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Abstract.In [8], fuzzy m-closed set is introduced. Using this concept
as a basic tool, in [9] the notion of fuzzy m generalized closed set ( fmg-
closed set, for short) is introduced and studied. Afterwards, a new
type of generalized version of fuzzy closure operator, viz., fmg-closure
operator is introduced which is an idempotent operator. Next we
introduce a new type of generalized version of fuzzy open and closed-
like functions, viz., frg-open and fmg-closed functions and charac-
terize these two functions by using fmwg-closure operator. Next we
introduce fmg-continuous function and fwg-irresolute function. Next
we introduce two new types of separation axioms, viz., fmrg-regularity,
fmrg-normality and a new type of compactness, viz., frg-compactness.
It is shown that under fwg-irresolute function , fwg-regularity, frg-
normality and fmg-compactness remain invariant. Lastly, a new of
fuzzy Ts-space, viz., frg-T, space is introduced and it is shown that
inverse image of fuzzy Ts-space [20] (resp., frg-T» space) under fmg-
continuous (resp., fwg-irresolute) function is frg-T, space.
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1. Introduction

In [2, 3], generalized version of fuzzy closed set is introduced. Af-
terwards, several types of generalized version of fuzzy closed sets
are introduced and studied. In this context, we have to mention
3, 5, 6, 7, 8 9, 10, 11]. In this paper we study fuzzy mg-closed
set and several properties of this set are established and the mu-
tual relationships of this newly defined set with the sets defined in
3, 5, 6, 7, 8 9, 10, 11] are established. With the help of fr-
closure operator a new type of neighbourhood structure in a fuzzy
topological space is introduced and studied. Here we introduce fmg-
continuous function, the collection of which is strictly larger than that
of fuzzy continuous function [14], fg-continuous function [3], fgs*-
continuous function [5], fs*g-continuous function [6], but weaker than
frwg-continuous function [9]. Also it is shown that frg-continuity is
independent concept of fgs-continuous function [3], fsg-continuous
function [3], fga-continuous function [3], fag-continuous function
[3], fgB-continuous function [8], fBg-continuous function [8], fgp-
continuous function [3], fpg-continuous function [3], fgvy-continuous
function [10], fg7y*-continuous function [11], fswg-continuous function
9], fmg-continuous function [9], fwg-continuous function [9].

2. PRELIMINARIES

Throughout this paper (X, 7) or simply by X we shall mean a fuzzy
topological space (fts, for short) in the sense of Chang [14]. In [26],
L.A. Zadeh introduced fuzzy set as follows: A fuzzy set A is a function
from a non-empty set X into the closed interval I = [0, 1], i.e., A € I¥.
The support [26] of a fuzzy set A, denoted by suppA and is defined
by suppA = {x € X : A(z) # 0}. The fuzzy set with the singleton
support {z} C X and the value t (0 < t < 1) will be denoted by x;. Ox
and 1y are the constant fuzzy sets taking values 0 and 1 respectively
in X. The complement [26] of a fuzzy set A in X is denoted by 1x\ A
and is defined by (1x \ A)(z) = 1 — A(z), for each x € X. For any
two fuzzy sets A, B in X, A < B means A(x) < B(z), for all z € X
[26] while AgB means A is quasi-coincident (g-coincident, for short)
[24] with B, i.e., there exists € X such that A(z) + B(x) > 1. The
negation of these two statements will be denoted by A £ B and A 4B
respectively. For a fuzzy point x; and a fuzzy set A, xr; € A means
A(x) > t,ie., x; < A. For a fuzzy set A, clA and intA will stand for
fuzzy closure [14] and fuzzy interior [14] respectively. A fuzzy set A
is called a fuzzy neighbourhood (fuzzy nbd, for short) [24] of a fuzzy
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point z,, if there exists a fuzzy open set U in X such that x, € U < A.
If, in addition, A is fuzzy open, then A is called fuzzy open nbd [24] of
To. A fuzzy set A is called a fuzzy quasi neighbourhood (fuzzy ¢-nbd,
for short) [24] of a fuzzy point x, in an fts X if there is a fuzzy open set
U in X such that z,qU < A. If, in addition, A is fuzzy open, then A is
called fuzzy open g-nbd [24] of z,. A fuzzy set A in X is called fuzzy
regular open [1] (resp., fuzzy semiopen [1], fuzzy preopen [23], fuzzy a-
open [13], fuzzy [-open [17], fuzzy v-open [4]) if A = int(clA) (resp.,
A < c(intA), A < int(clA), A < int(cl(intA)), A < cl(int(clA)),
A <cl(intA) \/int(clA)). A fuzzy set A is called fuzzy m-open [8] if A
is the union of finite number of fuzzy regular open sets. The comple-
ment of a fuzzy regular open (resp., fuzzy semiopen, fuzzy preopen,
fuzzy a-open, fuzzy [-open, fuzzy y-open) set is called fuzzy regular
closed [1] (resp., fuzzy semiclosed [1], fuzzy preclosed [23], fuzzy a-
closed [13], fuzzy B-closed [17], fuzzy 7-closed [4]). The intersection
of all fuzzy semiclosed (resp., fuzzy preclosed, fuzzy a-closed, fuzzy
B-closed, fuzzy ~y-closed) sets containing a fuzzy set A is called fuzzy
semiclosure [1] (resp., fuzzy preclosure [23], fuzzy a-closure [13], fuzzy
p-closure [17], fuzzy ~-closure [4]) of A, to be denoted by sclA (resp.,
pcl A, aclA, BelA, yelA). The collection of all fuzzy open (resp., fuzzy
regular open, fuzzy semiopen, fuzzy preopen, fuzzy a-open, fuzzy (-
open, fuzzy y-open, fuzzy m-open) sets in an fts (X, 7) is denoted by 7
(resp., FRO(X,T), FSO(X, 1), FPO(X,T), FaO(X,T), FBO(X,T),
F~O(X,7), FrO(X,7)). The collection of all fuzzy closed (resp.,
fuzzy regular closed, fuzzy semiclosed, fuzzy preclosed, fuzzy a-closed,
fuzzy fp-closed, fuzzy 7-closed, fuzzy m-closed) sets in an fts X is de-
noted by 7¢ (resp., FRC(X, 1), FSC(X, 1), FPC(X, 1), FaC(X, ),
FBC(X,T1), FvC(X, 1), FrC(X,T1)).

3. frg-Closed Set: Some Properties

In [9], frg-closed set is introduced. In this section some important
properties of this set is studied first. Then a new type of fuzzy neigh-
bourhood system is introduced and studied using fwg-closed set as
a basic tool. Lastly the mutual relationship of this set with the sets
defined in [2, 3, 5, 6, 7, 9, 10, 11] are established.

First we recall the following definition from [9] for ready references.

Definition 3.1 [9]. Let (X,7) be an fts and A € I*. Then A is
called fuzzy m-generalized closed (fmrg-closed, for short) set in X if
clA < U whenever A < U € FrO(X, 7).

The complement of the above mentioned fuzzy set is called fuzzy



36 ANJANA BHATTACHARYYA

m-generalized open (fmg-open, for short) set.

Remark 3.2. It is clear from definition that union of two fmrg-
closed sets is also so. But the intersection of two fmg-closed sets need
not be so, in general, as the following example shows.

Example 3.3. Let X = {a,b}, 7 = {0x,1x,A, B} where
A(a) = 0.5, A(b) = 0.6,B(a) = 0.3, B(b) = 0.5. Then (X,7) is an
fts. Consider two fuzzy sets C' and D defined by C(a) = 0.4,C(b) =
0.5,D(a) = 0.3,D(b) = 0.6. Here 1x € FrO(X,7) only containing
C and D and so clearly C' and D are fmg-closed sets in (X, 7). Let
E=CAD. Then E(a) =0.3,E(b) = 0.5. Now £ < B € FrO(X, 7).
But ¢lFE = 1x \ B £ B which implies that E is not fwg-closed set in
(X.7).

So we can conclude that the set of all frg-open sets cannot form a
fuzzy topology.

Theorem 3.4. Let (X,7) beanftsand A, B € [*. f A< B < clA
and A is frg-closed set in X, then B is also fmrg-closed set in X.

Proof. Let U € FrO(X, 1) be such that B < U. Then by hy-
pothesis, A < B < U. As Ais frg-closed set in X, clA < U and so
A < B < clA < U implies that clA < clB < cl(clA) = clA < U Then
clB < U. Consequently, B is fmrg-closed set in X.

Theorem 3.5. Let (X, 7) be an fts and A, B € I*. If intA < B <
A and A is frwg-open set in X, then B is also fmrg-open set in X.

Proof. intA<B<ASolx\A<1x\B<Ilx\intA=cl(lx\A)
where 1x \ A is frg-closed set in X. By Theorem 3.4, 1x \ B is fmg-
closed set in X. Hence B is fmrg-open set in X.

Theorem 3.6. Let (X,7) be an fts and A € I*. Then A is
frg-open set in X if and only if K < intA whenever K < A and
K e FrC(X,T1).

Proof. Let A(€ I*) be fmg-open set in X and K < A where
K € FrC(X,7). Then 1x \ A < 1x \ K where 1x \ A is fmrg-closed
set in X and 1y \ K € FrO(X, 7). So cl(lx \ A) < 1x \ K implies
that 1x \ intA < 1x \ K and so K <intA.

Conversely, let K < intA whenever K < A, K € FrC(X, 7). Then
Ix\A <1x\ K € FrO(X, 7). Now 1x \ intA < 1x \ K. Then
cl(lx \A) <1x \ K and so 1x \ A is frg-closed set in X. Hence A is
fmg-open set in X.

Theorem 3.7. Let (X,7) be an fts and A(e I¥). If A is fuzzy
regular open set as well as frg-closed set in X, then A is fuzzy closed
set in X.

Proof. Now A < A € FRO(X,7) C FrO(X, 7). By hypothesis,
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clA < A (as A is frg-closed set in X) and so A = clA Hence A is
fuzzy closed set in X.

Theorem 3.8. Let (X,7) be an fts and A(e ) € FrO(X,7) as
well as A is frg-closed set in X, then A is fuzzy closed set in X.

Proof. Follows from Theorem 3.7.

Theorem 3.9. Let (X, 7) be an fts and A(€ IX) be frg-closed set
in X and B € FnC(X,7) with A 4B. Then clA 4B.

Proof. Now A 4B Then A < 1x\B € FrO(X, 7). By assumption,
clA <1x\ B and so clA 4B.

Remark 3.10. The converse of Theorem 3.9 may not be true, in
general, as the following example shows.

Example 3.11. Let X = {a,b}, 7 = {0x,1x,A, B} where
A(a) = 0.5,A(b) = 0.6,B(a) = 0.5,B(b) = 0.3. Then (X,7) is
an fts. Here Frmo(X,7) = 7. Consider the fuzzy set C' defined
by C(a) = 0.5,C(b) = 0.2. Then C < B € FrO(X,7). But
clC = 1x\ A £ B which implies that C'is not frg-closed set in (X, 7).
Again C' 4(1x \ A) € FrC(X,7) and clC = (1x \ A) 4(1x \ A).

Now we introduce a new type of generalized version of neighbour-
hood system in an fts.

Definition 3.12. Let (X, 7) be an fts and z,, a fuzzy point in X. A
fuzzy set A is called a fuzzy m-generalized neighbourhood (fmg-nbd,
for short) of z,, if there exists an frg-open set U in X such that
To < U < A. If, in addition, A is frg-open set in X, then A is called
an fmwg-open nbd of z,.

Definition 3.13. Let (X, 7) be an fts and z,, a fuzzy point in X. A
fuzzy set A is called a fuzzy m-generalized quasi neighbourhood( fmg-
g-nbd, for short) of z,, if there is an frg-open set U in X such that
roqU < A. If, in addition, A is fwg-open set in X, then A is called
an fmwg-open g-nbd of z,.

Note 3.14. It is clear from definitions that every fmwg-open set is
an fmg-open nbd of each of its points. But every fmg-nbd of z, may
not be an frg-open set containing x,, as the following example shows.

Example 3.15. Let X = {a,b}, 7 = {0x,1x, A} where A(a) =
0.5,A(b) = 0.4. Then (X,7) is an fts. Here FrO(X,7) = 7.
Now consider the fuzzy point ag4 and the fuzzy set B defined by
B(a) =0.5,B(b) = 0.3. Then apy <1x\Band B< A€ FrO(X,7),
but clB = 1x \ A £ A which implies that B is not fmg-closed set in
(X,7) and so 1x \ B is not frg-open set in (X, 7). Now consider the
fuzzy set C defined by C(a) = C(b) = 0.5. Then 1x € FrO(X,7)
only containing C' and so C'is frg-closed set in X andso 1x \C =C
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is frg-open set in X. Now ag4 < C' < 1x\ B which shows that 1x\ B
is an fmg-neighbourhood of ag4 though 1x \ B is not frg-open set
containing ag 4.

Note 3.16. Every fuzzy open nbd (resp., fuzzy open ¢g-nbd) of a
fuzzy point x, is an fmwg-open nbd (resp., frg-open ¢-nbd) of x,, but
converses are not true, in general, as the following example shows.

Example 3.17. Consider Example 3.15 and the fuzzy set D defined
by D(a) = 0.4,D(b) = 0.7. As 1x € FrO(X, 1) containing D only,
clearly D is frg-closed set in (X, 7). Now consider the fuzzy point
aops6- S0 agse < 1y \ D implies that 1x \ D is an fmwg-open nbd of
aps6- But 1x \ D is not a fuzzy open nbd of ag 6. Next consider the
fuzzy point ags. Then as ags5q(1x \ D), 1x \ D is an frg-open ¢g-nbd
of ags. But 1x \ D is not a fuzzy open ¢-nbd of ag .

Theorem 3.18. Let (X, 7) be an fts and z;, a fuzzy point in X.
If F(e I*) be an frg-closed set in X with x; € 1x \ F. Then there
exists an frg-nbd G of x; in X such that G 4F.

Proof. Let z; € 1x \ F where 1x \ F' be an frg-open set in X.
Then 1x \ F'is an frg-open nbd of x;. So by definition, there exists
an frg-open set G in X such that x; € G < 1x \ F. Hence G is an
fmrg-nbd of x; with G 4F.

Definition 3.19. The set of all frg-nbds of a fuzzy point x;
(0 <t <1)in an fts (X, 7) is called fuzzy m-generalized neighbour-
hood (fmg-nbd, for short) system at z;, denoted by fmwg-N(x;).

Theorem 3.20. For a fuzzy point z; in an fts (X, 7), the following
statements hold :

() frg-N(z) # 6,
(ii) G € fmg-N(x;) implies z; € G,
(ii) G € frg-N(z;) and F' > G implies F' € frg-N(z¢),
(iv) F,G € frg-N(x;) implies F A G € frg-N(x¢),
(v) G € fng-N(x;). Then there exists F' € fmwg-N(x;) such that
F <G and F € frg-N(yy) for every yp € F.

Proof. (i) Since 1x being an fwg-open set is an frg-nbd of z;
(0<t<1), frg-N(x;) # ¢.
(ii) and (iii) are obvious.
(iv) Since intersection of two fmwg-open sets is frg-open, (iv) is obvi-
ous.
v) Follows from Note 3.16 and Definition 3.19.

Theorem 3.21. Let z; be a fuzzy point in an fts (X, 7). Let
fmg-N(x;) be a non-empty collection of fuzzy sets in X satisfying the
following conditions :
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(1) G € frg-N(x;) implies z; € G,
(2) F,G € frg-N(z;) implies FF \ G € frg-N(x).
Let 7 consist of Ox and all those non-empty fuzzy sets G of X having
the property that z; € G. Then there exists an F' € frg-N(x;) such
that z; € F < G. Then 7 is a fuzzy topology on X.

Proof. (i) By hypothesis, Ox € 7.
(ii) It is clear from the given property of 7 that 1x € 7 as 1x € frg-
N(z;) for any fuzzy point ; (0 <t < 1) in an fts X (by (1)).
(iii) Let G1,Go € 7. If Gy A\ G2 = Oy, then by construction of 7,
G1A\Gs € 1. Suppose G1 \Gy # 0x. Let z, € G\ Gs where
0 <t <1 Then Gi(x) > t,Go(x) > t. Since G1,Gy € 7, by defi-
nition of 7, there exist Fy, Fy € fmwg-N(x;) such that z; € F; < Gy,
z € Fy < G5. Then Ty € Fl/\FQ < Gl/\GQ. By (2), Fl/\FQ € f7Tg—
N(z;) and so Gy \ G2 € T by construction of 7.
(iv) Let G = {G4 : @ € A} where G, € 7, for each @ € A. Let

T € \/ Go. Then there exists 5 € A such that x, € Gg. By definition
aEN
of 7, there exists F € frg-N(x;) such that x, € Fz < G < \/Ga
acEA
which implies that \/ G, ET.

a€A
It follows that 7 is a fuzzy topology on X.

Next we recall the following definitions of different types of fuzzy
generalized version of closed sets from [2, 3, 5, 6, 7, 9, 10, 11] and then
establish the mutual relationships of these sets with the set mentioned
in this section.

Definition 3.22. Let (X,7) be an fts and A € [*. Then A is
called
(i) fg-closed set [2, 3] if clA < U whenever A < U € T,
the complement of fg-closed set is called fg-open set,

(i) fgp-closed set [3] if pclA < U whenever A < U € 7,

(iii) fpg-closed set [3] if pclA < U whenever A < U € FPO(X, 1),
(iv) fga-closed set [3] if aclA < U whenever A < U € T,

(v) fag-closed set [3] if aclA < U whenever A < U € FaO(X,T),
(vi) fgB-closed set [7] if BclA < U whenever A < U € T,

(vii) fBg-closed set [7] if BclA < U whenever A < U € FFO(X,T),
(viil) fgs-closed set [3] if sclA < U whenever A <U € T,

(ix) fsg closed set [3] if sclA < U whenever A < U € FSO(X, 1),
(x) fgs*-closed set [5] if clA < U whenever A < U € FSO(X, 1),

(xi) fs*g-closed set [6] if clA < U whenever A < U where U is fg-open
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set in X,

(xii) fswg-closed set [9] if cl(intA) < U whenever A < U €
FSO(X, 1),

(xiii) frwg-closed set [9] if cl(intA) < U whenever A < U €
FRO(X, ),

(xiv) fmg-closed set [9] if cl(intA) < U whenever A < U where U is
fg-open set in X,

(xv) fwg-closed set [9] if cl(intA) < U whenever A < U € T,

(xvi) fgry-closed set [10] if yelA < U whenever A < U € T,

(xvii) fgy*-closed set [11] if yclA < U whenever A < U € FSO(X, 7).

Remark 3.23. It is clear from Definition 3.1 and Definition 3.19

that
(i) fuzzy closed set is fmrg-closed set, fg-closed set is fmrg-closed set,
fgs*-closed set is fmg-closed set, fs*g-closed set is fmrg-closed set and
fmg-closed set is frwg-closed set. But the converses are not true, in
general, as the following examples show.
(i) fmrg-closed set is independent concept of fgp-closed set, fpg-closed
set, fga-closed set, fag-closed set, fgfB-closed set, fBg-closed set,
fgs-closed set, fsg-closed set, fswg-closed set, fmg-closed set, fwg-
closed, fgvy-closed set, fgy*-closed set follow from the following exam-
ples.

Example 3.24. frg-closed set may not be fuzzy closed set, fg-
closed set, fgpB-closed set, fBg-closed set, fga-closed set, fag-closed
set, fgs-closed set, fsg-closed set, fgs*-closed set, fpg-closed set,
fgv*-closed set, fswg-closed set
Let X = {a,b}, 7 = {0x,1x, A} where A(a) = 0.5, A(b) = 0.6.
Then (X, 7) is an fts. Here FrO(X,7) = {0x,1x}, FSO(X,7) =
FaO(X,7) = {0x,1x,U} where U > A, FPO(X,7) = {0x,1x,V}
where V' £ 1x \ A. Consider the fuzzy set B defined by B(a) =
B(b) = 0.5. As 1x € FrnO(X,7) only containing B, clearly B is
frg-closed set in (X, 7). Also B is not a fuzzy closed set in (X, 7).
Now B < A € 7, but ¢lB = 1x £ A implies that B is not fg-closed
set in (X, 7). Again B < A € FaO(X,7) as well as B < A € 7.
But as aclB = 1x £ A, B is not fag-closed as well as fga-closed
set in (X,7). Again B < A € FSO(X,7) and B < A € 7. But
sclB = 1x £ A and so B is not fsg-closed as well as fgs-closed set
in (X,7). Also clB = 1x £ A and so B is not fgs*-closed set in
(X, 7). Next consider the fuzzy set C' defined by C(a) = C(b) = 0.6.
Then as 1y € FrO(X, ) only containing C', clearly C' is frg-closed
set in (X,7). Now C < C € FPO(X,7). But pcC = 1x £ C.
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So C' is not fpg-closed set in (X, 7). Again C < C € FSO(X,7)
and yclC = 1x £ C So C is not fgvy*-closed set in (X, 7). Again
C < C e FSO(X,7). But cl(intC) = 1x £ C. Consequently, C
is not fswg-closed set in (X, 7). Now taking the fuzzy set A, we
see that 1x € FrO(X, ) only containing A so that A is frg-closed
set in (X, 7). Now A < cl(int(clA)) and so A € FSO(X,7) and so
A< Ae FBO(X,7)as well A< Aer. But fclA =1x £ A. Hence
A is not ffg-closed as well as fgB-closed set in (X, 7).

Example 3.25. fwg-closed set may not be fgp-closed set, fgy-
closed set, fwg-closed set
Let X = {a,b}, 7 = {0x,1x,A, B} where A(a) = 0.5,A(b) =
0.6, B(a) = 0.3, B(b) = 0.5. Then (X, ) is an fts. Here FrO(X, 1) =
{0x,1x, B}. Consider the fuzzy set C' defined by C(a) = 0.4,C(b) =
0.5. Then as 1x € FrO(X,7) only containing C, clearly C' is fmg-
closed set in (X, 7). Now C' < A € 7. But pclA £ A. So C is not
fgp-closed set in (X, 7). Again cl(intC) = 1x \ B £ A implies that C
is not fwg-closed set in (X, 7). Next consider the fuzzy set D defined
by D(a) = 0.5, D(b) = 0.55. Then as 1x € FrO(X, 1) only contain-
ing D, clearly D is fmwg-closed set in (X, 7). Now D < A € 7. But
velD = 1x \ B £ A. Then D is not fgvy-closed set in (X, 7). Now
the collection of all fg-open sets in (X,7) is {Ox, 1x, W, T} where
0.5 <Wi(a) <0.7,W(b) >06, T # 1x \ A. Consider the fuzzy set F’
defined by F(a) = F(b) = 0.5. As 1x € FrO(X, 1) only containing F,
clearly F'is fmg-closed set in (X, 7). Here I’ < A where A is fg-open
set in (X, 7). But ¢l = 1x \ B £ A implies that B is not fs*g-closed
set in (X, 7). Also cl(intF') = 1x\ B £ A. Hence F is not fmg-closed
set in (X, 7).

Example 3.26. fga-closed set, fag-closed set, fgy-closed set,
fgv*-closed set, fswg-closed set, frwg-closed set, fmg-closed set,
fwg-closed set, fgpB-closed set, fBg-closed set, fgs-closed set, fsg-
closed set, fgp-closed set, fpg-closed set do not necessarily imply frg-
closed set
Consider Example 3.22 and the fuzzy set E defined by E(a) =
0.2, E(b) = 0.4. Since E < B € FrO(X,7), but clE = 1x \ A £ B
implies that F is not frg-closed set in (X, 7).

Now cl(int(clE)) = 0x. Then E € FaC(X, ) and so E is fga-closed
as well as fag-closed set in (X, 7).

Again int(cl(intE)) = Ox implies that £ € FAC(X,7) and so E is
fgpB-closed as well as f(g-closed set in (X, 7).

Also (cl(intE)) N(int(clE)) = 0x < E. Then E € FyC(X,7) and so
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E is fgy-closed as well as fgvy*-closed set in (X, 7).

Also cl(intFE) = 0x < E Then E € FPC(X,7) and so E is fgp-closed
as well as fpg-closed set in (X, 7). Again as cl(intE) = 0x, E is fmg-
closed, fwg-closed, fswg-closed, frwg-closed set in (X, 7).

Again int(clFE) = 0x < E implies that E € FSC(X,7) and so E is
fgs-closed as well as fsg-closed set in (X, 7).

Now we recall the definitions of some spaces from [3, 8, 9, 10, 11]
in which the sets defined in [2, 3, 5, 6, 7, 9, 10, 11] are fmg-closed set
and some partial converses are true.

Definition 3.27. An fts (X, 7) is said to be
(i) fPTy-space [8] if every fBg-closed set in X is fuzzy closed set in X,
(ii) fTs-space [8] if every fgf-closed set in X is fuzzy closed set in X,
(iii) fT,-space [3] if every fga-closed set in X is fuzzy closed set in

S

Y

(iv) faTy-space [3] if every fag-closed set in X is fuzzy closed set in

) fTy-space [3] if every fgs-closed set in X is fuzzy closed set in X,
i) fTs,-space [3] if every fsg-closed set in X is fuzzy closed set in

ii) fT,-space [10] if every fg~-closed set in X is fuzzy closed set in

MT T T

viil) fT,--space [11] if every fgvy*-closed set in X is fuzzy closed set
X,
ix) frT,-space [9] if every frwg-closed set in X is fuzzy closed set in

—~

=

o~ e
—

aICe

) fsTy-space [9] if every fswg-closed set in X is fuzzy closed set in

xi) fT,-space [3] if every fgp-closed set in X is fuzzy closed set in X,
xii) fpTy-space [3] if every fpg-closed set in X is fuzzy closed set in
X,

(xiil) fmT,-space [9] if every fmg-closed set in X is fuzzy closed set
in X,

(xiv) fT,-space [8] if every fwg-closed set in X is fuzzy closed set in
X,

(xv) fTr-space [9] if every fmrg-closed set in X is fuzzy closed set in
X.

Remark 3.28 (i) In fpT-space (resp., fTps-space, fT,-space,
faTy-space, fTy-space, fT,4-space, fT,-space, fT,--space, frT;-
space, fsT,-space, fT,-space, fpl,-space, fmT,-space, fT,-space)
fBg-closed (resp., fgp-closed, fga-closed, fag-closed, fgs-closed,

o~~~
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fsg-closed, fgy-closed, fgy*-closed, frwg-closed, fswg-closed, fgp-
closed, fpg-closed, fmg-closed, fwg-closed) set is frg-closed set.

(ii) In fT,-space, fmwg-closed set is fg-closed, fgs*-closed, fs*g-
closed, fgp-closed, ffg-closed, fga-closed, fag-closed, fgp-closed,
fpg-closed, fgs-closed, fsg-closed, fgvy-closed, fgy*-closed set.

4. frg-CLOSURE OPERATOR AND fmg-OPEN, frg- CLOSED
FuNCTIONS

A new type of generalized version of closure operator in an fts, viz.,
fmg-closure operator is introduced here which is an idempotent oper-
ator. Then introduce frg-open and fwg-closed functions which are
characterized by fmg-closure operator.

Definition 4.1. Let (X, 7) be an fts and A € IX. Then fmg-closure
and fmg-interior of A, denoted by frgcl(A) and frgint(A), are de-
fined as follows:

frgcl(A) = N{F : A< F,Fis frg-closed set in X},

frgint(A) = \V{G : G < A,G is frg-open set in X }.

Remark 4.2. It is clear from definition that for any A € I¥,
A < frgel(A) < clA. If Ais fmg-closed set in an fts X, then
A = frgel(A). Similarly, intA < frgint(A) < A. If Ais frg-open
set in an fts X, then A = frgint(A). It follows from Remark 3.2 that
frgel(A) (resp., frgint(A)) may not be frg-closed (resp., fmg-open)
set in an fts X.

Theorem 4.3. Let (X, 7) be an fts and A € I*. Then for a fuzzy
point x; in X, x; € fmwgcl(A) if and only if every fmg-open g-nbd U
of z;, UqA.

Proof. Let z; € frgcl(A) for any fuzzy set A in an fts X and F be
any fmg-open ¢-nbd of z;. Then z;qF implies that z; € 1x \ ' which
is fmg-closed set in X. Then by Definition 4.1, A £ 1x \ F. Then
there exists y € X such that A(y) > 1 — F(y). Hence AgF.

Conversely, let for every fmrg-open g-nbd F of x;, FiqA. If possible,
let z; & frwgcl(A). Then by Definition 4.1, there exists an frg-closed
set U in X with A < U, z; ¢ U. Then x4q(1x \ U) which being fmg-
open set in X is frg-open g-nbd of z;. By assumption, (1x \ U)qA.
Then (1x \ A)gA, a contradiction.

Theorem 4.4. Let (X,7) be an fts and A, B € I*. Then the fol-
lowing statements are true:

(i) frgel(0x) = Ox,
(i) frgel(lx) = 1y,
(i) A < B implies frgcl(A) < frgcl(B),
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(iv) fmgcl(AV B) = frgcl(A)V frgcl(B),
(v) frgcl(A N B) < frgel(A) A frgel(B), equality does not hold, in
general, follows from Example 3.3,
(vi) frgcl(frgel(A)) = frgel(A).

Proof. (i), (ii) and (iii) are obvious.
(iv) From (iii), frgcl(A)V frgcl(B) < frgcl(A\ B).
To prove the converse, let z, € frgcl(A\/ B). Then by Theorem 4.3,
for any frg-open set U in X with z,qU, Uq(A\/ B), there exists y €
X such that U(y)+maz{A(y), B(y)} > 1. Then either U(y)+A(y) > 1
or U(y)+B(y) > 1. So either UgA or UgB. Then either z, € fmrgcl(A)
or x, € frgcl(B). Hence x, € frgcl(A)\ frgcl(B).
(v) Follows from (iii).
(vi) As A < frgcl(A), for any A € I, frgcl(A) < frgcl(frgel(A))
(by (i),

Conversely, let z, € fmgcl(frgcl(A)) = frngel(B) where B =
frgel(A). Let U be any frg-open set in X with z,qU. Then UqB
implies that there exists y € X such that U(y) + B(y) > 1. Let
B(y) = t. Then yqU and 3y, € B = fwgcl(A) implies UgA. So
zq € frgel(A). Then frgcl(frgcl(A)) < frgcl(A). Consequently,
frgel(frgel(A)) = frgel(A).

Theorem 4.5. Let (X, 7) be an fts and A € I*. Then the following
statements hold:

(i) frgel(ix \ A) = 1y \ frgint(A)
(ii) frgint(1x \ A) = 1x \ frgcl(A).

Proof (i). Let z; € frgcl(1x \ A) for a fuzzy set A in an fts (X, 7).
If possible, let x; &€ 1x \ frgint(A). Then 1 — (frgint(A))(z) < t
implies [frgint(A)](x) +t > 1 and so frgint(A)gr;. Then there ex-
ists at least one fmwg-open set F© < A with x;qF and so x;qA. As
xy € frgel(lx \ A), Fq(1x \ A) which implies that Ag¢(1x \ A), a

contradiction. Hence
frgel(1x \ A) < 1x \ frgint(A)...(1)

Conversely, let x; € 1x \ frgint(A). Then 1 — [(frgint(A)](z) > t.
Then z,¢( frgint(A)) and so x,¢F for every fmg-open set F' contained
in A .. (2).

Let U be any fmg-closed set in X such that 1x \ A < U. Then
1x \U < A. Now 1x \ U is frg-open set in X contained in A. By
(2), 2;¢(1x \ U). Then x; € U implies x; € frgcl(lx \ A) and so

1x \ frgint(A) < frgcl(1x \ A)...(3).
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Combining (1) and (3), (i) follows.
(ii) Putting 1x \ A for A in (i), we get frgcl(A) = 1x \ frgint(1x\ A)
implies frgint(1x \ A) = 1x \ frgcl(A).

Let us now recall the following definition from [25] for ready refer-
ences.

Definition 4.6 [25]. A function f : X — Y is called fuzzy open
(resp., fuzzy closed) if f(U) is fuzzy open (resp., fuzzy closed) set in
Y for every fuzzy open (resp., fuzzy closed) set U in X.

Let us now introduce the following concept.

Definition 4.7. A function h : X — Y is called fuzzy w-generalized
open (fmg-open, for short) function if A(U) is frg-open set in Y for
every fuzzy open set U in X.

Remark 4.8. It is clear that fuzzy open function is frg-open func-
tion. But the converse need not be true, as the following example
shows.

Example 4.9. fmrg-open function may not necessarily fuzzy open
function
Let X = {a,b}, m = {Ox,1x,A}, » = {0x,1x} where A(a) =
0.4,A(b) = 0.5. Then (X,n) and (X, 72) are fts’s. Consider the
identity function i : (X, 1) — (X, 7). Since every fuzzy set in (X, 7o)
is frg-open set in (X, 73), clearly i is fmg-open function. But A € 7y,
i(A) = A ¢ 1 implies that i is not a fuzzy open function.

Theorem 4.10. For a bijective function h : X — Y, the following
statements are equivalent:

(i) his frg-open,

(i) h(intA) < frgint(h(A)), for all A € IX,

(iii) for each fuzzy point z, in X and each fuzzy open set U in X
containing x,, there exists an fmwg-open set V' in Y containing h(x,)
such that V' < h(U).

Proof (i) = (ii). Let A € I*. Then intA is a fuzzy open set in
X. By (i), h(intA) is frg-open set in Y. Since h(intA) < h(A) and
frgint(h(A)) is the union of all frg-open sets contained in h(A), we
have h(intA) < frgint(h(A)).

(ii) = (i). Let U be any fuzzy open set in X. Then h(U) = h(intU) <
frgint(h(U)) (by (ii)) implies h(U) is frg-open set in Y and hence h
is fmrg-open function.

(ii) = (iii). Let z, be a fuzzy point in X, and U, a fuzzy open set in
X such that z, € U. Then h(z,) € h(U) = h(intU) < frgint(h(U))
(by (ii)). Then A(U) is fmg-open set in Y. Let V. = h(U). Then
h(z,) € V and V < h(U).
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(iii) = (i). Let U be any fuzzy open set in X and y,, any fuzzy
point in A(U), i.e., yo € h(U). Then there exists unique z € X
such that h(z) = y (as h is bijective). Then [h(U)](y) > « implies
U(h™(y)) > a and so U(z) > a. Then z, € U. By (iii), there ex-
ists frg-open set V in Y such that h(xz,) € V and V < h(U). Then
hzy) €V = frgint(V) < frgint(h(U)). Since y, is taken arbitrarily
and h(U) is the union of all fuzzy points in h(U), h(U) < frgint(f(U))
implies h(U) is frg-open set in YHence h is an fmrg-open function.
Theorem 4.11. If h : X — Y is fwg-open, bijective function, then
the following statements are true:
(i) for each fuzzy point z, in X and each fuzzy open ¢-nbd U of
Zo in X, there exists an fwg-open ¢g-nbd V' of h(x,) in Y such that
V< (),
(ii) A=Y (frgcl(B)) < cl(h~Y(B)), for all B € IY.
Proof (i). Let x, be a fuzzy point in X and U be any fuzzy open
g-nbd of z, in X. Then z,qU = intU implies h(z,)gh(intU) <
frgint(h(U)) (by Theorem 4.10 (i)=-(ii)) implies that there exists
at least one frg-open ¢g-nbd V of h(z,) in Y with V < h(U).
(i) Let x, be any fuzzy point in X such that z, & cl(h~(B)) for any
B € IV. Then there exists a fuzzy open ¢-nbd U of x, in X such that
Ugh™'(B). Now

hzo)gh(U)...(1)

where h(U) is frg-open set in Y. Now h™}(B) < 1x \ U which is
a fuzzy closed set in X and so B < h(lx \ U) (as h is injective)
<1y \ h(U). Then Bgh(U). Let V =1y \ h(U). Then B <V which
is frg-closed set in Y. We claim that h(x,) ¢ V. If possible, let
h(za) € V =1y \ h(U). Then 1 —[h(U)](h(2)) > a. So h(U)gh(z.),
contradicting (1). So h(z,) §Z V. Then h(z,) gZ frgel(B) and so
Ta & h7'(frgel(B)) Hence h™!(frgcl(B)) < cl(h™!(B)).

Theorem 4.12. An injective function h : X — Y is fwg-open
if and only if for each B € IY and F, a fuzzy closed set in X with
h~'(B) < F, there exists an frg-closed set V in Y such that B <V
and h~1(V) < F.

Proof. Let B € IY and F, a fuzzy closed set in X with h=1(B) < F.
Then 1x \ h™*(B) > 1x \ F where 1x \ F' is a fuzzy open set in X. So
h(1x\F) < h(1x\h™'(B)) < 1y \ B (as h is injective) where h(1x\ F)
is an frg-open set in Y. Let V = 1y \ h(1x \ ). Then V is frg-
closed set in Y such that B < V. Now h™ (V) = A~ ' (1y \h(1x\ F)) =
Conversely, let F' be a fuzzy open set in X. Then 1y \ F is a fuzzy
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closed set in X. We have to show that h(F') is an frg-open set in Y.
Now A~ (1y \h(F)) < 1x \ F (as h is injective). By assumption, there
exists an frmg-closed set V in Y such that

Iy \h(F) < V..(1)
and h™1(V) < 1x \ F. Therefore, F < 1x \ h=}(V) implies that
h(F) < h(lx \ h 1 (V) <1y \ V...(2)

(as h is injective). Combining (1) and (2), h(F) = 1y \ V which is an
fmg-open set in Y. Hence h is frg-open function.

Definition 4.13. A function h : X — Y is called fuzzy =n-
generalized closed (fmg-closed, for short) function if h(A) is frg-closed
set in Y for each fuzzy closed set A in X.

Remark 4.14. It is obvious that every fuzzy closed function is
fmg-closed function, but the converse may not be true as it seen in
Example 4.9. Here 1x \ A€ 7f, but i(lx \ A) =1x \ A& 75 and so i
is not a fuzzy closed function. But since every fuzzy set in (X, ) is
frg-closed set in (X, 73), clearly 7 is frg-closed function.

Theorem 4.15. A bijective function h : X — Y is fmwg-closed
function if and only if frgcl(h(A)) < h(clA), for all A € I**.

Proof. Let us suppose that h : X — Y be an fwg-closed func-
tion and A € I*. Then h(cl(A)) is fmg-closed set in Y. Since
h(A) < h(clA) and frgcl(h(A)) is the intersection of all frg-closed
sets in Y containing h(A), we have frgcl(h(A)) < h(clA).

Conversely, let for any A € I, frgel(h(A)) < h(clA). Let U be
any fuzzy closed set in X. Then A(U) = h(clU) > frgcl(h(U)) implies
h(U) is an frg-closed set in Y. Hence h is an frg-closed function.

Theorem 4.16. If h : X — Y is an frg-closed bijective function,
then the following statements hold:

(i) for each fuzzy point z, in X and each fuzzy closed set U in X with
zaqU, there exists an frg-closed set V in Y with h(z,)¢V such that
V > h(U),

(i) h=(frgint(B)) > int(h=Y(B)), for all B € IV

Proof (i). Let z, be a fuzzy point in X and U be any fuzzy closed set
in X with z,qU = clU. So h(xq)dh(clU) > frgel(h(U)) (by Theorem
4.15). Then h(xy)¢V for some frg-closed set V in Y with V' > h(U).
(ii). Let B € I'Y and z, be any fuzzy point in X such that
7o € int(h~Y(B)). Then there exists a fuzzy open set U in X with
U < h™Y(B) such that z, € U. Then 1x \ U > 1x \ h~!(B) implies
h(1x \U) > h(lx \ h™*(B)) where h(1x \ U) is an frg-closed set in
Y. Let V.= 1y \ h(lx \ U). Then V is an frg-open set in Y and
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V=1y \h(Ix\U) < Iy \M(Ix \ h7(B)) < Iy \ (Iy \ B) = B
(as h is injective). Now U(x) > a. So z¢(lx \ U). Then
h(za)gh(1x \ U) implies that h(z,) < 1y \ h(lx \ U) = V. Then
h(z,) € V = frgint(V) < frgint(B). So z, € h™'(frgint(B)).
Since z,, is taken arbitrarily, int(h=*(B)) < h~'(frgint(B)), for all
Bel.

Remark 4.17. Composition of two frg-closed (resp., fmg-open)
functions need not be so, as it seen from the following example.

Example 4.18. Let X = {a,b}, 1 = {Ox,1x,A}, m» = {0x, 1x},
73 = {0x, lx, B} where A(a) = 0.8, A(b) = 0.5, B(a) = 0.3, B(b) =
0.5. Then (X, 7), (X, 72) and (X, 73) are fts’s. Consider two identity
functions iy : (X, 7) — (X, 7) and iy : (X, 72) — (X, 73). Clearly iy
and iy are fmg-closed functions. Let i3 = is 04y @ (X, 71) — (X, 73).
We claim that i3 is not fmwg-closed function. Here FrO(X, 13) = 73.
Now 1x \A € 7'10. (ZQ OZl)(lx\A) = 1X\A < Be FT('O(X,Tg). But
cr(1x \A) = 1x \ B £ B implies that 1y \ A is not fmrg-closed set
in (X, 73). Hence i 04y is not frg-closed function.

Similarly we can show that iy o 77 is not fwg-open function though
71 and 179 are so.

Theorem 4.19. If h; : X — Y is fuzzy closed (resp., fuzzy open)
function and hy : Y — Z is frwg-closed (resp., fmg-open) function,
then hyo hy : X — Z is fmg-closed (resp., frg-open) function.

Proof. Obvious.

Now to establish the mutual relationships of fmg-closed function
with the functions defined in [3, 5, 6, 7, 9, 10, 11]. We have to recall
he following definitions first.

Definition 4.20. Let (X,7) — (Y, 7) be a function. Then h is
called an
(i) fg-closed function [3] if h(A) is fg-closed set in Y for every A € 7{,
(ii) fgp-closed function [7] if h(A) is fgp-closed set in Y for every

A e 1f,
(iii) fBg-closed function [7] if h(A) is fBg-closed set in Y for every
A e,
(iv) fga-closed function [3] if h(A) is fga-closed set in Y for every
A e,
(v) fag-closed function [3] if h(A) is fag-closed set in Y for every

A
(vi) fgp-closed function [3] if h(A) is fgp-closed set in Y for every
Ae Ty,

(vii) fpg-closed function [3] if A(A) is fpg-closed set in Y for every
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Aerf,
(viil) fgs-closed function [3] if h(A) is fgs-closed set in Y for every
Aery,
(ix) fsg-closed function [3] if h(A) is fsg-closed set in Y for every
Aerf,
(x) fgs*-closed function [5] if h(A) is fgs*-closed set in Y for every
A e,
(xi) fs*g-closed function [6] if h(A) is fs*g-closed set in Y for every
Ae T,
(xii) fgy-closed function [10] if h(A) is fgy-closed set in Y for every
Aery,
(xiii) fgy*-closed function [11] if h(A) is fgy*-closed set in Y for every
Ae Ty,
(xiv) fswg-closed function [9] if h(A) is fswg-closed set in Y for every
Aerf,
(xv) frwg-closed function [9] if h(A) is frwg-closed set in Y for every
Ae T,
(xvi) fmg-closed function [9] if h(A) is fmg-closed set in Y for every
Aery,
(xvii) fwg-closed function [9] if h(A) is fwg-closed set in Y for every
Aerf.

Remark 4.21. fg-closed function is frmg-closed function, fgs*-
closed function is fmg-closed function, fs*g-closed function is fwg-
closed function and fmg-closed function is frwg-closed function.

But the reverse implications are not true, in general, as it seen in the
following examples.

(i) fmrg-closed function is independent concept of fg/-closed function,
fBg-closed function, fga-closed function, fag-closed function, fgp-
closed function, fpg-closed function, fgs-closed function, fsg-closed
function, fgvy-closed function, fgy*-closed function, fswg-closed func-
tion, fmg-closed function, fwg-closed function.

Example 4.22. frg-closed function not necessarily implies fg-
closed function, fgs-closed function, fsg-closed function, fgs*-closed
function, fs*g-closed function
Let X = {a, b}, n = {OX,lx,A}, Ty — {Ox,lx,B} where A(a) =
0.6, A(b) = 0.5,B(a) = 0.5,B(b) = 0.6. Then (X,7) and (X, )
are fts’s. Consider the identity function i : (X,7) — (X, 7).
Now FrO(X,m) = {0x,1x} and so every fuzzy set in (X, 7) is
frg-closed set in (X, ) and hence i is frg-closed function. Again

FSO(X, 1) ={0x,1x,U} where U > B. Now 1x\A € 77, i(1x\A4) =
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Ix\A< Be€mn,but c,(1x \ A) = 1x £ B implies that 1x \ A is
not fg-closed set in (X, 72) and hence i is not fg-closed function. Also
scl,(1x \A) = 1x £ B. So 1x \ A is not fgs-closed set in (X, 7).
Hence i is not fgs-closed function. Again 1y \ A < B € FSO(X, ),
but scl,,(1x \A) = 1x £ B. So 1x \ 4 is not fsg-closed set in (X, 7).
Hence i is not fsg-closed function. Also cl,,(1x \ A) = 1x £ B and
so 1x \ A is not fgs*-closed set in (X, 7). Hence i is not fgs*-closed
function. Again B is fg-open set in (X, 73) and so 1x \ A < B, but
cr,(1x\A) = 1x £ B implies 1x \ A is not fs*g-closed set in (X, 7).
Hence 7 is not fs*g-closed function.

Example 4.23. frg-closed function may not necessarily fswg-
closed function, fgvy*-closed function, fpg-closed function, fmg-closed
function
Let X = {a,b}, m = {0x,1x,A}, » = {0x,1x, B} where A(a) =
A(b) = 04,B(a) = 0.5,B(b) = 0.6. Then (X,7) and (X, ) are
fts’s.  Consider the identity function i : (X,7) — (X,72). Here
FrO(X, 1) = {0x, 1x} and so every fuzzy set in (X, 73) is frg-closed
set in (X, 72) and as a result i is clearly fmwg-closed function. Now
FSO(X,m) = {0x,1x,U} = the set of all fg-open set in (X, 7s)
where U > B, FPO(X, ) = {0x,1x,V} where V£ 1x \ B. Now
1)(\14 € Tf, Z(lx\A) = 1)(\A € FSO(X77—2) So 1)(\14 S 1)(\A €
FSO(X, ), but cl,,(int,(1x\A)) = 1x £ 1x\A. Then 1x\ A is not
fswg-closed set in (X, 73). Hence 7 is not fswg-closed function. Again
vel,(1x \A) = 1x £ 1x \ Aand so 1x \ A is not fgvy*-closed set in
(X, 72). Then i is not fgy*-closed function. Again 1x \ A < B where
Bis an fg-open set in (X, ), ¢l (int,(1x\A)) = 1x £ B. So1x\ A
is not fmg-closed set in (X, 73). So i is not fmg-closed function. Fur-
thermore, 1x\ A € FPO(X, 1) andso 1x\A <1x\A € FPO(X, ),
but pel,,(1x \ A) = 1x £ 1x \ A implies 1x \ A is not fpg-closed set
in (X, 7). Hence i is not fpg-closed function.

Example 4.24. frg-closed function not necessarily fga-closed
function, fag-closed function
Let X = {a,b}, m = {0x,1x,A}, o = {0x,1x, B} where A(a) =
A(b) = 05, B(a) = 0.5,B(b) = 0.6. Then (X,7) and (X,n)
are fts’s. Consider the identity function i : (X, 1) — (X, 7).
Here F7O(X, ) = {0x,1x} and so every fuzzy set in (X, 7) is
frmg-closed set in (X, 1) and consequently, i is fmrg-closed function.
Now FaO(X,7) = {0x,1x,U} where U > B and FaC(X, 1) =
{Ox,lx,lx\U} where 1)(\U S lx\B Now 1)(\14 S Tlc, Z(lx\A) =
Ix \A. Here Ixy\A< Bemnaswellas 1x \ A < B € FaO(X, 7).
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But acl,,(1x \ A) = 1x £ B. So 1x \ A is not fga-closed as well as
fag-closed set in (X, 75). Hence i is neither fga-closed nor fag-closed
function.

Example 4.25. frg-closed function may not necessarily fgvy-closed
function
Let X = {(I, b}, n = {OX, 1X,A}, Ty = {Ox, 1x,B,C} where A((l) =
0.5, A(b) = 0.45, B(a) = 0.5, B(b) = 0.6, C(a) = 0.3,C(b) = 0.5.
Then X, 1) and (X, 7,) are fts’s. Consider the identity function i :
(X, 7) = (X, 7). Here FrO(X, 1) ={0x,1x,C}. Now 1x \ A € 7{,
i(lx\A)=1x\A<1ly € FrO(X, ) only, 1x \ A is fmg-closed set
in (X, 7). Soiis fmg-closed function. Again 1x \ A < B € 7, but
vel,(1x \ A) = 1x \ C £ B. Then 1x \ A is not fgvy-closed set in
(X, 7). Hence i is not fg~y-closed function.

Example 4.26. fmg-closed function may not necessarily fgS-
closed function, f/g-closed function
Let X = {a,b}, m = {0x,1x,A}, o = {0x,1x, B} where A(a) =
A(b) = 04,B(a) = B(b) = 0.6. Then (X,7n) and (X, 7) are
fts’s.  Consider the identity function i : (X,73) — (X, 72). Here
F?TO(X,TQ) = {Ox,lx}. Now 1)(\/4 c Tlc, Z(lX\A) = lx\A <
ly € FrO(X,72) only and so 1x \ A is frg-closed set in (X, 7).
Hence i is fmg-closed function. Again cl,,(int,,(cl,B)) = 1x > B
implies B € FFO(X,m). Now lx \ A < B € 71, as well as
1X\A < B € FﬂO(X,TQ) But ﬁCsz(lx\A) =1x ﬁ B. So 1x\A
is not fgp-closed as well as f[g-closed set in (X, 72). Hence i is not
fgB-closed as well as f[g-closed function.

Example 4.27. fmrg-closed function may not necessarily fgp-closed
function, fwg-closed function
Let X = {a,b}, m = {0x,1x,A}, » = {0x,1x,B,C} where
A(a) = A(b) = 0.5, B(a) = 0.5, B(b) = 0.6, C(a) = 0.3,C(b) = 0.5.
Then (X,71) and (X, 72) are fts’s. Consider the identity function
i (X,nn) — (X,m). Here FrO(X,m) = {0x,1x,C}. Now
Ix\A e, i(lx \A) = 1x \ A < 1x € FrO(X, ) only and so
1x \ Ais frg-closed set in (X, 75) and hence i is fmg-closed function.
Now 1)(\14 < B € T2, but pClTQ(lX\A) =1x ﬁ B. So 1X\A is
not fgp-closed set in (X, 7). Then i is not fgp-closed function. Also
clr,(int;,(1x \ A)) = 1x \ B £ B. So 1x \ A is not fwg-closed set in
(X, 72) and hence i is not fwg-closed function.

Example 4.28. fgp-closed function, fpg-closed function, fgS-
closed function, ffg-closed function, fgs-closed function, fsg-closed
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function, fgv-closed function, fgv*-closed function, fswg-closed func-
tion, fmg-closed function, fwg-closed function, frwg-closed function
may not imply fmwg-closed function
Let X = {a,b}, m = {0x,1x, A}, 2 = {0x, 1x, B} where A(a) =
0.5,A(b) = 0.7, B(a) = 0.5, B(b) = 0.4. Then (X, 7) and (X, 7)
are fts’s. Consider the identity function ¢ : (X, ) — (X, 7). Here
FSO(X, 1) = {0x,1x,U} where B < U < 1x \ B and the collec-
tion of all fg-open sets in (X, 7) is {Ox,1x,T} where T" % 1x \ B.
Here Ix \Ae 7, i(lx \A) =1x \ A < B € FrO(X, ) = 7. But
c,(1x \A) = 1x \ B £ B and so 1y \ A is not fmrg-closed set in
(X, 7). Then i is not fmrg-closed function.
Now B € FRO(X, ) and cl,,(int,(1x \ A)) =0x < B. So1x \ A
is frwg-closed set in (X, 7). Then i is frwg-closed function. Again
B € FSO(X,m) and cl,(int,(1x \ A)) = 0x < B. Then 1x \ A
is fswg-closed set in (X, 75) and hence i is fswg-closed function.
Also 1x \ A is fg-open set in (X, 7) and so 1x \ A < 1x \ A. Now
clr,(int,(1x \ A)) = 0x < 1x \ A and so 1x \ A is fmg-closed set
in (X,73). Then i is fmg-closed function. Again 1x \ A < B €
and cl, (int,,(1x \ A)) = 0x < B. Then 1x \ A is fwg-closed set in
(X, 72) and hence ¢ is fwg-closed function. Since cl,,(int,,(1x \ A)) =
Ox < 1x\ A4, 1x\ A € FPC(X, ) and so 1x \ A is fgp-closed as
well as fpg-closed set in (X, 72) and so i is fgp-closed as well as fpg-
closed function. Also as int,,(cl,,(int,,(1x \ A))) = 0x < 1x \ A,
Ix \ A € FBC(X, ) and so 1x \ A is fgB-closed as well as f(g-
closed set in (X, 7). So i is fgB-closed as well as ffg-closed func-
tion. Also (cl,(int,,(1x \ A))) A(int,(cl,(1x \ A))) =0x < 1x \ A4,
1x\A € FyC(X, 1) and so 1x\ A is fg7y-closed as well as fgy*-closed
set in (X, 7). Then i is fgy-closed as well as fgvy*-closed function.
Furthermore, 1y\A < B € maswellas 1y\A < B € FSO(X, 73) and
scl,(1x \A) = B < B. So 1x \ Ais fgs-closed as well as fsg-closed
set in (X, 72). Hence i is fgs-closed as well as fsg-closed function.
Example 4.29. fga-closed function, fag-closed function may not
necessarily frg-closed function
Let X = {a,b}, m = {0x,1x,A}, m» = {0x,1x, B,C} where A(a) =
0.8, A(b) = 0.6, B(a) = 0.5, B(b) = 0.6 and C(a) = 0.3,C(b) = 0.5.
Then (X,7) and (X, 7) are fts’s. Consider the identity function
i:(X,m) = (X,7). Now 1x \ A € 77, i(1x \ A) = 1x \ A. Since
clp,(intr,(cl,(1x \ A))) = 0x < 1x \ A4, 1x \ A € FaC(X, ) and
so 1x \ A is fga-closed as well as fag-closed set in (X, ), therefore
i is fga-closed as well as fag-closed function. But 1x \ A < C €
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FrO(X,m) and cl,(1x \ A) = 1x \ B £ C and so 1x \ A is not
frg-closed set in (X, 73). Hence 7 is not frg-closed function.
Remark 4.30. (i) Let h : X — Y be a function where Y is
an fpTy,-space (resp., f1s-space, fT,-space, faTy-space, fT,-space,
fTsg-space, fT,-space, fT,--space, fr1,-space, fsT,-space, fT,-space,
frTy-space, fmT,-space, fT,-space). Then an ffg-closed (resp., fgp-
closed, fga-closed, fag-closed, fgs-closed, fsg-closed, fgvy-closed,
fgv*-closed, frwg-closed, fswg-closed, fgp-closed, fpg-closed, fmg-
closed, fwg-closed) function is fmg-closed function.
(ii) Let h: X — Y be a function where Y is an fT,-space. If h is an
fmg-closed function, then h is an fg-closed function, fgs*-closed func-
tion, fs*g-closed function, fg@-closed function, fBg-closed function,
fga-closed function, fag-closed function, fgp-closed function, fpg-
closed function, fgs-closed function, fsg-closed function, fgy-closed
function, fgy*-closed function.

5. frg-REGULAR, frg-NORMAL AND frg-COMPACT SPACES

In this section a new type of generalized version of fuzzy regularity,
fuzzy normality and fuzzy compactness are introduced and studied.
It is also shown that these three concepts are weak concepts of fuzzy
regularity [20], fuzzy normality [19] and fuzzy compactness [14].

Definition 5.1. An fts (X, 7) is said to be frg-regular space if for
any fuzzy point z; in X and each fwg-closed set F'in X with z; € F,
there exist U,V € FRO(X) such that z;, e U, FF <V and U 4V.

Theorem 5.2. In an fts (X, 7), the following statements are equiv-
alent:

(i) X is fmg-regular,

(ii) for each fuzzy point z; in X and any fmg-open ¢g-nbd U of z;, there
exists V € FRO(X) such that z; € V and IV < U,

(iii) for each fuzzy point x; in X and each frg-closed set A of X with
xy € A, there exists U € FRO(X) with x; € U such that clU gA.

Proof (i) = (ii). Let x; be a fuzzy point in X and U, any fmrg-open
¢-nbd of x;. Then z,;qU implies U(x)+t > 1 and so x; € 1x \ U which
is an fmrg-closed set in X. By (i), there exist VW € FRO(X) such
that z; € V,1x \U < W and V. gW. Then V < 1x \ W and so
(ii) = (iii). Let x; be a fuzzy point in X and A, an fmg-closed set
in X with z; ¢ A. Then A(z) < t and so z;q(1x \ A) which being
fmg-open set in X is fmg-open ¢g-nbd of x;. So by (ii), there exists
V € FRO(X) such that z; € V and ¢lV < 1x \ A. Then clV AA.
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(iii) = (i). Let x; be a fuzzy point in X and F' be any fmg-closed set
in X with x; € F. Then by (iii), there exists U € FRO(X) such that
xy € U and clU 4F. Then F < 1x\ U (=V, say). So V € FRO(X)
and V' gU as U f(1x \ clU). Consequently, X is fmwg-regular space.

Definition 5.3. An fts (X, 7) is called frg-normal space if for
each pair of fmwg-closed sets A, B in X with A /¢B, there exist
U,V € FRO(X) such that A< U, B <V and U 4V.

Theorem 5.4. An fts (X, 7) is frg-normal space if and only if for
every fmg-closed set F' and frg-open set G in X with F' < G, there
exists H € FRO(X) such that F* < H < ¢lH < G.

Proof. Let X be frg-normal space and let F' be fmrg-closed set and
G be frg-open set in X with F' < G. Then F' f§(1x\G) where 1x\ G
is frg-closed set in X. By hypothesis, there exist H,T € FRO(X)
such that FF < H 1x \G < T and H 4T. Then H < 1x\ T < G.
Therefore, ' < H < clH <c(1x\T)=1x\T <G.

Conversely, let A, B be two fmrg-closed sets in X with A ¢B. Then
A < 1x \ B. By hypothesis, there exists H € FRO(X) such that
A< H<cH<1x\B. Then A < H,B < 1x \ clH (=V, say).
Then V € FRO(X) and so B < V. Also as H 4(1x \ clH), H 4V.
Consequently, X is fmg-normal space.

Let us now recall the following definitions from [14, 18] for ready
references.

Definition 5.5. Let (X,7) be an fts and A € I*. A collection U
of fuzzy sets in X is called a fuzzy cover of A if | JU > A [18]. If each
member of U is fuzzy open (resp., fuzzy regular open, fmg-open) in
X, then U is called a fuzzy open [18] (resp., fuzzy regular open [1],
fmg-open) cover of A. If, in particular, A = 1x, we get the definition
of fuzzy cover of X as JU = 1x [14].

Definition 5.6. Let (X,7) be an fts and A € I*. Then a fuzzy
cover U of A (resp., of X) is said to have a finite subcover U if U is
a finite subcollection of U such that |JUy > A [18]. If, in particular
A=1x, we get YUy = 1x [14].

Definition 5.7. Let (X,7) be an fts and A € IX. Then A is called
fuzzy compact [14] (resp., fuzzy almost compact [15], fuzzy nearly
compact [21]) set if every fuzzy open (resp., fuzzy open, fuzzy regular
open) cover U of A has a finite subcollection U, such that (JUy > A
(resp., U cdU > A, JUy > A). If, in particular, A = 1x, we get

Uello
the definition of fuzzy compact [14] (resp., fuzzy almost compact [15],
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fuzzy nearly compact [16]) space as | JUy = 1x (resp., U cU = 1y,
Uelly
UZ/[() - 1)()

Let us now introduce the following concept.

Definition 5.8. Let (X, 7) be an fts and A € IX. Then A is called
fmg-compact if every fuzzy cover U of A by fmrg-open sets of X has
a finite subcover. If, in particular, A = 1y, we get the definition of
fmrg-compact space X.

Theorem 5.9. Every fmg-closed set in an frg-compact space X
is fmg-compact.

Proof. Let A(€ IY) be an frg-closed set in an frg-compact space
X. Let U be a fuzzy cover of A by fmrg-open sets of X. Then
V =UJ(1x\A) is a fuzzy cover of X by frg-open sets of X. As X is
fmg-compact space, V has a finite subcollection V, which also covers
X. If Vy contains 1x \ A, we omit it and get a finite subcover of A.
Hence A is fmrg-compact set.

Next we recall the following two definitions from [20, 19] for ready
references.

Definition 5.10 [20]. An fts (X, 7) is called fuzzy regular space if
for each fuzzy point x; in X and each fuzzy closed set F' in X with
xy € F, there exist U,V € 7 such that x;, e U, F <V and U 4V.

Definition 5.11 [19]. An fts (X, 1) is called fuzzy normal space if
for each pair of fuzzy closed sets A, B of X with A 4B, there exist
U,V € Tsuch that AU, B<Vand U 4V.

Remark 5.10. It is clear from above discussion that (i) frg-regular
(resp., fmg-normal) space is fuzzy regular (resp., fuzzy normal) space,
(i) frg-compact space is fuzzy compact, fuzzy almost compact, fuzzy
nearly compact space,

(iii) in fT,-space, fuzzy compactness implies frg-compactness.

6. fmrg-CONTINUOUS AND fmg-IRRESOLUTE FUNCTIONS

In this section two new types of generalized version of fuzzy func-
tions, viz,. fmwg-continuous function and frwg-irresolute function are
introduced and characterized by fmwg-closed set. It is shown that frg-
continuous image of an frg-regular (resp., frg-normal, frg-compact)
space is fuzzy regular (resp., fuzzy normal, fuzzy compact, fuzzy al-
most compact, fuzzy nearly compact) space. Also under fmg-irresolute
function, frg-regularity (resp., fmg-normality, fmg-compactness) re-
mains invariant. Lastly, the mutual relationship of fmwg-continuous
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function with the functions defined in [3, 5, 7, 9, 10, 11] are estab-
lished.

Now we first introduce the following concept.

Definition 6.1. A function h : X — Y is said to be fuzzy n-
generalized continuous ( fmg-continuous, for short) function if A=1(V)
is frg-closed set in X for every fuzzy closed set V in Y.

Theorem 6.2. Let h : (X,7) — (Y,0) be a function. Then the
following statements are equivalent:

(i) h is fmg-continuous function,

(ii) for each fuzzy point z, in X and each fuzzy open nbd V' of h(z,)
in Y, there exists an frg-open nbd U of z,, in X such that h(U) <V,
(iif) h(frgcl(A)) < cl(h(A)), for all A € X,

(iv) frgcl(h=Y(B)) < h™Y(clB), for all B € IY.

Proof (i) = (ii). Let x, be a fuzzy point in X and V, any fuzzy
open nbd of h(z,) in Y. Then x, € h=' (V) which is frg-open in X
(by (i)). Let U = h=Y(V). Then h(U) = h(h=1(V)) < V.

(i) = (i). Let A be any fuzzy open set in Y and z,, a fuzzy
point in X such that z, € h7'(A). Then h(z,) € A where A is
a fuzzy open nbd of h(z,) in Y. By (ii), there exists an fmwg-open
nbd U of z, in X such that h(U) < A. Then z, € U < h™'(A).
So z, € U = frgint(U) < frgint(h~'(A)). Since z, is taken
arbitrarily and h™'(A) is the union of all fuzzy points in h=1(A),
h=1(A) < frgint(h~'(A)). Then h™'(A) is an frg-open set in X.
Hence h is an fmwg-continuous function.

(i) = (). Let A € IX. Then cl(h(A)) is a fuzzy
closed set in Y. By (i), ( [(h(A))) is fmg-closed set in
X. Now A < b7 Yh(A) < h7Ycl(h(A))) and so frgcl(A) <
frgel(h=(cl(h(A)))) = h~Y(cl(h(A))). Hence h(frgcl(A)) <
cl(h(A)).

(iii) = (i). Let V be a fuzzy closed set in Y. Put U = h™*(V). Then
U € I*. By (iii), h(frgcl(U)) < cd(R(U)) = c(h(h7*(V))) <V =
V. Then frgcl(U) < h™'(V) = U and so U is fmg-closed set in X.
Hence h is fmg-continuous function.

(iii) = (iv). Let B € IV and A = h_l(B). Then A € I*. By (iii),
h(fmgel(A)) < cl(h(A)) and so h(fmgel(h™(B))) < cl(h(h™}(B))) <
clB. Hence frgcl(h~Y(B)) < h™1(cIB).

(iv) = (iii). Let A € [*. Then h(A) € IY. By
@), Sl (AN < ). So frgdd) <
Frgel(h = (h(4))) < b~ (cl(h(A))). Then h(frgel(4)) < cl(h(A)).

Remark 6.3. Composmon of two fmg-continuous functions need
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not be so, as it seen from the following example.

Example 6.4. Let X = {a,b}, 1 = {Ox,1x,B}, m» = {0x,1x},
73 = {Ox, 1x, A} where A(a) = 0.8, A(b) = 0.5,B(a) = 0.3, B(b) =
0.5. Then (X,7), (X,7) and (X, 73) are fts’s. Consider two iden-
tity functions i; : (X, 1) — (X, 72) and iy : (X, 72) — (X, 73). Then
clearly i; and iy are frg-continuous functions. Now 1x \ A € 75. So
(ig e} il)_1<1X \ A) = 1X \ A S B e FTFO(X, 7'1). But Clﬁ(lX \ A) =
Ix\ B £ Bandso 1x\ Aisnot frg-closed set in (X, 71). Then iy 01,
is not an fwg-continuous function.

Let us now recall the following definition from [14] for ready refer-
ences.

Definition 6.5 [14]. A function h : X — Y is called fuzzy contin-
uous function if A71(V) is fuzzy closed set in X for every fuzzy closed
set VinY.

Remark 6.6. Since every fuzzy closed set is frg-closed set, it is
clear that fuzzy continuous function is fmg-continuous function. But
the converse is not necessarily true, as the following example shows.

Example 6.7. Let X = {a,b}, m = {0x,1x}, m» = {0x,1x, A}
where A(a) = A(b) = 0.5. Then (X, 1) and (X, 72) are fts’s. Consider
the identity function ¢ : (X, 7) — (X, 72). Since every fuzzy set in
(X, 7) is frg-closed set in (X, 7), clearly 7 is frg-continuous function.
But A € 75, i7'(A) = A ¢ 7¢. Hence i is not fuzzy continuous func-
tion.

Theorem 6.8. If hy : X — Y is fwg-continuous function and
hy 'Y — Z is fuzzy continuous function, then hy o hy : X — Z is
fmg-continuous function.

Proof. Obvious.

Theorem 6.9. If a bijective function h : X — Y is fwg-continuous,
fuzzy open function from an fmrg-regular space X onto an fts Y, then
Y is fuzzy regular space.

Proof. Let y, be a fuzzy point in Y and F, a fuzzy closed set
in Y with y, € F. As h is bijective, there exists unique x € X
such that h(zr) = y. So h(z,) ¢ F implies x, ¢ h™'(F) where
h=Y(F) is fmg-closed set in X (as h is an fmg-continuous function).
As X is fmg-regular space, there exist U,V € FRO(X) such that
To € URYF) <V and UgV. Then h(z,) € W(U), F = h(h ' (F))
(as h is bijective)< h(V') and h(U)¢h(V') where h(U) and h(V') are
fuzzy open sets in Y (as h is a fuzzy open function and fuzzy reg-
ular open set is fuzzy open set). (Indeed, h(U)gh(V') implies the
existence of z € Y such that [A(U)](z) + [A(V)](2) > 1, hence
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Uh™'(2)) +V(h™'(2)) > 1 as h is bijective implies UqV, a contradic-
tion). Hence Y is a fuzzy regular space.

In a similar manner we can state the following theorems easily the
proofs of which are same as that of Theorem 6.9.

Theorem 6.10. If a bijective function h : X — Y is frng-
continuous, fuzzy open function from a fuzzy regular (resp., fuzzy
normal), fT.-space X onto an fts Y, then Y is fuzzy regular (resp.,
fuzzy normal) space.

Theorem 6.11. If a bijective function h : X — Y is frng-
continuous, fuzzy open function from an fmwg-normal space X onto
an fts Y, then Y is fuzzy normal space.

Let us now recall the following definition from [12] for ready refer-
ences.

Definition 6.12 [12]. A function i : X — Y is called fuzzy R-open
function if h(U) € FRO(Y) for every U € FRO(X).

Now we state the following theorem easily the proof of which is same
as that of Theorem 6.9.

Theorem 6.12. If a bijective function h : X — Y is frng-
continuous, fuzzy R-open function from an frg-regular (resp., fmg-
normal) space X onto an fts Y, then Y is fuzzy regular (resp., fuzzy
normal) space.

Definition 6.14. A function h : X — Y is called fuzzy =-
generalized irresolute (fmg-irresolute, for short) function if h=1(U) is
an fmwg-open set in X for every fmwg-open set U in Y.

Now we state the following two theorems easily the proofs of which
are similar to that of Theorem 6.9.

Theorem 6.15. If a bijective function h : X — Y is frg-irresolute,
fuzzy R-open function from an fmg-regular (resp., frg-normal) space
X onto an fts Y, then Y is frg-regular (resp., frg-normal) space.

Theorem 6.16. If a bijective function h : X — Y is frg-irresolute,
fuzzy R-open function from an frg-regular (resp., fmg-normal) space
X onto an fts Y, then Y is fuzzy regular (resp., fuzzy normal) space.

Theorem 6.17. If a bijective function h : X — Y is frg-irresolute,
fuzzy open function from a fuzzy regular (resp., fuzzy normal), f7-
space X onto an fts Y, then Y is fuzzy regular (resp., fuzzy normal)
space.

Theorem 6.18. If a bijective function h : X — Y is frg-irresolute,
fuzzy open function from an fmrg-regular (resp., frg-normal) space X
onto an fts Y, then Y is fuzzy regular (resp., fuzzy normal) space.

Theorem 6.19. A function h : X — Y is frg-irresolute function iff
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for each fuzzy point z,, in X and each fmwg-open nbd V in'Y of h(z,),
there exists an frg-open nbd U in X of x, such that h(U) < V.

Proof. Let h: X — Y be an fmg-irresolute function. Let x, be a
fuzzy point in X and V' be any fwg-open nbd of h(z,) in Y. Then
h(z,) € V implies z, € A~ (V), but h~}(V) is an frg-open set in X,
therefore is an frg-open nbd of z, in X. Put U = h=*(V). Then U
is an frg-open nbd of z, in X and h(U) = h(h~1(V)) < V.

Conversely, let A be an frg-open set in Y and z, be any fuzzy
point in X such that x, € h™*(A). Then h(z,) € A. By hypothesis,
there exists an frg-open nbd U of x,, in X such that h(U) < A and so
o, € U = frgint(U) < frgint(h~'(A)). Since z, is taken arbitrar-
ily and h~'(A) is the union of all fuzzy points in h=1(A), h™1(A) <
frgint(h=*(A)) implies h™*(A) = frgint(h"'(A)). Then h~1(A) is
fmg-open set in X. Hence h is an fmg-irresolute function.

Theorem 6.20. Let h : X — Y be an frg-continuous function
from X onto an fts Y and A(€ IX) be an fmg-compact set in X.
Then h(A) is a fuzzy compact (resp., fuzzy almost compact, fuzzy
nearly compact) set in Y.

Proof. Let U = {U, : a € A} be a fuzzy cover of h(A) by
fuzzy open (resp., fuzzy open, fuzzy regular open) sets of Y. Then
hA) < |JU, implies A < »7Y(|JU.) = (Jh7'(U.). Then

acl acl a€EA
V = {h}(U,) : @ € A} is a fuzzy cover of A by fmg-open sets of
X as h is an fmg-continuous function. As A is frg-compact set in X,
there exists a finite subcollection Ay of A such that A < U h=Y(U,)

ac€lg
implies h(A) < h( U r(U,) < U U,. Hence h(A) is fuzzy com-
a€lg a€lg
pact (resp., fuzzy almost compact, fuzzy nearly compact) set in Y.

Since fuzzy open set fmwg-open, we can state the following theorems
easily the proofs of which are same as that of Theorem 6.20.

Theorem 6.21. Let h: X — Y be an frg-irresolute function from
X onto an fts Y and A(€ IX) be an frg-compact set in X. Then
h(A) is fmg-compact (resp., fuzzy compact, fuzzy almost compact,
fuzzy nearly compact) set in Y.

Theorem 6.22. Let h : X — Y be an frg-continuous function
from an fmrg-compact space X onto an fts Y . Then Y is fuzzy com-
pact (resp., fuzzy almost compact, fuzzy nearly compact) space.

Theorem 6.23. Let h: X — Y be an fwg-irresolute function from
an fmg-compact space X onto an fts Y . Then Y is fmwg-compact
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(resp., fuzzy compact, fuzzy almost compact, fuzzy nearly compact)
space.

Theorem 6.24. Let h : X — Y be an frg-continuous function
from a fuzzy compact, fT,-space X onto an fts Y . Then Y is fuzzy
compact (resp., fuzzy almost compact, fuzzy nearly compact) space.

Theorem 6.25. Let h: X — Y be an fwg-irresolute function from
a fuzzy compact, fT,-space X onto an fts Y . Then Y is fmrg-compact
(resp., fuzzy compact, fuzzy almost compact, fuzzy nearly compact)
space.

Remark 6.26. It is clear from definitions that (i) fwg-irresolute
function is fmwg-continuous, but the converse may not be true, as the
following example shows.

Also (ii) fuzzy continuity and frg-irresoluteness are independent con-
cepts as the following examples show.

Example 6.27. fmrg-continuous function may not necessarily frg-
irresolute function
Let X = {a,b}, m = {0x,1x,B,C}, » = {0x,1x,A} where
A(a) = A(b) = 0.5,B(a) = 0.5,B(b) = 0.6,C(a) = 0.3,C(b) = 0.5.
then (X,7) and (X, 7) are fts’s. Consider the identity function
i (X,m) = (X,m). Now lx \A € 75, i '(1x \A) = 1x \ A <
lx € FrO(X, ) only and so 1x \ A is fmg-closed set in (X, 7).
Hence ¢ is fmg-continuous function. Now consider the fuzzy set D
defined by D(a) = 0.2,D(b) = 0.5. Then D < A € FrO(X, 1)
and cl,D = A < A. So D is fmg-closed set in (X, 7). Now
i"Y(D) =D < C € FrO(X, 7). But cl,(D) = 1x\C £ C. So
D is not fmg-closed set in (X, 71). Hence i is not an fmg-irresolute
function.

Example 6.28. Fuzzy continuity may not necessarily fmrg-
irresolute function
Let X = {a,b}, m = {0x,1x,A}, » = {0x,1x} where A(a) =
0.5,A(b) = 0.4. Then (X,7) and (X, 7s) are fts’s. Consider the
identity function i : (X, ) — (X, 72). Here every fuzzy set in (X, 73)
is fmg-closed set in (X, 72). Let us consider the fuzzy set B defined
by B(a) = 0.5, B(b) = 0.3. Then B is frg-closed set in (X, 73). Now
i'(B) = B < A€ FrO(X,7). But cl,(B) = 1x \ A £ A. So
B is not frg-closed set in (X, 7). Hence i is not an fmg-irresolute
function. But clearly i is fuzzy continuous function.

Example 6.29. frg-irresoluteness may not necessarily imply fuzzy
continuity

Let X = {a,b}, m = {0x,1x}, m» = {0x, 1x, A} where A(a) = A(b) =
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0.5. Then (X, 1) and (X, 73) are fts’s. Consider the identity function
i (X,m) — (X, 7). Since every fuzzy set in (X, 1) is fmg-closed
set in (X, 1), clearly i is fmwg-irresolute function. Also i is not fuzzy
continuous function as A € 7,1 1 (A) = A & 7.

Theorem 6.30. Let h : X — Y be an frg-continuous function
where Y is an fT,-space. Then h is fmg-irresolute function.

Proof. Obvious.

Note 6.31. It is clear from definition that composition of two frg-
irresolute functions is fmrg-irresolute function. Again if hy : X — Y is
fmg-irresolute function and hy : Y — Z is fwg-continuous function,
then hy o hy : X — Z is an fmg-continuous function.

To establish the mutual relationship of fmg-continuous function
with the functions defined in [3, 5, 6, 7, 9, 10, 11], we first recall
the definitions of the functions defined in [3, 5, 6, 7, 9, 10, 11].

Definition 6.32. Let h: (X, ) — (Y, 72) be a function. Then h
is called
(i) fg-continuous function [3] if A~1 (V) is fg-closed set in X for every
Ve s,

(ii) fgB-continuous function [7] if A=*(V) is fgB-closed set in X for
every V € 73,

(iii) fBg-continuous function [7] if A~=*(V) is fBg-closed set in X for
every V € 75,

(iv) fgp-continuous function [3] if h=1(V) is fgp-closed set in X for
every V € 73,

(v) fpg-continuous function [3] if A~1(V) is fpg-closed set in X for
every V € 75,

(vi) fga-continuous function [3] if A~'(V) is fga-closed set in X for
every V € 73,

(vil) fag-continuous function [3] if A~1 (V) is fag-closed set in X for
every V € 73,

(viii) fgs-continuous function [3] if if A=*(V) is fgs-closed set in X
for every V € 73,

(ix) fsg-continuous function [3] if h=1(V) is fsg-closed set in X for
every V € 73,

(x) fgs*-continuous function [5] if A=1(V) is fgs*-closed set in X for
every V € 73,

(xi) fs*g-continuous function [6] if A~ (V) is fs*g-closed set in X for
every V € 73,

(xii) fgy-continuous function [10] if A= *(V) is fg7y-closed set in X for
every V € 75,



62 ANJANA BHATTACHARYYA

(xiii) fgy*-continuous function [11] if A=1(V) is fgy*-closed set in X
for every V' € 75,

(xiv) frwg-continuous function [9] if h=1(V) is frwg-closed set in X
for every V' € 75,

(xv) fswg-continuous function [9] if h=1(V) is fswg-closed set in X
for every V € 75,

(xvi) fmg-continuous function [9] if h~1(V) is fmg-closed set in X for
every V € 73,

(xvii) fwg-continuous function [9] if A=1(V) is fwg-closed set in X for
every V € 73.

Remark 6.33. (i) fg-continuity implies fmwg-continuity,
fgs*-continuity implies fmwg-continuity, fs*g-continuity implies
fmg-continuity and fwg-continuity implies frwg-continuity, fmrg-
irresoluteness implies frwg-continuity. But the reverse implications
are not necessarily true, in general, as the following examples show.
(ii) fmrg-continuity is an independent concept of fgS-continuity,
fBg-continuity, fgp-continuity, fpg-continuity, fga-continuity, fag-
continuity, fgs-continuity, fsg-continuity, fgy-continuity, fgvy*-
continuity, fswg-continuity, fmg-continuity, fwg-continuity.

Example 6.34. frg-continuity may not necessarily fg-continuity,
fgs-continuity, fsg-continuity, fgs*-continuity, fs*g-continuity
Let X = {a,b}, m = {0x,1x,B}, » = {0x,1x, A} where A(a) =
0.6, A(b) = 0.5,B(a) = 0.5,B(b) = 0.6. Then (X,7) and (X, 7)
are fts’s. Consider the identity function ¢ : (X,n — (X, 72). Since
FrO(X, ) = {0x,1x}, every fuzzy set in (X, 7) is fmrg-closed set
in (X,7) implies ¢ is fwg-continuous function. Now 1x \ A € 75,
i'(1x \A)=1x\A< B e (also B€ FSO(X,n) ={0x,1x,U}
where U > B) and cl,,(1x \ A) = 1x £ B (resp., scl,,(1x \ A) =
1x £ B) implies 1x \ A is not fg-closed (resp., fgs-closed, fsg-closed,
fgs*-closed) set in (X, 7). Hence i is not fg-continuous (resp., fgs-
continuous, fsg-continuous, fgs*-continuous) function. Again B is
fg-open set in (X, 7). Then 1x\ A < B, but ¢l,(1x \ A) = 1x £ B.
So 1x \ A is not fs*g-closed set in (X, 7). Hence ¢ is not fs*g-
continuous function.

Example 6.35. fmrg-continuity may not necessarily fg/-continuity,
f Bg-continuity
Let X = {a,b}, m = {0x,1x,B}, m» = {0x,1x, A} where A(a) =
A(b) = 0.4,B(a) = B(b) = 0.6. Then (X,7) and (X, 1) are fts’s.
Consider the identity function i : (X, 7) — (X, 72). Since every fuzzy
set in (X, 1) is fmrg-closed set in (X, 1), i is clearly fmwg-continuous
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function. Now 1x \ A € 75, i '(1x \ A) = 1x \ A < B € 7y (also
B € FBO(X, 1) = {0x,1x,U} where U > B). But fel, (1x \ A) =
1x £ B. Hence 1x \ A is not fgpB-closed (resp., ffg-closed) set in
(X, 7) and so ¢ is not fgS-continuous (resp., fFg-continuous) func-
tion.

Example 6.36. fmg-continuity may not necessarily fswg-
continuity, fgvy*-continuity, fpg-continuity, fmg-continuity
Let X = {a,b}, m = {0x,1x,B}, m» = {0x,1x, A} where A(a) =
A(b) = 0.4, B(a) = 0.5, B(b) = 0.6. Then (X, 1) and (X.7» are fts’s.
Consider the identity function i : (X.7y) — (X, 72). As every fuzzy
set in (X, 7) is fmg-closed set in (X, 1), clearly i is fmg-continuous
function. Now 1x \ A e 75, i ' (1x \A) =1x \A < B € FSO(X, 7).
But ¢l (int;,(1x \ A)) = 1x £ B. So 1x \ A is not fswg-closed
set in (X,7) and so ¢ is not fswg-continuous function. Again
vel, (1x\A) = 1x £ B implies 1x \ A is not fgy*-closed set in (X, )
and so i is not fgvy*-continuous function. Again 1x \ A € FPO(X, 1)
andso 1y \A<1x\Ae€ FPO(X,n). But 1x\ A ¢ FPC(X,m) and
so pcly, (1x \A) £ 1x \ A. So 1x \ A is not fpg-closed set in (X, 7).
Hence 7 is not fpg-continuous function. Again 1y \ A is fg-open set in
(X, 7'1) and so 1)(\14 S 1)(\14 But ClTl(intTl(lx\A)) = 1X ﬁ 1)(\14
Then 1x \ A is not fmg-closed set in (X, 7). Consequently, i is not
fmg-continuous function.

Example 6.37. frg-continuity may not necessarily fga-continuity,
fag-continuity
Let X = {a,b}, m = {0x,1x,B}, » = {Ox,1x, A} where A(a) =
A(b) = 0.5,B(a) = 0.5,B(b) = 0.6. Then (X,n) and (X, 7) are
fts’s. Consider the identity function ¢ : (X, 7)) — (X, 7). As ev-
ery fuzzy set in (X, 1) is frg-closed set in (X, 1), clearly i is fmg-
continuous function. Now 1x \ A € 75, i '(1x \ A) = 1x \ A. Here
Ix\A< Bemr (also Be FaO(X, 1) ={0x,1x,U} where U > B).
So acl, (1x \ A) = 1x £ B. Then 1x \ A is not fga-closed (resp.,
fag-closed) set in (X, 71). Hence 7 is not fga-continuous (resp., fag-
continuous) function.

Example 6.38. fmrg-continuity may not necessarily fwg-continuity
Consider Example 6.27. Here i is fmg-continuous function. Now
Ix\Aers, it (1x\A) =1x\ A < B e . But c,(int, (1x \ A)) =
1x \C £ B and so 1x \ A is not fwg-closed set in (X, 7). Hence i is
not fwg-continuous function.

Example 6.39. frg-continuity may not necessarily fgvy-continuity
Let X = {a,b}, m = {0x,1x,B,C}, m» = {0x,1x, A} where A(a) =
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0.5, A(b) = 0.45,B(a) = 0.5,B(b) = 0.6,C(a) = 0.3,C(b) = 0.5.
Then (X,7) and (X, 7) are fts’s. Consider the identity function
i (X,m) = (X,m). Now lx \A € 75, i '(1x \A) = 1x \ A <
lx € FrO(X,7) only and so 1x \ A is fmg-closed set in (X,7)
implies ¢ is fmwg-continuous function. But 1x \ A < B € 7 and
vel, (1x\A) =1x\C £ B. So 1x\ A is not fgy-closed set in (X, 7).
Hence 7 is not fgy-continuous function.

Example 6.40. fmrg-continuity may not necessarily fgp-continuity
Let X = {a,b}, m = {0x,1x,B,C}, » = {0x,1x,A} where
A(a) = A(b) = 0.5,B(a) = 0.5,B(b) = 0.6,C(a) = 0.3,C(b) = 0.5.
Then (X,7) and (X, 7) are fts’s. Consider the identity function
i (X,m) = (X,m). Now lx \A e 75, i '(1x \A) = 1x \ A <
lx € FrO(X, ) only, clearly 1x \ A is fwg-closed set in (X, 7).
So i is fmg-continuous function. Now 1x \ A < B € 7. But
pely, (1x \A) = 1x £ B. So 1x \ A is not fgp-closed set in (X, ).
Hence 7 is not fgp-continuous function.

Example 6.41. frwg-continuity, fgy-continuity, fgv*-continuity,
fgp-continuity, fpg-continuity, fgB-continuity, fGg-continuity, fswg-
continuity, fmg-continuity, fwg-continuity may not necessarily frg-
continuity
Let X = {a,b}, m = {0x,1x,B}, m» = {0x,1x, A} where A(a) =
0.5,A(b) = 0.7,B(a) = 0.5,B(b) = 0.4. Then (X,n) and (X, 7)
are fts’s. Consider the identity function i : (X,7) — (X, 72). Now
1X\A S 7'26, Z_l(lx\A> = 1)(\14 < Be€e Fﬂ'O(X, 7'1), but ClTl(lx\A) =
Ix \ B £ B. So1lx \ A is not frg-closed set in (X, 7). Hence i is
not fmg-continuous function. Now 1x \ A < B € FRO(X, 1) and
cly, (int;, (1x\A)) = 0x < B. Then 1x\ Ais frwg-closed set in (X, 7).
Hence i is frwg-continuous function. Now el (1x \ A) = 1x \ 4 im-
plies 1x \ A € FyC(X, 7). Then 1x\ A is fgy-closed as well as fgy*-
closed set in (X, 7). Soiis fgvy-continuous as well as fgy*-continuous
function. Again 1y \ A € FPC(X, 1) implies 1x \ A is fgp-closed as
well as fpg-closed set in (X, 71). Hence i is fgp-continuous as well as
fpg-continuous function. Also 1x\ A € FAC(X,m). So1x\Ais fgp-
closed as well as fg-closed set in (X, 71). Hence i is fg/-continuous as
well as ffg-continuous function. Now 1x \ A < B € FSO(X, ;) and
cly, (int;,(1x \ A)) = 0x < B. So 1x \ A is fswg-closed set in (X, 7).
Then i is fswg-continuous function. Again 1y \ A is fg-open set in
(X,m)andso 1x \A<1xy\Aandcl, (int,(1x\A) =0x <1x\ A
implies 1y \ A is fmg-closed set in (X, 77) implies i is fmg-continuous
function. Again 1x \ A < B € 7 and ¢l (int,(1x \ A)) = 0x < B
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and so 1x \ A is fwg-closed set in (X, 7). Hence i is fwg-continuous
function.

Example 6.42. fga-continuity, fag-continuity, fgs-continuity,
fsg-continuity may not necessarily fmwg-continuity
Let X = {a,b}, m = {0x,1x,B,C}, » = {0x,1x, A} where A(a) =
0.8,A(b) = 0.6,B(a) = 0.5,B(b) = 0.6,C(a) = 0.3,C(b) = 0.5.
Then (X,7) and (X, 7) are fts’s. Consider the identity function
i (X,Tl) — (X,TQ). Here 1)(\14 S 7'20, 2_1(1)(\14) = 1)(\14
As cl; (int;, (cl,(1x \ A))) = 0x < Ix \ A, 1x \ A € FaC(X, 7).
So 1x \ A is fga-closed as well as fag-closed set in (X, 7). Hence
1 is fga-continuous as well as fag-continuous function. Also as
inty (cl,(1x \ A)) = 0x < 1x \ A, s0 1x \ A € FSC(X, 7). Then
1x \ A is fgs-closed as well as fsg-closed set in (X, 7). Hence i is
fgs-continuous as well as s fg-continuous function. But 1x \ A < C €
FrO(X,n) and ¢l (1x \ A) = 1x \ B £ C. Then 1x \ A is not
fmg-closed set in (X, 7). Hence i is not fmrg-continuous function.

Example 6.43. frwg-continuity may not necessarily imply frg-
irresoluteness
Consider Example 6.40. Here i is frwg-continuous function. Here
every fuzzy set in (X, 1) is frg-closed set in (X, 72). Consider the
fuzzy set C defined by C(a) = 0.5,C(b) = 0.3. Then C is fry-
closed set in (X, 7). Now i '(C) = C < B € FrO(X,7;). But
cl, (C) =1x\B £ C and so C is not frg-closed set in (X, 71). Hence
1 is not fmwg-irresolute function.

7. frg-T, Space

A new type of fuzzy T,-property is introduced here. Then we in-
troduce a strong form of fmwg-continuity which implies fmg-continuity
and the converse is true on f7T,-space.

We first recall the definition and theorem from [20, 21] for ready
references.

Definition 7.1 [20]. An fts (X, 7) is called fuzzy Ts-space if for
any two distinct fuzzy points x, and yg; when = # y, there exist
fuzzy open sets Uy, Us, Vi, Vs such that z, € Ui, ygqVi, U V) and
2aqUsa,yp € Vo, Uy fjVa; when x = y and o < (3 (say), there exist fuzzy
open sets U and V in X such that z, € U,ypqV and U 4V

Theorem 7.2 [21]. An fts (X, 7) is fuzzy Th-space if and only if for
any two distinct fuzzy points x, and yz in X; when x # y, there exist
fuzzy open sets U,V in X such that x,qU, ygqV and U 4V; when
x =y and a < § (say), z, has a fuzzy open nbd U and ys has a fuzzy
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open ¢g-nbd V such that U 4V.

Now we introduce the following concept.

Definition 7.3. An fts (X, 7) is called fuzzy m-generalized T, space
(fmg-Ty Space, for short), if for any two distinct fuzzy points z, and
ys in X; when x # y, there exist frg-open sets U,V in X such that
2aqU, ygqV and U fV; when © = y and a < (3 (say), z, has an
fmg-open nbd U and yg has an frg-open ¢g-nbd V such that U 4V.

Theorem 7.4. If an injective function h : X — Y is frg-continuous
function from an fts X onto a fuzzy T,-space Y, then X is frg-T,
space.

Proof. Let z, and ys be two distinct fuzzy points in X. Then
h(za) (= za, say) and h(ys) (= wg, say) are two distinct fuzzy points
inY.

Case 1. Suppose = # y. Then z # w. Since Y is fuzzy T,-space, there
exist fuzzy open sets U,V in Y such that z,qU, wgqV and U 4V. As
h is fmg-continuous function, h=1(U) and h=*(V) are fmwg-open sets
in X with z,qh™(U), ysqh (V) and h=1(U) 4h~ (V) [Indeed, z,qU
imply U(z) + « > 1, so U(h(z)) + a > 1. Then [A~Y(U)](z) + a > 1.
Now z,gh ' (U). Again, h™'(U)qgh™' (V). Then there exists t € X
such that [A=1(U)](t) + [R~1(V)](t) > 1 implies U(h(t)) + V (h(t)) > 1.
So UqV, a contradiction].

Case II. Suppose ¢ = y and a < [ (say). Then z = w and
a < (. Since Y is fuzzy T,-space, there exist a fuzzy open nbd
U of z, and a fuzzy open ¢g-nbd V of wg such that U /V. Then
U(z) > a. So [h7(U)](z) > a. Then z, € h™(U),ysqh (V) and
h=Y(U) 4h=1 (V) where h='(U) and h=1(V') are frg-open sets in X as
h is fmg-continuous function. Consequently, X is fmrg-Ts-space.

Similarly we can state the following theorems easily the proofs of
which are similar to that of Theorem 7.4.

Theorem 7.5. If a bijective function h : X — Y is frg-irresolute
function from an fts X onto an frg-T5 space Y, then X is frng-T5
space.

Theorem 7.6. If a bijective function h : X — Y is frg-continuous
function from an fT,-space X onto a fuzzy Ts-space Y, then X is
fuzzy T, space.

Theorem 7.7. If a bijective function h : X — Y is fwg-irresolute
function from an fT,-space X onto an frg-T, space Y, then X is
fuzzy T, space.

Theorem 7.8. If a bijective function h : X — Y is fmrg-open func-
tion from a fuzzy Ty-space X onto an fts Y, then Y is frg-Ts-space.
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Theorem 7.9. If a bijective function h : X — Y is fmwg-open func-
tion from a fuzzy Ts-space X onto an fT,-space Y, then Y is fuzzy
T5-space.

Now we introduce the following concept.

Definition 7.10. A function h : X — Y is called strongly fuzzy
m-generalized continuous (strongly fmg-continuous, for short) function
if h=1(V) is fuzzy closed set in X for every frg-closed set V in Y.

Remark 7.11. It is clear from above discussion that strongly
fmg-continuous function implies fuzzy continuous, fmg-continuous and
fmg-irresolute functions. But the converses are not true, in general,
as the following examples show.

Example 7.12. Fuzzy continuity, fmg-continuity may not neces-
sarily imply strongly fmg-continuity
Let X = {a,b}, 7 = {0x,1x,A}, » = {0x,1x} where A(a) =
0.5,A(b) = 0.4. Then (X,7) and (X, ) are fts’s. Consider the
identity function ¢ : (X, ) — (X, 72). Since Ox and 1x are the only
fuzzy closed sets in (X, 1), clearly i is fuzzy continuous as well as fmrg-
continuous function. As every fuzzy set in (X, p) is fmrg-closed set in
(X, 72), considering the fuzzy set B, defined by B(a) = 0.5, B(b) = 0.3,
B is frg-closed set in (X, 7). Now i~}(B) = B ¢ 7¢. Hence i is not
strongly fmg-continuous function.

Example 7.13. frwg-irresoluteness may not necessarily imply
strongly fmg-continuity
Let X ={a,b}, m = {0x,1x}, 2 = {Ox, 1x, A} where A(a) = A(b) =
0.5. Then (X, 7) and (X, 7») are fts’s. Consider the identity function
i:(X,m) — (X, 7). Since every fuzzy set in (X, 1) is fmg-closed
set in (X, 1), clearly i is fmwg-irresolute function. Now A € 7 is
frg-closed set in (X, 7). i '(A) = A € 7. Hence i is not strongly
fmg-continuous function.

Remark 7.14. Clearly composition of two fmrg-irresolute functions
is also so.

Theorem 7.15. If h; : X — Y is strongly fmwg-continuous function
and hy : Y — Z is fmwg-continuous function, then hyohy : X — Z is
fuzzy continuous function.

Proof. Obvious.

Since fuzzy open set is fuzzy fmrg-open set, we have the following
theorems.

Theorem 7.16. If a bijective function A : X — Y is strongly frg-
continuous, fuzzy open function from a fuzzy regular (resp., fuzzy
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normal) space X onto an fts Y, then Y is fwg-regular (resp., fmg-
normal) space.

Theorem 7.17. If a bijective function h : X — Y is strongly frg-
continuous, fuzzy open function from a fuzzy regular (resp., fuzzy
normal) space X onto an fts Y, then Y is fuzzy regular (resp., fuzzy
normal) space.

Theorem 7.18. If a bijective function h : X — Y is strongly frg-
continuous function from an fts X onto an fmwg-T; space Y, then X is
fuzzy T, space.

Theorem 7.19. If a bijective function h : X — Y is strongly
fmg-continuous function from a fuzzy compact space X onto an fts
Y, then Y is fwg-compact (resp., fuzzy almost compact, fuzzy nearly
compact) space.
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