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CONVERGENCE IN SOBOLEV SPACES OF
SOLUTIONS FOR ELLIPTIC PROBLEMS ON

VARYING DOMAINS

ELENA ROXANA ARDELEANU

Abstract. In this note we discuss results regarding the convergence
in the sense of Mosco of a sequence of open sets. This concept of
convergence of sets is a tool in the study of the convergence in Sobolev
spaces of the solutions of an elliptic boundary value problem, as the
domain is varying.

1. INTRODUCTION

We deal with solutions of elliptic equations on arbitrary open sets.
Our question is what happens if we vary the open sets. If they converge
in some sense to be made precise, do the solutions converge? The
conditions on the convergence of the open sets will depend on the
kind of convergence of the solutions we are looking for.

The aim of this article is to study necessary and sufficient conditions
on sequences of domains Ωn ⊂ RN , where N ≥ 2, such that weak
solutions un of the elliptic boundary value problems:
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Au+ λu = fn in Ωn(1)

u = 0 on ∂Ωn

converge as n → ∞ to a solution u of the corresponding problem on
a limit domain Ω ⊂ RN , i.e.

Au+ λu = f in Ω(2)

u = 0 on ∂Ω.

Here A is a second order elliptic operator and λ ∈ R.
The following types of convergence are usually considered in this

setting:

(1) the convergence in L∞
loc

(
RN
)
and L∞ (RN

)
, that is the local

and global uniform convergence, respectively;
(2) the convergence in H1

0

(
RN
)
and L2

(
RN
)
.

The motivation to look at such problems comes from varia-
tional inequalities, numerical analysis, control and optimisations, Γ-
convergence and non-linear elliptic equations (see, for instance [3], [4],
[5], [6], [8]).

We will consider basic convergence results proved by Biergert and
Daners ([2]) and Daners ([3]). Denote by RΩn (λ) and RΩ (λ) the
solutions of the problem (1) and (2), respectively. We shall consider
the simplest case when A = −∆ and fn, f ∈ L∞ (RN

)
. It has been

shown that RΩn (λ) f → RΩ (λ) f in L∞
loc

(
RN
)
and L∞ (RN

)
for all

f ∈ L∞ (RN
)
and for all λ > 0 if and only if this is the case for

f ≡ 1 and some λ > 0. We will also reemember that the global
uniform convergence of RΩn (λ) f → RΩ (λ) f in L∞ (RN

)
implies that

RΩn (λ) → RΩ (λ) in L(Lp
(
RN
)
) for all p ∈ [1,∞) .

The essential part of our considerations will be devoted to the study
of the convergence in sense of Mosco of a sequence (Ωn)n≥1 of do-
mains. This convergence is a necessary and sufficient (under addi-
tional asumptions on uniform boundedness of resolvents) condition on
the convergence of solutions RΩn (λ) f of (1) to a solution of (2) in
H1
(
RN
)
for all f ∈ H−1

(
RN
)
and λ ∈ ∩

n∈N∗
ρ (−AΩn) ∩ ρ (−AΩ).

Applying the results of Kato ([5]) concerning upper semi-continuity
of the spectrum under “small” perturbations and the convergence
RΩn (λ) → RΩ (λ) in L(L2

(
RN
)
), one proves the continuity of every

finite system of eigenvalues.
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2. PRELIMINARIES

We assume that Ωn, n ≥ 1 and Ω are open (possibly unbounded
and disconnected) sets in RN , N ≥ 2. The Lebesgue measure of a
set S ⊂ RN is denoted by |S|. We denote by H1

0 (Ω) the closure
in H1 (Ω) of the set C∞

c (Ω) of test functions (compactly supported
smooth functions), under the norm

∥u∥H1 =
(
∥u∥22 + ∥∇u∥22

)1/2
.

Here ∥u∥2 denotes the norm in L2.
Extending elements of C∞

c (Ω) by zero outside Ω, we may consider
in a natural way C∞

c (Ω) as a subspace of C∞
c

(
RN
)
. Hence, taking

closures we may identify H1
0 (Ω) with a closed subspace of H1

0

(
RN
)
=

H1
(
RN
)
.

We will consider the operator A of the form:

(3) Au := −
N∑
i=1

∂i

((
N∑
j=1

ai,j∂ju

)
+ aiu

)
,

with ai,j, ai ∈ L∞
(
RN
)
, for all i, j = 1, ..., N . We assume that there

exists an ellipticity constant α > 0 such that

N∑
j=1

N∑
i=1

ai,jξiξj ≥ α |ξ|2

for almost all x ∈ RN and all ξ = (ξ1, ..., ξN) ∈ RN . The simplest
form of the operator A is given by the Laplace operator, and then A is
an uniformly elliptic operator with an ellipticity constant α = 1. We
define a bounded bilinear form on H1

(
RN
)
, and thus on H1

0 (Ω) for

every open set Ω ⊂ RN , associated with A by:

(4) a (u, v) :=

∫
RN

[
N∑
i=1

((
N∑
j=1

ai,j∂ju

)
+ aiu

)
∂iv

]
dx,

for any u, v ∈ H1
(
RN
)
.

The adjoint form a# (u, v) := a (v, u) , for any u, v ∈ H1
0

(
RN
)
, is

the bilinear form associated with the formally adjoint operator of A
denoted by A# and given by

(5) A#v := −
N∑
i=1

∂i

((
N∑
j=1

ai,j∂jv

)
+ aiv

)
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If we denote by A#
Ω ∈ L (H1

0 (Ω) , H
−1 (Ω)) the operator induced by

a# (·, ·) then A′
Ω = A#

Ω and
(
A#

Ω

)′
= AΩ. We recall that an operator

and its dual have the same spectrum.
Let u, v : Ω → R two measurable functions. We set ⟨u, v⟩ :=

∫
Ω

uvdx.

By Riesz representation theorem we identify L2 (Ω) with its dual,
therefore H1

0 (Ω) ↪→ L2 (Ω) ↪→ H−1 (Ω), where H−1 (Ω) is the topolog-
ical dual of H1

0 (Ω) equipped with the dual norm. The duality between
H1

0 (Ω) and H−1 (Ω) is also denoted by ⟨·, ·⟩ .
Given f : H−1 (Ω), u is called a weak solution of equation (2) if

u ∈ H1
0 (Ω) and

(6) a (u, v) + λ ⟨u, v⟩ = ⟨f, v⟩ , for all v ∈ H1
0 (Ω) .

If we set λ0 :=
1
2α

N∑
i=1

∥ai∥2∞ then α
2
∥u∥2H1(RN ) ≤ a (u, u)+λ ∥u∥22 for all

u ∈ H1
(
RN
)
and λ ≥ λ0. Moreover,

α

2
∥u∥2H1

0 (Ω) ≤ a (u, u) + ⟨λu, u⟩ = ⟨f, u⟩ ≤ ∥u∥H1
0 (Ω) ∥f∥H−1(Ω) .

Divinding by ∥u∥H1
0 (Ω) we get ∥u∥H1

0 (Ω) ≤
2
α
∥f∥H−1(Ω).

It is convenient to write (2) in an abstract form. For a bi-
linear bounded form a (·, ·) defined on H1

0 (Ω) there exists AΩ ∈
L (H1

0 (Ω) , H
−1 (Ω)) such that a (u, v) = ⟨AΩu, v⟩ , for any u, v ∈

H1
0 (Ω). Here we denoted by AΩ the operator induced by A on Ω.
So, we call u ∈ H−1

0 (Ω) a weak solution for (2) if and only if u
is a solution of (λ+ AΩ)u = f , in H−1 (Ω) . Sometimes is useful to
consider AΩ as an operator on H−1 (Ω) with the domain H1

0 (Ω) .
We denote by ρ (AΩ) the resolvent set and by σ (AΩ) the spectrum

of AΩ. By the previous considerations and by the estimate of the
solution ∥u∥H1

0 (Ω) ≤
2
α
∥f∥H−1(Ω) we conclude that [λ0,∞) ⊂ ρ (−AΩ) ,

∀Ω ⊂ RN .
For varying domains we need a family of operators with domain

and range independent of Ωn and Ω ⊂ RN . So, we denote by iΩ ∈
L
(
H1

0 (Ω) , H
1
(
RN
))

the operator extending functions inH1
0 (Ωn) by 0

outside Ω and by rΩ ∈ L
(
H−1

(
RN
)
, H−1 (Ω)

)
the operator restricting

functionals f ∈ H−1
(
RN
)
to H1

0 (Ω). Obviously

⟨f, iΩn (u)⟩ = ⟨rΩn (f) , u⟩ , whenever u ∈ H1
0 (Ωn) , f ∈ H−1

(
RN
)

so i′Ω = rΩ and r′Ω = iΩ.
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We set

(7) Rn (λ) := iΩn◦(λ+ AΩn)
−1◦rΩn and R (λ) := iΩ◦(λ+ AΩ)

−1◦rΩ
whenever the operators are defined. Corresponding to the adjoint we
set
(8)

R#
n (λ) := iΩn ◦

(
λ+ A#

Ωn

)−1

◦rΩn and R# (λ) := iΩ◦
(
λ+ A#

Ω

)−1

◦rΩ.

We observe that
(
R#

n (λ)
)′

= Rn (λ) and
(
R# (λ)

)′
= R (λ). Here

R (λ) is a pseudoresolvent, that is, a family of operators satisfying the
resolvent identity.

Theorem 1. Suppose that un ∈ H1
0 (Ωn) are weak solutions of (1) for

all n ∈ N. Suppose that for every φ ∈ H1
0 (Ω) there exists a sequence

φn ∈ H1
0 (Ωn), n ≥ 1, such that φn → φ in H1

(
RN
)
. Then every

weak limit point of (un)n∈N lying in H1
0 (Ω) is a weak solution of (2)

for some f ∈ H−1 (Ω).

The proof of the previous theorem can be found in ([3]).

3. NECESSARY AND SUFFICIENT CONDITIONS FOR
CONVERGENCE OF OPEN SETS

4. IN THE SENSE OF MOSCO

The results considered here have been applied to study the conver-
gence of weak solutions of the elliptic boundary value problem (1) to a
weak solution of the corresponding problem (2). We will discuss some
necessary and sufficient conditions for convergence in sense of Mosco.

Definition 2. (the convergence in sense of Mosco) Let Ω and
Ωn, n ≥ 1, be open sets in RN . We say that the sequence (Ωn)n≥1

converges to Ω in the sense of Mosco and we write Ωn → Ω if the
following conditions are satisfied:

i.: The sequentially weak limit points in H1
(
RN
)
of every se-

quence (un)n≥1 , with un ∈ H1
0 (Ωn) for all n ≥ 1, are in

H1
0 (Ω) ;

ii.: For every u ∈ H1
0 (Ω) there exists a sequence (un)n≥1 , with

un ∈ H1
0 (Ωn) for all n ≥ 1, such that un → u in H1

(
RN
)
;

: (Condition (ii) is equivalent to H1
0 (Ωn) → H1

0 (Ω)).

One obviously necessary condition is that the support of the weak
limit of every convergent subsequence of solutions of (1) is in Ω. We
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will characterize this by looking at the spectral bound of (−∆) on
bounded sets outside Ω.
We will write S ⊂⊂ T if S is compact and contained in the interior

of T .

Theorem 3. Suppose that Ωn, n ≥ 1 and Ω are open sets in RN .
Then the following assertions are equivalent:

(1) The weak limit points af every sequence un ∈ H1
0 (Ωn) , n ∈ N

in H1
(
RN
)
have support in Ω;

(2) For all open sets B ⊂⊂ RN⧹Ω, lim
n→∞

λ1 (Ωn ∩B) = ∞;

(3) There exists an open covering O of RN⧹Ω such that the pre-
vious relation holds for all B ∈ O.

If condition (i) from Definition 2 is satisfied, then
lim
n→∞

λ1 (Ωn ∩B) = ∞ for all bounded sets B ⊂ RN⧹Ω.

The proof and exemples can be find in [3], page 15. So far, we
discussed necessary conditions on Ωn outside Ω. In order to state
more necessary conditions and also sufficient conditions for Ωn → Ω,
we will need a type of variational Sobolev capacity.

Definition 4. The capacity (more specific, the (1, 2)−capacity) of a
set E ⊂ RN is given by

cap (E) := inf
{
∥u∥2H1 : u ∈ H1

0 (B) and u ≥ 1 in a neighborhood of E
}
.

Now we can state a necessary condition on the part of Ωn inside Ω.

Proposition 5. Suppose that Ωn, n ≥ 1 and Ω are open sets in RN .
Then condition (ii) from Definition 2 holds if and only if for every
compact set K ⊂ Ω we have

lim
n→∞

cap
(
K ∩ RN⧹Ωn

)
= 0.

We consider monotone approximations of an open set Ω by open
sets from the inside and from the outside.

Proposition 6. Suppose that Ωn, n ≥ 1 and Ω are open sets in RN

such that Ωn ⊂ Ωn+1 ⊂ Ω for all n ∈ N∗ and Ω =
⋃
n∈N

Ωn. Then

Ωn → Ω.

This proposition is a tool to get results for non-smooth domains
using the results on smooth domains. For approximations from the
outside we need a weak regularity condition on the boundary of Ω,
whose formulation requires some properties of functions in H1

(
RN
)
.
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Definition 7. We say that an arbitrary set S ⊂ RN is stable if
H1

0 (S) = H1
0 (S

◦) where S◦ denotes the interior of S.

Proposition 8. A set S ⊂ RN with non-empty interior is stable if
one of the following conditions is satisfied:

(1) ∂S∩S has the segment property except possibly on a set capacity
zero;

(2) all points in ∂S ∩ S except possibly a set of capacity zero are
Wiener regular;

(3) for all x ∈ ∂S ∩ S except possibly a set of capacity zero

lim
r→0

cap(RN⧹S∩B(x,r))
cap(RN⧹S◦∩B(x,r))

> 0 where B (x, r) is the ball of radius r

centred in x.

The last condition is in fact necessary and sufficient for the stability
of Ω ∪ Γ. Indications about the demonstration of the previous propo-
sition can be also find in [3], page 18. Note that, if ∂S ∩S is Lipschitz
(or even smoother), then ∂S ∩ S satisfies the segment condition and
∂S ∩ S is therefore stable.

Proposition 9. Suppose that Ωn ⊃ Ω for all n ∈ N and that ∩
n∈N

Ωn =

Ω. If Ω is stable then Ωn → Ω.

Proof. The condition (i) from the definition of the convergence in sense
of Mosco holds. As ∩

n∈N
Ωn = Ω, it follows that all weak limit points

of un ∈ H1
0 (Ω) for n ∈ N have support in Ω. Hence by definition

of stability all weak limit points are in H1
0 (Ω), as required in the

condition (i) from definition 2. It follows that Ωn → Ω.

Theorem 10. Suppose that Ωn, n ≥ 1 and Ω are open sets in RN (not
necessarily bounded). If the following three conditions are satisfied,
then Ωn → Ω:

(1) lim
r→0

cap
(
K ∩ RN \ Ωn

)
= 0 for all compact sets K ⊂ Ω;

(2) there exists an open covering O of RN⧹Ω such that
λ1 (U ∩ Ωn) → ∞ as n −→ ∞ for all U ∈ O,

(3) H1
0 (Ω) = H1

0 (Ω ∪ Γ), where Γ := ∩
n∈N

(
∪

k≥n
(Ωk ∩ ∂Ω)

)
⊂ ∂Ω.
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