is fmg-closed set in Y for every
A ∈ τ c1 ,
(xvii) fwg-closed function [9] if h(A) is fwg-closed set in Y for every
A ∈ τ c1 .

Remark 4.21. fg-closed function is fπg-closed function, fgs∗-
closed function is fπg-closed function, fs∗g-closed function is fπg-
closed function and fπg-closed function is frwg-closed function.
But the reverse implications are not true, in general, as it seen in the
following examples.
(ii) fπg-closed function is independent concept of fgβ-closed function,
fβg-closed function, fgα-closed function, fαg-closed function, fgp-
closed function, fpg-closed function, fgs-closed function, fsg-closed
function, fgγ-closed function, fgγ∗-closed function, fswg-closed func-
tion, fmg-closed function, fwg-closed function.

Example 4.22. fπg-closed function not necessarily implies fg-
closed function, fgs-closed function, fsg-closed function, fgs∗-closed
function, fs∗g-closed function
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B} where A(a) =
0.6, A(b) = 0.5, B(a) = 0.5, B(b) = 0.6. Then (X, τ1) and (X, τ2)
are fts’s. Consider the identity function i : (X, τ1) → (X, τ2).
Now FπO(X, τ2) = {0X , 1X} and so every fuzzy set in (X, τ2) is
fπg-closed set in (X, τ2) and hence i is fπg-closed function. Again
FSO(X, τ2) = {0X , 1X , U} where U ≥ B. Now 1X\A ∈ τ c1 , i(1X\A) =
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1X \ A < B ∈ τ2, but clτ2(1X \ A) = 1X ̸≤ B implies that 1X \ A is
not fg-closed set in (X, τ2) and hence i is not fg-closed function. Also
sclτ2(1X \ A) = 1X ̸≤ B. So 1X \ A is not fgs-closed set in (X, τ2).
Hence i is not fgs-closed function. Again 1X \ A ≤ B ∈ FSO(X, τ2),
but sclτ2(1X \A) = 1X ̸≤ B. So 1X \A is not fsg-closed set in (X, τ2).
Hence i is not fsg-closed function. Also clτ2(1X \ A) = 1X ̸≤ B and
so 1X \ A is not fgs∗-closed set in (X, τ2). Hence i is not fgs∗-closed
function. Again B is fg-open set in (X, τ2) and so 1X \ A ≤ B, but
clτ2(1X \A) = 1X ̸≤ B implies 1X \A is not fs∗g-closed set in (X, τ2).
Hence i is not fs∗g-closed function.
Example 4.23. fπg-closed function may not necessarily fswg-

closed function, fgγ∗-closed function, fpg-closed function, fmg-closed
function
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B} where A(a) =
A(b) = 0.4, B(a) = 0.5, B(b) = 0.6. Then (X, τ1) and (X, τ2) are
fts’s. Consider the identity function i : (X, τ1) → (X, τ2). Here
FπO(X, τ2) = {0X , 1X} and so every fuzzy set in (X, τ2) is fπg-closed
set in (X, τ2) and as a result i is clearly fπg-closed function. Now
FSO(X, τ2) = {0X , 1X , U} = the set of all fg-open set in (X, τ2)
where U ≥ B, FPO(X, τ2) = {0X , 1X , V } where V ̸≤ 1X \ B. Now
1X \A ∈ τ c1 , i(1X \A) = 1X \A ∈ FSO(X, τ2). So 1X \A ≤ 1X \A ∈
FSO(X, τ2), but clτ2(intτ2(1X \A)) = 1X ̸≤ 1X \A. Then 1X \A is not
fswg-closed set in (X, τ2). Hence i is not fswg-closed function. Again
γclτ2(1X \ A) = 1X ̸≤ 1X \ A and so 1X \ A is not fgγ∗-closed set in
(X, τ2). Then i is not fgγ∗-closed function. Again 1X \ A < B where
B is an fg-open set in (X, τ2), clτ2(intτ2(1X \A)) = 1X ̸≤ B. So 1X \A
is not fmg-closed set in (X, τ2). So i is not fmg-closed function. Fur-
thermore, 1X \A ∈ FPO(X, τ2) and so 1X \A ≤ 1X \A ∈ FPO(X, τ2),
but pclτ2(1X \ A) = 1X ̸≤ 1X \ A implies 1X \ A is not fpg-closed set
in (X, τ2). Hence i is not fpg-closed function.
Example 4.24. fπg-closed function not necessarily fgα-closed

function, fαg-closed function
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B} where A(a) =
A(b) = 0.5, B(a) = 0.5, B(b) = 0.6. Then (X, τ1) and (X, τ2)
are fts’s. Consider the identity function i : (X, τ1) → (X, τ2).
Here FπO(X, τ2) = {0X , 1X} and so every fuzzy set in (X, τ2) is
fπg-closed set in (X, τ2) and consequently, i is fπg-closed function.
Now FαO(X, τ2) = {0X , 1X , U} where U ≥ B and FαC(X, τ2) =
{0X , 1X , 1X \U} where 1X \U ≤ 1X \B. Now 1X \A ∈ τ c1 , i(1X \A) =
1X \ A. Here 1X \ A < B ∈ τ2 as well as 1X \ A < B ∈ FαO(X, τ2).
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But αclτ2(1X \ A) = 1X ̸≤ B. So 1X \ A is not fgα-closed as well as
fαg-closed set in (X, τ2). Hence i is neither fgα-closed nor fαg-closed
function.

Example 4.25. fπg-closed function may not necessarily fgγ-closed
function
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B, C} where A(a) =
0.5, A(b) = 0.45, B(a) = 0.5, B(b) = 0.6, C(a) = 0.3, C(b) = 0.5.
Then X, τ1) and (X, τ2) are fts’s. Consider the identity function i :
(X, τ1) → (X, τ2). Here FπO(X, τ2) = {0X , 1X , C}. Now 1X \A ∈ τ c1 ,
i(1X \A) = 1X \A < 1X ∈ FπO(X, τ2) only, 1X \A is fπg-closed set
in (X, τ2). So i is fπg-closed function. Again 1X \ A < B ∈ τ2, but
γclτ2(1X \ A) = 1X \ C ̸≤ B. Then 1X \ A is not fgγ-closed set in
(X, τ2). Hence i is not fgγ-closed function.

Example 4.26. fπg-closed function may not necessarily fgβ-
closed function, fβg-closed function
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B} where A(a) =
A(b) = 0.4, B(a) = B(b) = 0.6. Then (X, τ1) and (X, τ2) are
fts’s. Consider the identity function i : (X, τ1) → (X, τ2). Here
FπO(X, τ2) = {0X , 1X}. Now 1X \ A ∈ τ c1 , i(1X \ A) = 1X \ A <
1X ∈ FπO(X, τ2) only and so 1X \ A is fπg-closed set in (X, τ2).
Hence i is fπg-closed function. Again clτ2(intτ2(clτ2B)) = 1X > B
implies B ∈ FβO(X, τ2). Now 1X \ A < B ∈ τ2 as well as
1X \ A < B ∈ FβO(X, τ2). But βclτ2(1X \ A) = 1X ̸≤ B. So 1X \ A
is not fgβ-closed as well as fβg-closed set in (X, τ2). Hence i is not
fgβ-closed as well as fβg-closed function.

Example 4.27. fπg-closed function may not necessarily fgp-closed
function, fwg-closed function
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B, C} where
A(a) = A(b) = 0.5, B(a) = 0.5, B(b) = 0.6, C(a) = 0.3, C(b) = 0.5.
Then (X, τ1) and (X, τ2) are fts’s. Consider the identity function
i : (X, τ1) → (X, τ2). Here FπO(X, τ2) = {0X , 1X , C}. Now
1X \ A ∈ τ c1 , i(1X \ A) = 1X \ A < 1X ∈ FπO(X, τ2) only and so
1X \A is fπg-closed set in (X, τ2) and hence i is fπg-closed function.
Now 1X \ A < B ∈ τ2, but pclτ2(1X \ A) = 1X ̸≤ B. So 1X \ A is
not fgp-closed set in (X, τ2). Then i is not fgp-closed function. Also
clτ2(intτ2(1X \ A)) = 1X \ B ̸≤ B. So 1X \ A is not fwg-closed set in
(X, τ2) and hence i is not fwg-closed function.

Example 4.28. fgp-closed function, fpg-closed function, fgβ-
closed function, fβg-closed function, fgs-closed function, fsg-closed
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function, fgγ-closed function, fgγ∗-closed function, fswg-closed func-
tion, fmg-closed function, fwg-closed function, frwg-closed function
may not imply fπg-closed function
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B} where A(a) =
0.5, A(b) = 0.7, B(a) = 0.5, B(b) = 0.4. Then (X, τ1) and (X, τ2)
are fts’s. Consider the identity function i : (X, τ1) → (X, τ2). Here
FSO(X, τ2) = {0X , 1X , U} where B ≤ U ≤ 1X \ B and the collec-
tion of all fg-open sets in (X, τ2) is {0X , 1X , T} where T ̸≥ 1X \ B.
Here 1X \ A ∈ τ c1 , i(1X \ A) = 1X \ A < B ∈ FπO(X, τ2) = τ2. But
clτ2(1X \ A) = 1X \ B ̸≤ B and so 1X \ A is not fπg-closed set in
(X, τ2). Then i is not fπg-closed function.
Now B ∈ FRO(X, τ2) and clτ2(intτ2(1X \ A)) = 0X < B. So 1X \ A
is frwg-closed set in (X, τ2). Then i is frwg-closed function. Again
B ∈ FSO(X, τ2) and clτ2(intτ2(1X \ A)) = 0X < B. Then 1X \ A
is fswg-closed set in (X, τ2) and hence i is fswg-closed function.
Also 1X \ A is fg-open set in (X, τ2) and so 1X \ A ≤ 1X \ A. Now
clτ2(intτ2(1X \ A)) = 0X < 1X \ A and so 1X \ A is fmg-closed set
in (X, τ2). Then i is fmg-closed function. Again 1X \ A < B ∈ τ2
and clτ2(intτ2(1X \ A)) = 0X < B. Then 1X \ A is fwg-closed set in
(X, τ2) and hence i is fwg-closed function. Since clτ2(intτ2(1X \A)) =
0X < 1X \ A, 1X \ A ∈ FPC(X, τ2) and so 1X \ A is fgp-closed as
well as fpg-closed set in (X, τ2) and so i is fgp-closed as well as fpg-
closed function. Also as intτ2(clτ2(intτ2(1X \ A))) = 0X < 1X \ A,
1X \ A ∈ FβC(X, τ2) and so 1X \ A is fgβ-closed as well as fβg-
closed set in (X, τ2). So i is fgβ-closed as well as fβg-closed func-
tion. Also (clτ2(intτ2(1X \ A)))

∧
(intτ2(clτ2(1X \ A))) = 0X < 1X \ A,

1X \A ∈ FγC(X, τ2) and so 1X \A is fgγ-closed as well as fgγ∗-closed
set in (X, τ2). Then i is fgγ-closed as well as fgγ∗-closed function.
Furthermore, 1X \A < B ∈ τ2 as well as 1X \A ≤ B ∈ FSO(X, τ2) and
sclτ2(1X \ A) = B ≤ B. So 1X \ A is fgs-closed as well as fsg-closed
set in (X, τ2). Hence i is fgs-closed as well as fsg-closed function.

Example 4.29. fgα-closed function, fαg-closed function may not
necessarily fπg-closed function
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B, C} where A(a) =
0.8, A(b) = 0.6, B(a) = 0.5, B(b) = 0.6 and C(a) = 0.3, C(b) = 0.5.
Then (X, τ1) and (X, τ2) are fts’s. Consider the identity function
i : (X, τ1) → (X, τ2). Now 1X \ A ∈ τ c1 , i(1X \ A) = 1X \ A. Since
clτ2(intτ2(clτ2(1X \ A))) = 0X < 1X \ A, 1X \ A ∈ FαC(X, τ2) and
so 1X \ A is fgα-closed as well as fαg-closed set in (X, τ2), therefore
i is fgα-closed as well as fαg-closed function. But 1X \ A < C ∈
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FπO(X, τ2) and clτ2(1X \ A) = 1X \ B ̸≤ C and so 1X \ A is not
fπg-closed set in (X, τ2). Hence i is not fπg-closed function.
Remark 4.30. (i) Let h : X → Y be a function where Y is

an fβTb-space (resp., fTβ-space, fTα-space, fαTb-space, fTb-space,
fTsg-space, fTγ-space, fTγ∗-space, frTg-space, fsTg-space, fTp-space,
fpTb-space, fmTg-space, fTw-space). Then an fβg-closed (resp., fgβ-
closed, fgα-closed, fαg-closed, fgs-closed, fsg-closed, fgγ-closed,
fgγ∗-closed, frwg-closed, fswg-closed, fgp-closed, fpg-closed, fmg-
closed, fwg-closed) function is fπg-closed function.
(ii) Let h : X → Y be a function where Y is an fTπ-space. If h is an
fπg-closed function, then h is an fg-closed function, fgs∗-closed func-
tion, fs∗g-closed function, fgβ-closed function, fβg-closed function,
fgα-closed function, fαg-closed function, fgp-closed function, fpg-
closed function, fgs-closed function, fsg-closed function, fgγ-closed
function, fgγ∗-closed function.

5. fπg-Regular, fπg-Normal and fπg-Compact Spaces

In this section a new type of generalized version of fuzzy regularity,
fuzzy normality and fuzzy compactness are introduced and studied.
It is also shown that these three concepts are weak concepts of fuzzy
regularity [20], fuzzy normality [19] and fuzzy compactness [14].

Definition 5.1. An fts (X, τ) is said to be fπg-regular space if for
any fuzzy point xt in X and each fπg-closed set F in X with xt ̸∈ F ,
there exist U, V ∈ FRO(X) such that xt ∈ U, F ≤ V and U ̸ qV .

Theorem 5.2. In an fts (X, τ), the following statements are equiv-
alent:
(i) X is fπg-regular,
(ii) for each fuzzy point xt in X and any fπg-open q-nbd U of xt, there
exists V ∈ FRO(X) such that xt ∈ V and clV ≤ U ,
(iii) for each fuzzy point xt in X and each fπg-closed set A of X with
xt ̸∈ A, there exists U ∈ FRO(X) with xt ∈ U such that clU ̸ qA.

Proof (i) ⇒ (ii). Let xt be a fuzzy point in X and U , any fπg-open
q-nbd of xt. Then xtqU implies U(x)+ t > 1 and so xt ̸∈ 1X \U which
is an fπg-closed set in X. By (i), there exist V,W ∈ FRO(X) such
that xt ∈ V, 1X \ U ≤ W and V ̸ qW . Then V ≤ 1X \ W and so
clV ≤ cl(1X \W ) = 1X \W ≤ U .
(ii) ⇒ (iii). Let xt be a fuzzy point in X and A, an fπg-closed set
in X with xt ̸∈ A. Then A(x) < t and so xtq(1X \ A) which being
fπg-open set in X is fπg-open q-nbd of xt. So by (ii), there exists
V ∈ FRO(X) such that xt ∈ V and clV ≤ 1X \ A. Then clV ̸ qA.
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(iii) ⇒ (i). Let xt be a fuzzy point in X and F be any fπg-closed set
in X with xt ̸∈ F . Then by (iii), there exists U ∈ FRO(X) such that
xt ∈ U and clU ̸ qF . Then F ≤ 1X \ clU (=V , say). So V ∈ FRO(X)
and V ̸ qU as U ̸ q(1X \ clU). Consequently, X is fπg-regular space.
Definition 5.3. An fts (X, τ) is called fπg-normal space if for

each pair of fπg-closed sets A,B in X with A ̸ qB, there exist
U, V ∈ FRO(X) such that A ≤ U,B ≤ V and U ̸ qV .
Theorem 5.4. An fts (X, τ) is fπg-normal space if and only if for

every fπg-closed set F and fπg-open set G in X with F ≤ G, there
exists H ∈ FRO(X) such that F ≤ H ≤ clH ≤ G.
Proof. Let X be fπg-normal space and let F be fπg-closed set and

G be fπg-open set in X with F ≤ G. Then F ̸ q(1X \G) where 1X \G
is fπg-closed set in X. By hypothesis, there exist H,T ∈ FRO(X)
such that F ≤ H, 1X \ G ≤ T and H ̸ qT . Then H ≤ 1X \ T ≤ G.
Therefore, F ≤ H ≤ clH ≤ cl(1X \ T ) = 1X \ T ≤ G.

Conversely, let A,B be two fπg-closed sets in X with A ̸ qB. Then
A ≤ 1X \ B. By hypothesis, there exists H ∈ FRO(X) such that
A ≤ H ≤ clH ≤ 1X \ B. Then A ≤ H,B ≤ 1X \ clH (=V , say).
Then V ∈ FRO(X) and so B ≤ V . Also as H ̸ q(1X \ clH), H ̸ qV .
Consequently, X is fπg-normal space.
Let us now recall the following definitions from [14, 18] for ready

references.
Definition 5.5. Let (X, τ) be an fts and A ∈ IX . A collection U

of fuzzy sets in X is called a fuzzy cover of A if
⋃
U ≥ A [18]. If each

member of U is fuzzy open (resp., fuzzy regular open, fπg-open) in
X, then U is called a fuzzy open [18] (resp., fuzzy regular open [1],
fπg-open) cover of A. If, in particular, A = 1X , we get the definition
of fuzzy cover of X as

⋃
U = 1X [14].

Definition 5.6. Let (X, τ) be an fts and A ∈ IX . Then a fuzzy
cover U of A (resp., of X) is said to have a finite subcover U0 if U0 is
a finite subcollection of U such that

⋃
U0 ≥ A [18]. If, in particular

A = 1X , we get
⋃

U0 = 1X [14].
Definition 5.7. Let (X, τ) be an fts and A ∈ IX . Then A is called

fuzzy compact [14] (resp., fuzzy almost compact [15], fuzzy nearly
compact [21]) set if every fuzzy open (resp., fuzzy open, fuzzy regular
open) cover U of A has a finite subcollection U0 such that

⋃
U0 ≥ A

(resp.,
⋃

U∈U0

clU ≥ A,
⋃

U0 ≥ A). If, in particular, A = 1X , we get

the definition of fuzzy compact [14] (resp., fuzzy almost compact [15],
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fuzzy nearly compact [16]) space as
⋃
U0 = 1X (resp.,

⋃
U∈U0

clU = 1X ,⋃
U0 = 1X).
Let us now introduce the following concept.
Definition 5.8. Let (X, τ) be an fts and A ∈ IX . Then A is called

fπg-compact if every fuzzy cover U of A by fπg-open sets of X has
a finite subcover. If, in particular, A = 1X , we get the definition of
fπg-compact space X.

Theorem 5.9. Every fπg-closed set in an fπg-compact space X
is fπg-compact.

Proof. Let A(∈ IX) be an fπg-closed set in an fπg-compact space
X. Let U be a fuzzy cover of A by fπg-open sets of X. Then
V = U

⋃
(1X \A) is a fuzzy cover of X by fπg-open sets of X. As X is

fπg-compact space, V has a finite subcollection V0 which also covers
X. If V0 contains 1X \ A, we omit it and get a finite subcover of A.
Hence A is fπg-compact set.
Next we recall the following two definitions from [20, 19] for ready

references.
Definition 5.10 [20]. An fts (X, τ) is called fuzzy regular space if

for each fuzzy point xt in X and each fuzzy closed set F in X with
xt ̸∈ F , there exist U, V ∈ τ such that xt ∈ U , F ≤ V and U ̸ qV .

Definition 5.11 [19]. An fts (X, τ) is called fuzzy normal space if
for each pair of fuzzy closed sets A,B of X with A ̸ qB, there exist
U, V ∈ τ such that A ≤ U,B ≤ V and U ̸ qV .

Remark 5.10. It is clear from above discussion that (i) fπg-regular
(resp., fπg-normal) space is fuzzy regular (resp., fuzzy normal) space,
(ii) fπg-compact space is fuzzy compact, fuzzy almost compact, fuzzy
nearly compact space,
(iii) in fTπ-space, fuzzy compactness implies fπg-compactness.

6. fπg-Continuous and fπg-Irresolute Functions

In this section two new types of generalized version of fuzzy func-
tions, viz,. fπg-continuous function and fπg-irresolute function are
introduced and characterized by fπg-closed set. It is shown that fπg-
continuous image of an fπg-regular (resp., fπg-normal, fπg-compact)
space is fuzzy regular (resp., fuzzy normal, fuzzy compact, fuzzy al-
most compact, fuzzy nearly compact) space. Also under fπg-irresolute
function, fπg-regularity (resp., fπg-normality, fπg-compactness) re-
mains invariant. Lastly, the mutual relationship of fπg-continuous
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function with the functions defined in [3, 5, 7, 9, 10, 11] are estab-
lished.

Now we first introduce the following concept.
Definition 6.1. A function h : X → Y is said to be fuzzy π-

generalized continuous (fπg-continuous, for short) function if h−1(V )
is fπg-closed set in X for every fuzzy closed set V in Y .
Theorem 6.2. Let h : (X, τ) → (Y, σ) be a function. Then the

following statements are equivalent:
(i) h is fπg-continuous function,
(ii) for each fuzzy point xα in X and each fuzzy open nbd V of h(xα)
in Y , there exists an fπg-open nbd U of xα in X such that h(U) ≤ V ,
(iii) h(fπgcl(A)) ≤ cl(h(A)), for all A ∈ IX ,
(iv) fπgcl(h−1(B)) ≤ h−1(clB), for all B ∈ IY .
Proof (i) ⇒ (ii). Let xα be a fuzzy point in X and V , any fuzzy

open nbd of h(xα) in Y . Then xα ∈ h−1(V ) which is fπg-open in X
(by (i)). Let U = h−1(V ). Then h(U) = h(h−1(V )) ≤ V .
(ii) ⇒ (i). Let A be any fuzzy open set in Y and xα, a fuzzy
point in X such that xα ∈ h−1(A). Then h(xα) ∈ A where A is
a fuzzy open nbd of h(xα) in Y . By (ii), there exists an fπg-open
nbd U of xα in X such that h(U) ≤ A. Then xα ∈ U ≤ h−1(A).
So xα ∈ U = fπgint(U) ≤ fπgint(h−1(A)). Since xα is taken
arbitrarily and h−1(A) is the union of all fuzzy points in h−1(A),
h−1(A) ≤ fπgint(h−1(A)). Then h−1(A) is an fπg-open set in X.
Hence h is an fπg-continuous function.
(i) ⇒ (iii). Let A ∈ IX . Then cl(h(A)) is a fuzzy
closed set in Y . By (i), h−1(cl(h(A))) is fπg-closed set in
X. Now A ≤ h−1(h(A)) ≤ h−1(cl(h(A))) and so fπgcl(A) ≤
fπgcl(h−1(cl(h(A)))) = h−1(cl(h(A))). Hence h(fπgcl(A)) ≤
cl(h(A)).
(iii) ⇒ (i). Let V be a fuzzy closed set in Y . Put U = h−1(V ). Then
U ∈ IX . By (iii), h(fπgcl(U)) ≤ cl(h(U)) = cl(h(h−1(V ))) ≤ clV =
V . Then fπgcl(U) ≤ h−1(V ) = U and so U is fπg-closed set in X.
Hence h is fπg-continuous function.
(iii) ⇒ (iv). Let B ∈ IY and A = h−1(B). Then A ∈ IX . By (iii),
h(fπgcl(A)) ≤ cl(h(A)) and so h(fπgcl(h−1(B))) ≤ cl(h(h−1(B))) ≤
clB. Hence fπgcl(h−1(B)) ≤ h−1(clB).
(iv) ⇒ (iii). Let A ∈ IX . Then h(A) ∈ IY . By
(iv), fπgcl(h−1(h(A))) ≤ h−1(cl(h(A))). So fπgcl(A) ≤
fπgcl(h−1(h(A))) ≤ h−1(cl(h(A))). Then h(fπgcl(A)) ≤ cl(h(A)).
Remark 6.3. Composition of two fπg-continuous functions need
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not be so, as it seen from the following example.
Example 6.4. Let X = {a, b}, τ1 = {0X , 1X , B}, τ2 = {0X , 1X},

τ3 = {0X , 1X , A} where A(a) = 0.8, A(b) = 0.5, B(a) = 0.3, B(b) =
0.5. Then (X, τ1), (X, τ2) and (X, τ3) are fts’s. Consider two iden-
tity functions i1 : (X, τ1) → (X, τ2) and i2 : (X, τ2) → (X, τ3). Then
clearly i1 and i2 are fπg-continuous functions. Now 1X \ A ∈ τ c3 . So
(i2 ◦ i1)−1(1X \ A) = 1X \ A ≤ B ∈ FπO(X, τ1). But clτ1(1X \ A) =
1X \B ̸≤ B and so 1X \A is not fπg-closed set in (X, τ1). Then i2 ◦ i1
is not an fπg-continuous function.
Let us now recall the following definition from [14] for ready refer-

ences.
Definition 6.5 [14]. A function h : X → Y is called fuzzy contin-

uous function if h−1(V ) is fuzzy closed set in X for every fuzzy closed
set V in Y .

Remark 6.6. Since every fuzzy closed set is fπg-closed set, it is
clear that fuzzy continuous function is fπg-continuous function. But
the converse is not necessarily true, as the following example shows.

Example 6.7. Let X = {a, b}, τ1 = {0X , 1X}, τ2 = {0X , 1X , A}
where A(a) = A(b) = 0.5. Then (X, τ1) and (X, τ2) are fts’s. Consider
the identity function i : (X, τ1) → (X, τ2). Since every fuzzy set in
(X, τ1) is fπg-closed set in (X, τ), clearly i is fπg-continuous function.
But A ∈ τ c2 , i

−1(A) = A ̸∈ τ c1 . Hence i is not fuzzy continuous func-
tion.

Theorem 6.8. If h1 : X → Y is fπg-continuous function and
h2 : Y → Z is fuzzy continuous function, then h2 ◦ h1 : X → Z is
fπg-continuous function.

Proof. Obvious.
Theorem 6.9. If a bijective function h : X → Y is fπg-continuous,

fuzzy open function from an fπg-regular space X onto an fts Y , then
Y is fuzzy regular space.

Proof. Let yα be a fuzzy point in Y and F , a fuzzy closed set
in Y with yα ̸∈ F . As h is bijective, there exists unique x ∈ X
such that h(x) = y. So h(xα) ̸∈ F implies xα ̸∈ h−1(F ) where
h−1(F ) is fπg-closed set in X (as h is an fπg-continuous function).
As X is fπg-regular space, there exist U, V ∈ FRO(X) such that
xα ∈ U, h−1(F ) ≤ V and U /qV . Then h(xα) ∈ h(U), F = h(h−1(F ))
(as h is bijective)≤ h(V ) and h(U) /qh(V ) where h(U) and h(V ) are
fuzzy open sets in Y (as h is a fuzzy open function and fuzzy reg-
ular open set is fuzzy open set). (Indeed, h(U)qh(V ) implies the
existence of z ∈ Y such that [h(U)](z) + [h(V )](z) > 1, hence
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U(h−1(z)) + V (h−1(z)) > 1 as h is bijective implies UqV , a contradic-
tion). Hence Y is a fuzzy regular space.
In a similar manner we can state the following theorems easily the

proofs of which are same as that of Theorem 6.9.
Theorem 6.10. If a bijective function h : X → Y is fπg-

continuous, fuzzy open function from a fuzzy regular (resp., fuzzy
normal), fTπ-space X onto an fts Y , then Y is fuzzy regular (resp.,
fuzzy normal) space.

Theorem 6.11. If a bijective function h : X → Y is fπg-
continuous, fuzzy open function from an fπg-normal space X onto
an fts Y , then Y is fuzzy normal space.

Let us now recall the following definition from [12] for ready refer-
ences.

Definition 6.12 [12]. A function h : X → Y is called fuzzy R-open
function if h(U) ∈ FRO(Y ) for every U ∈ FRO(X).
Now we state the following theorem easily the proof of which is same

as that of Theorem 6.9.
Theorem 6.12. If a bijective function h : X → Y is fπg-

continuous, fuzzy R-open function from an fπg-regular (resp., fπg-
normal) space X onto an fts Y , then Y is fuzzy regular (resp., fuzzy
normal) space.

Definition 6.14. A function h : X → Y is called fuzzy π-
generalized irresolute (fπg-irresolute, for short) function if h−1(U) is
an fπg-open set in X for every fπg-open set U in Y .

Now we state the following two theorems easily the proofs of which
are similar to that of Theorem 6.9.

Theorem 6.15. If a bijective function h : X → Y is fπg-irresolute,
fuzzy R-open function from an fπg-regular (resp., fπg-normal) space
X onto an fts Y , then Y is fπg-regular (resp., fπg-normal) space.
Theorem 6.16. If a bijective function h : X → Y is fπg-irresolute,

fuzzy R-open function from an fπg-regular (resp., fπg-normal) space
X onto an fts Y , then Y is fuzzy regular (resp., fuzzy normal) space.

Theorem 6.17. If a bijective function h : X → Y is fπg-irresolute,
fuzzy open function from a fuzzy regular (resp., fuzzy normal), fTπ-
space X onto an fts Y , then Y is fuzzy regular (resp., fuzzy normal)
space.

Theorem 6.18. If a bijective function h : X → Y is fπg-irresolute,
fuzzy open function from an fπg-regular (resp., fπg-normal) space X
onto an fts Y , then Y is fuzzy regular (resp., fuzzy normal) space.
Theorem 6.19. A function h : X → Y is fπg-irresolute function iff
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for each fuzzy point xα in X and each fπg-open nbd V in Y of h(xα),
there exists an fπg-open nbd U in X of xα such that h(U) ≤ V .
Proof. Let h : X → Y be an fπg-irresolute function. Let xα be a

fuzzy point in X and V be any fπg-open nbd of h(xα) in Y . Then
h(xα) ∈ V implies xα ∈ h−1(V ), but h−1(V ) is an fπg-open set in X,
therefore is an fπg-open nbd of xα in X. Put U = h−1(V ). Then U
is an fπg-open nbd of xα in X and h(U) = h(h−1(V )) ≤ V .

Conversely, let A be an fπg-open set in Y and xα be any fuzzy
point in X such that xα ∈ h−1(A). Then h(xα) ∈ A. By hypothesis,
there exists an fπg-open nbd U of xα in X such that h(U) ≤ A and so
xα ∈ U = fπgint(U) ≤ fπgint(h−1(A)). Since xα is taken arbitrar-
ily and h−1(A) is the union of all fuzzy points in h−1(A), h−1(A) ≤
fπgint(h−1(A)) implies h−1(A) = fπgint(h−1(A)). Then h−1(A) is
fπg-open set in X. Hence h is an fπg-irresolute function.

Theorem 6.20. Let h : X → Y be an fπg-continuous function
from X onto an fts Y and A(∈ IX) be an fπg-compact set in X.
Then h(A) is a fuzzy compact (resp., fuzzy almost compact, fuzzy
nearly compact) set in Y .

Proof. Let U = {Uα : α ∈ Λ} be a fuzzy cover of h(A) by
fuzzy open (resp., fuzzy open, fuzzy regular open) sets of Y . Then

h(A) ≤
⋃
α∈Λ

Uα implies A ≤ h−1(
⋃
α∈Λ

Uα) =
⋃
α∈Λ

h−1(Uα). Then

V = {h−1(Uα) : α ∈ Λ} is a fuzzy cover of A by fπg-open sets of
X as h is an fπg-continuous function. As A is fπg-compact set in X,

there exists a finite subcollection Λ0 of Λ such that A ≤
⋃
α∈Λ0

h−1(Uα)

implies h(A) ≤ h(
⋃
α∈Λ0

h−1(Uα) ≤
⋃
α∈Λ0

Uα. Hence h(A) is fuzzy com-

pact (resp., fuzzy almost compact, fuzzy nearly compact) set in Y .
Since fuzzy open set fπg-open, we can state the following theorems

easily the proofs of which are same as that of Theorem 6.20.
Theorem 6.21. Let h : X → Y be an fπg-irresolute function from

X onto an fts Y and A(∈ IX) be an fπg-compact set in X. Then
h(A) is fπg-compact (resp., fuzzy compact, fuzzy almost compact,
fuzzy nearly compact) set in Y .
Theorem 6.22. Let h : X → Y be an fπg-continuous function

from an fπg-compact space X onto an fts Y . Then Y is fuzzy com-
pact (resp., fuzzy almost compact, fuzzy nearly compact) space.

Theorem 6.23. Let h : X → Y be an fπg-irresolute function from
an fπg-compact space X onto an fts Y . Then Y is fπg-compact
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(resp., fuzzy compact, fuzzy almost compact, fuzzy nearly compact)
space.

Theorem 6.24. Let h : X → Y be an fπg-continuous function
from a fuzzy compact, fTπ-space X onto an fts Y . Then Y is fuzzy
compact (resp., fuzzy almost compact, fuzzy nearly compact) space.

Theorem 6.25. Let h : X → Y be an fπg-irresolute function from
a fuzzy compact, fTπ-space X onto an fts Y . Then Y is fπg-compact
(resp., fuzzy compact, fuzzy almost compact, fuzzy nearly compact)
space.

Remark 6.26. It is clear from definitions that (i) fπg-irresolute
function is fπg-continuous, but the converse may not be true, as the
following example shows.
Also (ii) fuzzy continuity and fπg-irresoluteness are independent con-
cepts as the following examples show.

Example 6.27. fπg-continuous function may not necessarily fπg-
irresolute function
Let X = {a, b}, τ1 = {0X , 1X , B, C}, τ2 = {0X , 1X , A} where
A(a) = A(b) = 0.5, B(a) = 0.5, B(b) = 0.6, C(a) = 0.3, C(b) = 0.5.
then (X, τ1) and (X, τ2) are fts’s. Consider the identity function
i : (X, τ1) → (X, τ2). Now 1X \ A ∈ τ c2 , i

−1(1X \ A) = 1X \ A <
1X ∈ FπO(X, τ1) only and so 1X \ A is fπg-closed set in (X, τ1).
Hence i is fπg-continuous function. Now consider the fuzzy set D
defined by D(a) = 0.2, D(b) = 0.5. Then D < A ∈ FπO(X, τ2)
and clτ2D = A ≤ A. So D is fπg-closed set in (X, τ2). Now
i−1(D) = D < C ∈ FπO(X, τ1). But clτ1(D) = 1X \ C ̸≤ C. So
D is not fπg-closed set in (X, τ1). Hence i is not an fπg-irresolute
function.

Example 6.28. Fuzzy continuity may not necessarily fπg-
irresolute function
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X} where A(a) =
0.5, A(b) = 0.4. Then (X, τ1) and (X, τ2) are fts’s. Consider the
identity function i : (X, τ1) → (X, τ2). Here every fuzzy set in (X, τ2)
is fπg-closed set in (X, τ2). Let us consider the fuzzy set B defined
by B(a) = 0.5, B(b) = 0.3. Then B is fπg-closed set in (X, τ2). Now
i−1(B) = B < A ∈ FπO(X, τ1). But clτ1(B) = 1X \ A ̸≤ A. So
B is not fπg-closed set in (X, τ1). Hence i is not an fπg-irresolute
function. But clearly i is fuzzy continuous function.
Example 6.29. fπg-irresoluteness may not necessarily imply fuzzy

continuity
Let X = {a, b}, τ1 = {0X , 1X}, τ2 = {0X , 1X , A} where A(a) = A(b) =
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0.5. Then (X, τ1) and (X, τ2) are fts’s. Consider the identity function
i : (X, τ1) → (X, τ2). Since every fuzzy set in (X, τ1) is fπg-closed
set in (X, τ1), clearly i is fπg-irresolute function. Also i is not fuzzy
continuous function as A ∈ τ2, i

−1(A) = A ̸∈ τ1.
Theorem 6.30. Let h : X → Y be an fπg-continuous function

where Y is an fTπ-space. Then h is fπg-irresolute function.
Proof. Obvious.
Note 6.31. It is clear from definition that composition of two fπg-

irresolute functions is fπg-irresolute function. Again if h1 : X → Y is
fπg-irresolute function and h2 : Y → Z is fπg-continuous function,
then h2 ◦ h1 : X → Z is an fπg-continuous function.
To establish the mutual relationship of fπg-continuous function

with the functions defined in [3, 5, 6, 7, 9, 10, 11], we first recall
the definitions of the functions defined in [3, 5, 6, 7, 9, 10, 11].

Definition 6.32. Let h : (X, τ1) → (Y, τ2) be a function. Then h
is called
(i) fg-continuous function [3] if h−1(V ) is fg-closed set in X for every
V ∈ τ c2 ,
(ii) fgβ-continuous function [7] if h−1(V ) is fgβ-closed set in X for
every V ∈ τ c2 ,
(iii) fβg-continuous function [7] if h−1(V ) is fβg-closed set in X for
every V ∈ τ c2 ,
(iv) fgp-continuous function [3] if h−1(V ) is fgp-closed set in X for
every V ∈ τ c2 ,
(v) fpg-continuous function [3] if h−1(V ) is fpg-closed set in X for
every V ∈ τ c2 ,
(vi) fgα-continuous function [3] if h−1(V ) is fgα-closed set in X for
every V ∈ τ c2 ,
(vii) fαg-continuous function [3] if h−1(V ) is fαg-closed set in X for
every V ∈ τ c2 ,
(viii) fgs-continuous function [3] if if h−1(V ) is fgs-closed set in X
for every V ∈ τ c2 ,
(ix) fsg-continuous function [3] if h−1(V ) is fsg-closed set in X for
every V ∈ τ c2 ,
(x) fgs∗-continuous function [5] if h−1(V ) is fgs∗-closed set in X for
every V ∈ τ c2 ,
(xi) fs∗g-continuous function [6] if h−1(V ) is fs∗g-closed set in X for
every V ∈ τ c2 ,
(xii) fgγ-continuous function [10] if h−1(V ) is fgγ-closed set in X for
every V ∈ τ c2 ,
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(xiii) fgγ∗-continuous function [11] if h−1(V ) is fgγ∗-closed set in X
for every V ∈ τ c2 ,
(xiv) frwg-continuous function [9] if h−1(V ) is frwg-closed set in X
for every V ∈ τ c2 ,
(xv) fswg-continuous function [9] if h−1(V ) is fswg-closed set in X
for every V ∈ τ c2 ,
(xvi) fmg-continuous function [9] if h−1(V ) is fmg-closed set in X for
every V ∈ τ c2 ,
(xvii) fwg-continuous function [9] if h−1(V ) is fwg-closed set in X for
every V ∈ τ c2 .

Remark 6.33. (i) fg-continuity implies fπg-continuity,
fgs∗-continuity implies fπg-continuity, fs∗g-continuity implies
fπg-continuity and fπg-continuity implies frwg-continuity, fπg-
irresoluteness implies frwg-continuity. But the reverse implications
are not necessarily true, in general, as the following examples show.
(ii) fπg-continuity is an independent concept of fgβ-continuity,
fβg-continuity, fgp-continuity, fpg-continuity, fgα-continuity, fαg-
continuity, fgs-continuity, fsg-continuity, fgγ-continuity, fgγ∗-
continuity, fswg-continuity, fmg-continuity, fwg-continuity.

Example 6.34. fπg-continuity may not necessarily fg-continuity,
fgs-continuity, fsg-continuity, fgs∗-continuity, fs∗g-continuity
Let X = {a, b}, τ1 = {0X , 1X , B}, τ2 = {0X , 1X , A} where A(a) =
0.6, A(b) = 0.5, B(a) = 0.5, B(b) = 0.6. Then (X, τ1) and (X, τ2)
are fts’s. Consider the identity function i : (X, τ1 → (X, τ2). Since
FπO(X, τ1) = {0X , 1X}, every fuzzy set in (X, τ1) is fπg-closed set
in (X, τ1) implies i is fπg-continuous function. Now 1X \ A ∈ τ c2 ,
i−1(1X \ A) = 1X \ A < B ∈ τ1 (also B ∈ FSO(X, τ1) = {0X , 1X , U}
where U ≥ B) and clτ1(1X \ A) = 1X ̸≤ B (resp., sclτ1(1X \ A) =
1X ̸≤ B) implies 1X \A is not fg-closed (resp., fgs-closed, fsg-closed,
fgs∗-closed) set in (X, τ1). Hence i is not fg-continuous (resp., fgs-
continuous, fsg-continuous, fgs∗-continuous) function. Again B is
fg-open set in (X, τ1). Then 1X \A < B, but clτ1(1X \A) = 1X ̸≤ B.
So 1X \ A is not fs∗g-closed set in (X, τ1). Hence i is not fs∗g-
continuous function.

Example 6.35. fπg-continuity may not necessarily fgβ-continuity,
fβg-continuity
Let X = {a, b}, τ1 = {0X , 1X , B}, τ2 = {0X , 1X , A} where A(a) =
A(b) = 0.4, B(a) = B(b) = 0.6. Then (X, τ1) and (X, τ2) are fts’s.
Consider the identity function i : (X, τ1) → (X, τ2). Since every fuzzy
set in (X, τ1) is fπg-closed set in (X, τ1), i is clearly fπg-continuous
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function. Now 1X \ A ∈ τ c2 , i
−1(1X \ A) = 1X \ A ≤ B ∈ τ1 (also

B ∈ FβO(X, τ1) = {0X , 1X , U} where U ≥ B). But βclτ1(1X \ A) =
1X ̸≤ B. Hence 1X \ A is not fgβ-closed (resp., fβg-closed) set in
(X, τ1) and so i is not fgβ-continuous (resp., fβg-continuous) func-
tion.

Example 6.36. fπg-continuity may not necessarily fswg-
continuity, fgγ∗-continuity, fpg-continuity, fmg-continuity
Let X = {a, b}, τ1 = {0X , 1X , B}, τ2 = {0X , 1X , A} where A(a) =
A(b) = 0.4, B(a) = 0.5, B(b) = 0.6. Then (X, τ1) and (X.τ2 are fts’s.
Consider the identity function i : (X.τ1) → (X, τ2). As every fuzzy
set in (X, τ1) is fπg-closed set in (X, τ1), clearly i is fπg-continuous
function. Now 1X \A ∈ τ c2 , i

−1(1X \A) = 1X \A < B ∈ FSO(X, τ1).
But clτ1(intτ1(1X \ A)) = 1X ̸≤ B. So 1X \ A is not fswg-closed
set in (X, τ1) and so i is not fswg-continuous function. Again
γclτ1(1X \A) = 1X ̸≤ B implies 1X \A is not fgγ∗-closed set in (X, τ1)
and so i is not fgγ∗-continuous function. Again 1X \A ∈ FPO(X, τ1)
and so 1X \A ≤ 1X \A ∈ FPO(X, τ1). But 1X \A ̸∈ FPC(X, τ1) and
so pclτ1(1X \ A) ̸≤ 1X \ A. So 1X \ A is not fpg-closed set in (X, τ1).
Hence i is not fpg-continuous function. Again 1X \A is fg-open set in
(X, τ1) and so 1X \A ≤ 1X \A. But clτ1(intτ1(1X \A)) = 1X ̸≤ 1X \A.
Then 1X \ A is not fmg-closed set in (X, τ1). Consequently, i is not
fmg-continuous function.

Example 6.37. fπg-continuity may not necessarily fgα-continuity,
fαg-continuity
Let X = {a, b}, τ1 = {0X , 1X , B}, τ2 = {0X , 1X , A} where A(a) =
A(b) = 0.5, B(a) = 0.5, B(b) = 0.6. Then (X, τ1) and (X, τ2) are
fts’s. Consider the identity function i : (X, τ1) → (X, τ2). As ev-
ery fuzzy set in (X, τ1) is fπg-closed set in (X, τ1), clearly i is fπg-
continuous function. Now 1X \ A ∈ τ c2 , i

−1(1X \ A) = 1X \ A. Here
1X \A < B ∈ τ1 (also B ∈ FαO(X, τ1) = {0X , 1X , U} where U ≥ B).
So αclτ1(1X \ A) = 1X ̸≤ B. Then 1X \ A is not fgα-closed (resp.,
fαg-closed) set in (X, τ1). Hence i is not fgα-continuous (resp., fαg-
continuous) function.

Example 6.38. fπg-continuity may not necessarily fwg-continuity
Consider Example 6.27. Here i is fπg-continuous function. Now
1X \A ∈ τ c2 , i

−1(1X \A) = 1X \A < B ∈ τ1. But clτ1(intτ1(1X \A)) =
1X \C ̸≤ B and so 1X \A is not fwg-closed set in (X, τ1). Hence i is
not fwg-continuous function.

Example 6.39. fπg-continuity may not necessarily fgγ-continuity
Let X = {a, b}, τ1 = {0X , 1X , B, C}, τ2 = {0X , 1X , A} where A(a) =
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0.5, A(b) = 0.45, B(a) = 0.5, B(b) = 0.6, C(a) = 0.3, C(b) = 0.5.
Then (X, τ1) and (X, τ2) are fts’s. Consider the identity function
i : (X, τ1) → (X, τ2). Now 1X \ A ∈ τ c2 , i

−1(1X \ A) = 1X \ A <
1X ∈ FπO(X, τ1) only and so 1X \ A is fπg-closed set in (X, τ1)
implies i is fπg-continuous function. But 1X \ A < B ∈ τ1 and
γclτ1(1X \A) = 1X \C ̸≤ B. So 1X \A is not fgγ-closed set in (X, τ1).
Hence i is not fgγ-continuous function.
Example 6.40. fπg-continuity may not necessarily fgp-continuity

Let X = {a, b}, τ1 = {0X , 1X , B, C}, τ2 = {0X , 1X , A} where
A(a) = A(b) = 0.5, B(a) = 0.5, B(b) = 0.6, C(a) = 0.3, C(b) = 0.5.
Then (X, τ1) and (X, τ2) are fts’s. Consider the identity function
i : (X, τ1) → (X, τ2). Now 1X \ A ∈ τ c2 , i

−1(1X \ A) = 1X \ A <
1X ∈ FπO(X, τ1) only, clearly 1X \ A is fπg-closed set in (X, τ1).
So i is fπg-continuous function. Now 1X \ A < B ∈ τ1. But
pclτ1(1X \ A) = 1X ̸≤ B. So 1X \ A is not fgp-closed set in (X, τ1).
Hence i is not fgp-continuous function.
Example 6.41. frwg-continuity, fgγ-continuity, fgγ∗-continuity,

fgp-continuity, fpg-continuity, fgβ-continuity, fβg-continuity, fswg-
continuity, fmg-continuity, fwg-continuity may not necessarily fπg-
continuity
Let X = {a, b}, τ1 = {0X , 1X , B}, τ2 = {0X , 1X , A} where A(a) =
0.5, A(b) = 0.7, B(a) = 0.5, B(b) = 0.4. Then (X, τ1) and (X, τ2)
are fts’s. Consider the identity function i : (X, τ) → (X, τ2). Now
1X\A ∈ τ c2 , i

−1(1X\A) = 1X\A < B ∈ FπO(X, τ1), but clτ1(1X\A) =
1X \ B ̸≤ B. So 1X \ A is not fπg-closed set in (X, τ1). Hence i is
not fπg-continuous function. Now 1X \ A < B ∈ FRO(X, τ1) and
clτ1(intτ1(1X\A)) = 0X < B. Then 1X\A is frwg-closed set in (X, τ1).
Hence i is frwg-continuous function. Now γclτ1(1X \A) = 1X \A im-
plies 1X \A ∈ FγC(X, τ1). Then 1X \A is fgγ-closed as well as fgγ∗-
closed set in (X, τ1). So i is fgγ-continuous as well as fgγ∗-continuous
function. Again 1X \A ∈ FPC(X, τ1) implies 1X \A is fgp-closed as
well as fpg-closed set in (X, τ1). Hence i is fgp-continuous as well as
fpg-continuous function. Also 1X \A ∈ FβC(X, τ1). So 1X \A is fgβ-
closed as well as fβg-closed set in (X, τ1). Hence i is fgβ-continuous as
well as fβg-continuous function. Now 1X \A < B ∈ FSO(X, τ1) and
clτ1(intτ1(1X \A)) = 0X < B. So 1X \A is fswg-closed set in (X, τ1).
Then i is fswg-continuous function. Again 1X \ A is fg-open set in
(X, τ1) and so 1X \A ≤ 1X \A and clτ1(intτ1(1X \A)) = 0X < 1X \A
implies 1X \A is fmg-closed set in (X, τ1) implies i is fmg-continuous
function. Again 1X \ A < B ∈ τ1 and clτ1(intτ1(1X \ A)) = 0X < B
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and so 1X \A is fwg-closed set in (X, τ1). Hence i is fwg-continuous
function.

Example 6.42. fgα-continuity, fαg-continuity, fgs-continuity,
fsg-continuity may not necessarily fπg-continuity
Let X = {a, b}, τ1 = {0X , 1X , B, C}, τ2 = {0X , 1X , A} where A(a) =
0.8, A(b) = 0.6, B(a) = 0.5, B(b) = 0.6, C(a) = 0.3, C(b) = 0.5.
Then (X, τ1) and (X, τ2) are fts’s. Consider the identity function
i : (X, τ1) → (X, τ2). Here 1X \ A ∈ τ c2 , i−1(1X \ A) = 1X \ A.
As clτ1(intτ1(clτ1(1X \ A))) = 0X < 1X \ A, 1X \ A ∈ FαC(X, τ1).
So 1X \ A is fgα-closed as well as fαg-closed set in (X, τ1). Hence
i is fgα-continuous as well as fαg-continuous function. Also as
intτ1(clτ1(1X \ A)) = 0X < 1X \ A, so 1X \ A ∈ FSC(X, τ1). Then
1X \ A is fgs-closed as well as fsg-closed set in (X, τ1). Hence i is
fgs-continuous as well as sfg-continuous function. But 1X \A < C ∈
FπO(X, τ1) and clτ1(1X \ A) = 1X \ B ̸≤ C. Then 1X \ A is not
fπg-closed set in (X, τ1). Hence i is not fπg-continuous function.
Example 6.43. frwg-continuity may not necessarily imply fπg-

irresoluteness
Consider Example 6.40. Here i is frwg-continuous function. Here
every fuzzy set in (X, τ2) is fπg-closed set in (X, τ2). Consider the
fuzzy set C defined by C(a) = 0.5, C(b) = 0.3. Then C is fπg-
closed set in (X, τ2). Now i−1(C) = C < B ∈ FπO(X, τ1). But
clτ1(C) = 1X \B ̸≤ C and so C is not fπg-closed set in (X, τ1). Hence
i is not fπg-irresolute function.

7. fπg-T2 Space

A new type of fuzzy T2-property is introduced here. Then we in-
troduce a strong form of fπg-continuity which implies fπg-continuity
and the converse is true on fTπ-space.

We first recall the definition and theorem from [20, 21] for ready
references.

Definition 7.1 [20]. An fts (X, τ) is called fuzzy T2-space if for
any two distinct fuzzy points xα and yβ; when x ̸= y, there exist
fuzzy open sets U1, U2, V1, V2 such that xα ∈ U1, yβqV1, U1 ̸ qV1 and
xαqU2, yβ ∈ V2, U2 ̸ qV2; when x = y and α < β (say), there exist fuzzy
open sets U and V in X such that xα ∈ U, yβqV and U ̸ qV .
Theorem 7.2 [21]. An fts (X, τ) is fuzzy T2-space if and only if for

any two distinct fuzzy points xα and yβ in X; when x ̸= y, there exist
fuzzy open sets U, V in X such that xαqU , yβqV and U ̸ qV ; when
x = y and α < β (say), xα has a fuzzy open nbd U and yβ has a fuzzy
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open q-nbd V such that U ̸ qV .
Now we introduce the following concept.
Definition 7.3. An fts (X, τ) is called fuzzy π-generalized T2 space

(fπg-T2 Space, for short), if for any two distinct fuzzy points xα and
yβ in X; when x ̸= y, there exist fπg-open sets U, V in X such that
xαqU , yβqV and U ̸ qV ; when x = y and α < β (say), xα has an
fπg-open nbd U and yβ has an fπg-open q-nbd V such that U ̸ qV .

Theorem 7.4. If an injective function h : X → Y is fπg-continuous
function from an fts X onto a fuzzy T2-space Y , then X is fπg-T2

space.
Proof. Let xα and yβ be two distinct fuzzy points in X. Then

h(xα) (= zα, say) and h(yβ) (= wβ, say) are two distinct fuzzy points
in Y .
Case I. Suppose x ̸= y. Then z ̸= w. Since Y is fuzzy T2-space, there
exist fuzzy open sets U, V in Y such that zαqU,wβqV and U ̸ qV . As
h is fπg-continuous function, h−1(U) and h−1(V ) are fπg-open sets
in X with xαqh

−1(U), yβqh
−1(V ) and h−1(U) ̸ qh−1(V ) [Indeed, zαqU

imply U(z) + α > 1, so U(h(x)) + α > 1. Then [h−1(U)](x) + α > 1.
Now xαqh

−1(U). Again, h−1(U)qh−1(V ). Then there exists t ∈ X
such that [h−1(U)](t)+ [h−1(V )](t) > 1 implies U(h(t))+V (h(t)) > 1.
So UqV , a contradiction].
Case II. Suppose x = y and α < β (say). Then z = w and
α < β. Since Y is fuzzy T2-space, there exist a fuzzy open nbd
U of xα and a fuzzy open q-nbd V of wβ such that U ̸ qV . Then
U(z) ≥ α. So [h−1(U)](x) ≥ α. Then xα ∈ h−1(U), yβqh

−1(V ) and
h−1(U) ̸ qh−1(V ) where h−1(U) and h−1(V ) are fπg-open sets in X as
h is fπg-continuous function. Consequently, X is fπg-T2-space.

Similarly we can state the following theorems easily the proofs of
which are similar to that of Theorem 7.4.

Theorem 7.5. If a bijective function h : X → Y is fπg-irresolute
function from an fts X onto an fπg-T2 space Y , then X is fπg-T2

space.
Theorem 7.6. If a bijective function h : X → Y is fπg-continuous

function from an fTπ-space X onto a fuzzy T2-space Y , then X is
fuzzy T2 space.

Theorem 7.7. If a bijective function h : X → Y is fπg-irresolute
function from an fTπ-space X onto an fπg-T2 space Y , then X is
fuzzy T2 space.

Theorem 7.8. If a bijective function h : X → Y is fπg-open func-
tion from a fuzzy T2-space X onto an fts Y , then Y is fπg-T2-space.
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Theorem 7.9. If a bijective function h : X → Y is fπg-open func-
tion from a fuzzy T2-space X onto an fTπ-space Y , then Y is fuzzy
T2-space.

Now we introduce the following concept.
Definition 7.10. A function h : X → Y is called strongly fuzzy

π-generalized continuous (strongly fπg-continuous, for short) function
if h−1(V ) is fuzzy closed set in X for every fπg-closed set V in Y .

Remark 7.11. It is clear from above discussion that strongly
fπg-continuous function implies fuzzy continuous, fπg-continuous and
fπg-irresolute functions. But the converses are not true, in general,
as the following examples show.

Example 7.12. Fuzzy continuity, fπg-continuity may not neces-
sarily imply strongly fπg-continuity
Let X = {a, b}, τ = {0X , 1X , A}, τ2 = {0X , 1X} where A(a) =
0.5, A(b) = 0.4. Then (X, τ1) and (X, τ2) are fts’s. Consider the
identity function i : (X, τ1) → (X, τ2). Since 0X and 1X are the only
fuzzy closed sets in (X, τ2), clearly i is fuzzy continuous as well as fπg-
continuous function. As every fuzzy set in (X, τ2) is fπg-closed set in
(X, τ2), considering the fuzzy set B, defined by B(a) = 0.5, B(b) = 0.3,
B is fπg-closed set in (X, τ2). Now i−1(B) = B ̸∈ τ c1 . Hence i is not
strongly fπg-continuous function.
Example 7.13. fπg-irresoluteness may not necessarily imply

strongly fπg-continuity
Let X = {a, b}, τ1 = {0X , 1X}, τ2 = {0X , 1X , A} where A(a) = A(b) =
0.5. Then (X, τ1) and (X, τ2) are fts’s. Consider the identity function
i : (X, τ1) → (X, τ2). Since every fuzzy set in (X, τ1) is fπg-closed
set in (X, τ1), clearly i is fπg-irresolute function. Now A ∈ τ2 is
fπg-closed set in (X, τ2). i−1(A) = A ̸∈ τ c1 . Hence i is not strongly
fπg-continuous function.

Remark 7.14. Clearly composition of two fπg-irresolute functions
is also so.

Theorem 7.15. If h1 : X → Y is strongly fπg-continuous function
and h2 : Y → Z is fπg-continuous function, then h2 ◦ h1 : X → Z is
fuzzy continuous function.

Proof. Obvious.
Since fuzzy open set is fuzzy fπg-open set, we have the following

theorems.
Theorem 7.16. If a bijective function h : X → Y is strongly fπg-

continuous, fuzzy open function from a fuzzy regular (resp., fuzzy
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normal) space X onto an fts Y , then Y is fπg-regular (resp., fπg-
normal) space.

Theorem 7.17. If a bijective function h : X → Y is strongly fπg-
continuous, fuzzy open function from a fuzzy regular (resp., fuzzy
normal) space X onto an fts Y , then Y is fuzzy regular (resp., fuzzy
normal) space.

Theorem 7.18. If a bijective function h : X → Y is strongly fπg-
continuous function from an fts X onto an fπg-T2 space Y , then X is
fuzzy T2 space.

Theorem 7.19. If a bijective function h : X → Y is strongly
fπg-continuous function from a fuzzy compact space X onto an fts
Y , then Y is fπg-compact (resp., fuzzy almost compact, fuzzy nearly
compact) space.
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