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DETERMINANT INEQUALITIES FOR POSITIVE
DEFINITE MATRICES VIA BHATIA AND

KITTANEH-MANASRAH RESULTS

SILVESTRU SEVER DRAGOMIR

Abstract. In this paper we prove among others that, if A and B
are positive definite matrices, then

0 ≤
∫ 1

0

[det ((1− t)A+ tB)]−1 dt−
[
det

(
A+B

2

)]−1

≤ 1

3

[
1

2

(
[det (A)]−1 + [det (B)]−1)− [det(A+B

2

)]−1
]

≤ 1

2

(
[det (A)]−1 + [det (B)]−1)− ∫ 1

0

[det ((1− t)A+ tB)]−1 dt

≤ 4

3

[
1

2

(
[det (A)]−1 + [det (B)]−1)− [det(A+B

2

)]−1
]
.
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1. Introduction

We call Heinz means, the mean defined by

Hν (a, b) :=
1

2

(
a1−νbν + aνb1−ν

)
We call Heron means, the means defined by

Fα (a, b) := (1− α)
√
ab+ α

a+ b

2
,

where a, b > 0 and α ∈ [0, 1] .
In [2], Bhatia obtained the following interesting inequality between

the Heinz and Heron means

(1.1) Hν (a, b) ≤ F(2ν−1)2 (a, b)

where a, b > 0 and α ∈ [0, 1] .
This inequality can be written as

(1.2) (0 ≤)Hν (a, b)−
√
ab ≤ (2ν − 1)2

(
a+ b

2
−
√
ab

)
,

where a, b > 0 and α ∈ [0, 1] .
Kittaneh and Manasrah [3], [4] provided a refinement and an addi-

tive reverse for Young inequality as follows:

(1.3) r
(√

a−
√
b
)2

≤ (1− ν) a+ νb− a1−νbν ≤ R
(√

a−
√
b
)2

where a, b > 0, ν ∈ [0, 1], r = min {1− ν, ν} and R = max {1− ν, ν} .
If we replace in (1.3) ν with 1−ν, add the obtained inequalities and

divide by 2, then we get

(1.4) r
(√

a−
√
b
)2

≤ a+ b

2
−Hν (a, b) ≤ R

(√
a−

√
b
)2

,

where a, b > 0, ν ∈ [0, 1].
A real square matrix A = (aij) , i, j = 1, ..., n is symmetric provided

aij = aji for all i, j = 1, ..., n. A real symmetric matrix is said to be
positive definite provided the quadratic form Q (x) =

∑n
i,j=1 aijxixj is

positive for all x = (x1, ..., xn) ∈ Rn \ {0}. It is well known that a
necessary and sufficient condition for the symmetric matrix A to be
positive definite, and we write A > 0, is that all determinants

det(Ak) = det (aij) , i, j = 1, ..., k; k = 1, ..., n

are positive.
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It is know that the following integral representation is valid, see [1,
pp. 61-62] or [11, pp. 211-212]

Jn (A) :=

∫
Rn

exp(−⟨Ax, x⟩)dx :=

∫ ∞

−∞
...

∫ ∞

−∞
exp(−⟨Ax, x⟩)dx

(1.5)

=
πn/2

[det (A)]1/2
,

where A is a positive definite matrix of order n and ⟨·, ·⟩ is the usual
inner product on Rn.
By utilizing the representation (1.5) and Hölder’s integral inequality

for multiple integrals one can prove the logarithmic concavity of the
determinant that is due to Ky Fan ([1, p. 63] or [11, p. 212]), namely

(1.6) det ((1− λ)A+ λB) ≥ [det (A)]1−λ [det (B)]λ

for any positive definite matrices A, B and λ ∈ [0, 1] .
By mathematical induction we can get a generalization of (1.6)

which was obtained by L. Mirsky in [10], see also [11, p. 212]

(1.7) det

(
m∑
j=1

λjAj

)
≥

m∏
j=1

[det (Aj)]
λj , m ≥ 2,

where λj > 0, j = 1, ...,m with
∑m

j=1 λj = 1 and Aj > 0, j = 1, ...,m.

If we write (1.7) for Aj = B−1
j we get

det

(
m∑
j=1

λjB
−1
j

)
≥

m∏
j=1

[
det
(
B−1

j

)]λj =

(
m∏
j=1

[det (Bj)]
λj

)−1

,

which also gives

(1.8)
m∏
j=1

[det (Aj)]
λj ≥ det

( m∑
j=1

λjA
−1
j

)−1
 ,

where λj > 0, j = 1, ...,m with
∑m

j=1 λj = 1 and Aj > 0, j = 1, ...,m.

Using the representation (1.5) one can also prove the result, see [11,
p. 212],

(1.9) det (A) = det (A1n) ≤ det (A1k) det
(
A(k+1)n

)
, k = 1, ..., n;

where the determinant det (Ars) is defined by

det (Ars) = det (aij) , i, j = r, ..., s.
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In particular,

(1.10) det (A) ≤ a11a22...ann.

We recall also the Minkowski’s type inequality,

(1.11) [det (A+B)]1/n ≥ [det (A)]1/n + [det (B)]1/n

for A, B positive definite matrices of order n. For other determinant
inequalities see Chapter VIII of the classic book [11]. For some recent
results see [5]-[9].

Motivated by the above results, in this paper we prove among others
that, if A and B are positive definite matrices, then

0 ≤
∫ 1

0

[det ((1− t)A+ tB)]−1 dt−
[
det

(
A+B

2

)]−1

≤ 1

3

[
1

2

(
[det (A)]−1 + [det (B)]−1)− [det(A+B

2

)]−1
]

≤ 1

2

(
[det (A)]−1 + [det (B)]−1)− ∫ 1

0

[det ((1− t)A+ tB)]−1 dt

≤ 4

3

[
1

2

(
[det (A)]−1 + [det (B)]−1)− [det(A+B

2

)]−1
]
.

2. Main Results

Our first main result is as follows:

Theorem 1. For any positive definite matrices A, B and t ∈ [0, 1],

0 ≤ 1

2

[
[det ((1− t)A+ tB)]−1/2 + [det (tA+ (1− t)B)]−1/2

](2.1)

−
[
det

(
A+B

2

)]−1/2

≤ (2t− 1)2
[
1

2

(
[det (A)]−1/2 + [det (B)]−1/2

)
−
[
det

(
A+B

2

)]−1/2
]
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and

0 ≤ r

[
1

2

(
[det (A)]−1/2 + [det (B)]−1/2

)
−
[
det

(
A+B

2

)]−1/2
](2.2)

≤ 1

2

(
[det (A)]−1/2 + [det (B)]−1/2

)
− 1

2

[
[det ((1− t)A+ tB)]−1/2 + [det (tA+ (1− t)B)]−1/2

]
≤ R

[
1

2

(
[det (A)]−1/2 + [det (B)]−1/2

)
−
[
det

(
A+B

2

)]−1/2
]
,

where r = min {1− t, t} and R = max {1− t, t} .

Proof. From (1.2) we get for a = exp (−⟨Ax, x⟩) , b = exp (−⟨Bx, x⟩)
with x ∈ Rn that

0 ≤ 1

2
(exp (−⟨((1− t)A+ tB)x, x⟩) + exp (−⟨(tA+ (1− t)B)x, x⟩))

(2.3)

− exp

(
−
〈
A+B

2
x, x

〉)
≤ (2t− 1)2

×
(
1

2
(exp (−⟨Ax, x⟩) + exp (−⟨Bx, x⟩))− exp

(
−
〈
A+B

2
x, x

〉))
.

By taking the integral on Rn in (2.3), then we get

0 ≤ 1

2

(∫
Rn

exp (−⟨((1− t)A+ tB)x, x⟩) dx

+

∫
Rn

exp (−⟨(tA+ (1− t)B)x, x⟩) dx
)
−
∫
Rn

exp

(
−
〈
A+B

2
x, x

〉)
dx

≤ (2t− 1)2
(
1

2

(∫
Rn

exp (−⟨Ax, x⟩) dx+

∫
Rn

exp (−⟨Bx, x⟩) dx
)

− exp

(
−
〈
A+B

2
x, x

〉))
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and by (1.5) we obtain

0 ≤ 1

2
[Jn ((1− t)A+ tB) + Jn (tA+ (1− t)B)]− Jn

(
A+B

2

)
≤ (2t− 1)2

[
1

2
(Jn (A) + Jn (B))− Jn

(
A+B

2

)]
which by (1.5), we derive (2.1).

From (1.4) we have

r

(
1

2
(exp (−⟨Ax, x⟩) + exp (−⟨Bx, x⟩))− exp

(
−
〈
A+B

2
x, x

〉))
≤ 1

2
(exp (−⟨Ax, x⟩) + exp (−⟨Bx, x⟩))

− 1

2
(exp (−⟨((1− t)A+ tB)x, x⟩) + exp (−⟨(tA+ (1− t)B)x, x⟩))

≤ R

(
1

2
(exp (−⟨Ax, x⟩) + exp (−⟨Bx, x⟩))− exp

(
−
〈
A+B

2
x, x

〉))
,

for x ∈ Rn.
By taking the integral on Rn we deduce the desired result (2.2).

Corollary 1. For any positive definite matrices A, B we have

0 ≤
∫ 1

0

[det ((1− t)A+ tB)]−1/2 dt−
[
det

(
A+B

2

)]−1/2

(2.4)

≤ 1

3

[
1

2

(
[det (A)]−1/2 + [det (B)]−1/2

)
−
[
det

(
A+B

2

)]−1/2
]

and

1

3

[
1

2

(
[det (A)]−1/2 + [det (B)]−1/2

)
−
[
det

(
A+B

2

)]−1/2
](2.5)

≤ 1

2

(
[det (A)]−1/2 + [det (B)]−1/2

)
−
∫ 1

0

[det ((1− t)A+ tB)]−1/2 dt

≤ 4

3

[
1

2

(
[det (A)]−1/2 + [det (B)]−1/2

)
−
[
det

(
A+B

2

)]−1/2
]
.
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Proof. Taking the integral over t in (2.1), we get

0 ≤ 1

2

[∫ 1

0

[det ((1− t)A+ tB)]−1/2 dt+

∫ 1

0

[det (tA+ (1− t)B)]−1/2 dt

](2.6)

−
[
det

(
A+B

2

)]−1/2

≤

[
1

2

(
[det (A)]−1/2 + [det (B)]−1/2

)
−
[
det

(
A+B

2

)]−1/2
]

×
∫ 1

0

(2t− 1)2 dt.

Observe that∫ 1

0

[det ((1− t)A+ tB)]−1/2 dt =

∫ 1

0

[det (tA+ (1− t)B)]−1/2 dt

and ∫ 1

0

(2t− 1)2 dt =
1

3
,

then by (2.6) we obtain (2.4).
From (2.2) we get

0 ≤

[
1

2

(
[det (A)]−1/2 + [det (B)]−1/2

)
−
[
det

(
A+B

2

)]−1/2
](2.7)

×
∫ 1

0

min {1− t, t} dt

≤ 1

2

(
[det (A)]−1/2 + [det (B)]−1/2

)
− 1

2

[∫ 1

0

[det ((1− t)A+ tB)]−1/2 dt+

∫ 1

0

[det (tA+ (1− t)B)]−1/2 dt

]
≤

[
1

2

(
[det (A)]−1/2 + [det (B)]−1/2

)
−
[
det

(
A+B

2

)]−1/2
]

×
∫ 1

0

max {1− t, t} dt.
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Since ∫ 1

0

min {1− t, t} dt = 1

3
and

∫ 1

0

max {1− t, t} dt = 3

4
,

hence by (2.7) we get (2.5).

If we take the square in the representation (1.5), then we get

(∫
Rn

exp(−⟨x,Ax⟩)dx
)2

=
πn

det (A)
.

Since(∫
Rn

exp(−⟨Ax, x⟩)dx
)2

=

∫
Rn

∫
Rn

exp(−⟨Ax, x⟩) exp(−⟨Ay, y⟩)dxdy

=

∫
Rn

∫
Rn

exp(−⟨Ax, x⟩ − ⟨Ay, y⟩))dxdy,

hence

(2.8) Kn (A) :=

∫
Rn

∫
Rn

exp(−⟨Ax, x⟩ − ⟨Ay, y⟩))dxdy =
πn

det (A)

for A a positive definite matrix of order n and ⟨·, ·⟩ is the usual inner
product on Rn.

Theorem 2. For any positive definite matrices A, B and t ∈ [0, 1],

0 ≤ 1

2

[
[det ((1− t)A+ tB)]−1 + [det (tA+ (1− t)B)]−1](2.9)

−
[
det

(
A+B

2

)]−1

≤ (2t− 1)2
[
1

2

(
[det (A)]−1 + [det (B)]−1)− [det(A+B

2

)]−1
]
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and

0 ≤ r

[
1

2

(
[det (A)]−1 + [det (B)]−1)− [det(A+B

2

)]−1
]

(2.10)

≤ 1

2

(
[det (A)]−1 + [det (B)]−1)

− 1

2

[
[det ((1− t)A+ tB)]−1 + [det (tA+ (1− t)B)]−1]

≤ R

[
1

2

(
[det (A)]−1 + [det (B)]−1)− [det(A+B

2

)]−1
]
,

where r = min {1− t, t} and R = max {1− t, t} .

Proof. From (1.2) we get for a = exp (−⟨Ax, x⟩ − ⟨Ay, y⟩) , b =
exp (−⟨Bx, x⟩ − ⟨Bx, x⟩) with x, y ∈ Rn that

0 ≤ 1

2
[exp (−⟨((1− t)A+ tB)x, x⟩ − ⟨((1− t)A+ tB) y, y⟩)

(2.11)

+ exp (−⟨(tA+ (1− t)B)x, x⟩ − ⟨(tA+ (1− t)B) y, y⟩)]

− exp

(
−
〈
A+B

2
x, x

〉
−
〈
A+B

2
y, y

〉)
≤ (2t− 1)2

×
[
1

2
(exp (−⟨Ax, x⟩ − ⟨Ay, y⟩) + exp (−⟨Bx, x⟩ − ⟨By, y⟩))

− exp

(
−
〈
A+B

2
x, x

〉
−
〈
A+B

2
y, xy

〉)]
.
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If we take the double integral on Rn × Rn, the we get

1

2

[∫
Rn

∫
Rn

exp (−⟨((1− t)A+ tB)x, x⟩ − ⟨((1− t)A+ tB) y, y⟩) dxdy

(2.12)

+

∫
Rn

∫
Rn

exp (−⟨(tA+ (1− t)B)x, x⟩ − ⟨(tA+ (1− t)B) y, y⟩) dxdy
]

−
∫
Rn

∫
Rn

exp

(
−
〈
A+B

2
x, x

〉
−
〈
A+B

2
y, y

〉)
dxdy

≤ (2t− 1)2

×
[
1

2

(∫
Rn

∫
Rn

exp (−⟨Ax, x⟩ − ⟨Ay, y⟩) dxdy

+

∫
Rn

∫
Rn

exp (−⟨Bx, x⟩ − ⟨By, y⟩) dxdy
)

−
∫
Rn

∫
Rn

exp

(
−
〈
A+B

2
x, x

〉
−
〈
A+B

2
y, xy

〉)
dxdy

]
.

By utilising the representation (2.8) we get

0 ≤ 1

2
[Kn ((1− t)A+ tB) +Kn (tA+ (1− t)B)]−Kn

(
A+B

2

)
≤ (2t− 1)2

(
1

2
[Kn (A) +Kn (B)]−Kn

(
A+B

2

))
,

which is equivalent to (2.9).
The inequality (2.10) follows in a similar way from (1.4).

Corollary 2. For any positive definite matrices A, B we have

0 ≤
∫ 1

0

[det ((1− t)A+ tB)]−1 dt−
[
det

(
A+B

2

)]−1

(2.13)

≤ 1

3

[
1

2

(
[det (A)]−1 + [det (B)]−1)− [det(A+B

2

)]−1
]

≤ 1

2

(
[det (A)]−1 + [det (B)]−1)− ∫ 1

0

[det ((1− t)A+ tB)]−1 dt

≤ 4

3

[
1

2

(
[det (A)]−1 + [det (B)]−1)− [det(A+B

2

)]−1
]
.



DETERMINANT INEQUALITIES FOR POSITIVE DEFINITE MATRICES 81

3. The Case of Hermitian Matrices

A complex square matrix H = (hij) , i, j = 1, ..., n is said to be Her-

mitian provided hij = hji for all i, j = 1, ..., n. A Hermitian matrix is
said to be positive definite if the Hermitian form P (z) =

∑n
i,j=1 aijzizj

is positive for all z = (z1, ..., zn) ∈ Cn \ {0} .
It is known that, see for instance [11, p. 215], for a positive definite

Hermitian matrix H, we have

(3.1) Kn (H) :=

∫
Rn

∫
Rn

exp (−⟨z,Hz⟩) dxdy =
πn

det (H)
,

where z = x + iy and dx and dy denote integration over real n-
dimensional space Rn. Here the inner product ⟨x, y⟩ is understood
in the real sense, i.e. ⟨x, y⟩ =

∑n
k=1 xkyk.

On making use of a similar argument to the one in Theorem 2 for
the representation Kn (·) we can state the following result as well:

Theorem 3. For any positive definite Hrmitian matrices H, K and
t ∈ [0, 1],

0 ≤ 1

2

[
[det ((1− t)H + tK)]−1 + [det (tH + (1− t)K)]−1](3.2)

−
[
det

(
H +K

2

)]−1

≤ (2t− 1)2
[
1

2

(
[det (H)]−1 + [det (K)]−1)− [det(H +K

2

)]−1
]

and

0 ≤ r

[
1

2

(
[det (H)]−1 + [det (K)]−1)− [det(H +K

2

)]−1
]

(3.3)

≤ 1

2

(
[det (H)]−1 + [det (K)]−1)

− 1

2

[
[det ((1− t)H + tK)]−1 + [det (tH + (1− t)K)]−1]

≤ R

[
1

2

(
[det (H)]−1 + [det (K)]−1)− [det(H +K

2

)]−1
]
,

where r = min {1− t, t} and R = max {1− t, t} .
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Also

0 ≤
∫ 1

0

[det ((1− t)H + tK)]−1 dt−
[
det

(
H +K

2

)]−1

(3.4)

≤ 1

3

[
1

2

(
[det (H)]−1 + [det (K)]−1)− [det(H +K

2

)]−1
]

≤ 1

2

(
[det (H)]−1 + [det (K)]−1)− ∫ 1

0

[det ((1− t)H + tK)]−1 dt

≤ 4

3

[
1

2

(
[det (H)]−1 + [det (K)]−1)− [det(H +K

2

)]−1
]
.
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