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1. INTRODUCTION

The notion of topological space has been generalized in many ways,
through closure spaces [5], minimal structures [31], generalized topolo-
gies [6], Pervin relations [39]. The algebraic nature of generalizations
of topological notions has been recently analyzed in [19]. During the
last two decades such generalizations turned out to be useful tools for
various applications in Theoretical Computer Science [38], [4], Chem-
istry and Biology [3], [41], Learning theory [8].

In 2000, Popa and Noiri initiated the study of functions between
spaces endowed with minimal structures [31]. A minimal structure on
a set X is a collection of subsets of X, that contains the empty set
and X, so only the first axiom of a topological space is retained. Note
that a minimal structure on X is closed under arbitrary unions if and
only if it is a generalized topology containing X. We recall that, in
topological spaces, each of the following classes of sets forms a minimal
structures which plays an important role in the study of various forms
of generalized continuity: semi-open sets [9], preopen sets [12], semi-
preopen sets [2], a—open sets [21], f—open sets [1], d—open sets [42],
f—open sets [42]. Through minimal structure spaces, Popa and Noiri
obtained unified theories for generalized forms of continuous functions
131], [32], [33], [34], [35], [36], [24], [25], contra-continuous functions
23], open functions [28], [29], [30], closed functions [26], [27]. Intro-
ducing and studying the notion of M —closed function between spaces
with minimal structures in [27], Noiri and Popa developed a unified
theory of modifications of closedness such as a—closedness [13], semi-
closedness [22], preclosedness [12] and S—closedness [1].

In this paper we extend the study of M-closed functions introduced
by Noiri and Popa [27], by introducing some more generalizations of
closed functions, namely the notions of almost M —closed function,
weakly M —closed function and strongly M —closed function. These
notions coincide in spaces with minimal structures closed under arbi-
trary unions, but differ in general.

Using the notion of almost M- closed function, we prove some re-
finements of the characterizations of M —closed functions obtained by
Popa and Noiri in [27], removing the assumptions that one or both
of the minimal structures involved are closed under arbitrary unions.
For bijections between spaces with minimal structures it turns out
that almost M- closedness is equivalent to almost M —openess, both
being equivalent to the M —continuity of the inverse function. Our
main result generalizes a well-known theorem of Long and Herrington
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[10], which shows that #—open sets in topological spaces are preserved
by every function that is both open and closed.

2. PRELIMINARIES

A function u from the power set P(X) of a non-empty set X into
itself is called a generalized closure operator on X (GCO, for short)
and the pair (X, u) is said to be a generalized closure space (GCS, for
short).

Definition 1. [40] A GCO u : P(X) — P(X) is called grounded if
uw(@) = 0, isotone if A C B C X implies u(A) C u(B), extensive
if A C u(A) for every A C X, contractive if A C u(A) for every
A C X, idempotent if u(u(A)) = u(A) for every A C X, sublinear if
u(AU B) C u(A)Uu(B) for every A, B C X.

A generalized closure operator is called Cech closure operator if it
is grounded, extensive, isotone and sublinear, respectively Kuratowsk:
closure operator if it is an idempotent Cech closure operator [37).

To every GCO u : P(X) — P(X) one associates the u—interior
operator, u — Int : P(X) — P(X), defined as the dual of u, by u —
Int(A) = X\u(X\A) for all A C X. Note that u is the dual of
the GCO u — Int. In addition, u is isotone if and only if u — Int is
isotone, u is idempotent if and only if u — Int is idempotent, while u
is grounded if and only if u — Int(X) = X.

Definition 2 ([31], [32] ). A family mx C P(X) is called a minimal

structure (shortly, m—structure) on X if 0 € mx and X € my.

The couple (X, my) is called a space with minimal structure or an
m—space, for short. The members of mx are called m—open sets and
their complements form the class of m—closed sets.

Definition 3 ([31], [32]). A minimal structure myx is said to have
property (B) if it is closed under arbitrary unions. A minimal structure
mx is said to have property (Z) if it is closed under intersection.

The class of minimal structures on X having property (B) coincides
with the class of generalized topologies on X, in the sense of Csaszar
6], that contain X.

For every family of sets F we will denote by U (F) the family of
all unions of sets that belong to F. Note that F C U (F) always. A
family F is closed under arbitrary unions if and only if U (F) C F.
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In particular, a minimal structure my has property (B) if and only if
U (m X) = mMx.

Spaces with minimal structure are generalized closure spaces [15],
[16]. The fundamental generalized closure operators associated to a
minimal structure have been introduced by Maki in [11].

Definition 4. Let mx C P(X) be a minimal structure. For each
subset A C X the mx—-closure of A and the mx—interior of A are

defined as follows:

mx —Cl(A) : ={F:ACF and X\ F € mx}.
mx —Int(A) : =U{U:UC AandU € mx}

It is known that x € myx — CI(A) if and only if DN A # 0 for every
D € mx containing z, respectively x € myx — Int(A) if and only if
there exists D € mx containing x such that D C A.

Maki [11] proved that GCO’s myxy — Cl and mx — Int are dual
to each other and are both grounded, isotone and idempotent, also
that mx — C' is extensive, while mx — Int is contractive. Unlike the
standard closure operator C1 of a topological space, the GCO mx —C'l
need not be sublinear, even if mx has property (B), see [18, Example
7].

The fixed points of the GCO’s mx — Cl and mx — Int play an
important role in the study of spaces with minimal structure, as gen-
eralizations of m—closed sets, respectively of m-open sets.

Definition 5. Let (X, mx) be an m—space. A set A C X is said to
be almost m—open if mx — Int(A) = A.
A set B C X is said to be almost m—closed if mx — Cl(B) = B.

We recall some properties of almost m—open sets and of almost
m—closed sets.

Lemma 6. Let (X, my) be an m—space.

(1) A set A C X 1is almost m—open if and only if its complement
X \ A is almost m—closed.

(2) A set A C X is almost m—open if and only if A is the union of a
family of m—open sets. The family of almost m—open sets isU (mx) .

(8) A set B C X is almost m—-closed if and only if B is the inter-
section of a family of m—closed sets.

(4) Every m— open set is almost m—open. The converse holds if
and only if mx has property (B).



GENERALIZATIONS OF CLOSED FUNCTIONS... 47

(5) Every m— closed set is almost m—closed. The converse holds if
and only if mx has property (B).

Proof. (1) Since the GCO’s mx — Cl and mx — Int are dual to each

other, we have my —Int(A) = Aif and only if mx —CI(X\A) = X\ A.
(2) Recall that mx — Int(A) is, by definition, the union of all

m—open sets included in A. Therefore, necessity is immediate. To

prove sufficiency, write A = | J U; with U; € mx for each ¢ € I, then

el

notice that U; C A for each i € I, hence A C mx — Int(A), therefore

A =myx — Int(A).

(3) By (1), B C X is almost m—closed if and only if X \ B is
almost m—open, that by (2) is equivalent to the existence of a family
{Viviel} Cmx with |JV; =X\ B. If BC X is almost m—closed,

i€l
then B = () (X \ V) is an intersection of m—closed sets. The converse
iel
is analogous.

(4) Since F C U (F) for every family F of sets, the first claim follows
by (2). We also may use the well-known fact [11] that mx—Int(A) = A
whenever A € mx. For the converse, note that U (mx) C my if and
only if myx has property (B).

(5) Obvious by (4) and (1). &

3. GENERALIZATIONS OF CLOSED FUNCTIONS IN SPACES WITH
MINIMAL STRUCTURE

In [27] Noiri and Popa introduced studied M —closed functions be-
tween spaces with minimal structure, so developing a unified theory
of modifications of closedness such as a—closedness, semiclosedness,
preclosedness and S—closedness.

Definition 7 ([27] , Definition 3.4). A function f : (X,mx) —
(Y, my) is said to be M—closed if the image f(F) of an arbitrary
m—-closed set ' in (X, mx) is m—closed in (Y, my).

If mx and my are topologies, the notion of M —closed function co-
incides with the classical notion of closed function. Inspired by well-
known characterizations of closed functions, Noiri and Popa proved
several characterizations of M —closed functions, under the assump-
tion that one or both of the minimal structures involved are closed
under arbitrary unions. However, the study of minimal structures
that are not necessarily closed under arbitrary unions is important
beyond General Topology [8].
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In the following we will introduce some natural modifications of
M —closedness, namely the notions of almost M —closed function,
weakly M —closed function and strongly M —closed function. Al-
most M —closedness and weakly M —closedness will be characterized
in spaces with minimal structures that are not required to be closed
under arbitrary unions, which allows us the extension of applicability
of the unified theory of closed functions.

Definition 8. A function f: (X, mx) — (Y, my) is said to be:

(1) almost M —closed if the image f(F) of an arbitrary almost
mx—closed set F' C X is almost my —closed.

(2) weakly M —closed if the image f (F') of an arbitrary mx—closed
set F' C X is almost my —closed.

(8) strongly M —closed if the image f(F') of an arbitrary almost
mx—closed set ' C X is my—closed.

Every m—closed set is also almost m—closed, the converse being true
if and only if the corresponding m—structure is closed under arbitrary
unions. This shows that the following implications hold.

(3) f strongly M —closed = (0) f M—closed

4 4
(1) f almost M —closed = (2) f weakly M —closed

Lemma 9. If f: (X, mx) — (Y, my) is M—closed and injective, then
f s almost M —closed.

Proof. Let f : (X,myx) — (Y,my) be M—closed and injective. Let
F C X be almost m—closed. We prove that f(F) C Y is almost
m—closed. By Lemma 6 (3), there exists a family of m—closed sets
{F;:i €I} such that F = () F,. Since f is injective, f(F) =
iel

N f(F;). But f(F;) is m—closed for every i € I, hence f(F) is
iel

almost m—closed by Lemma 6 (3). 1

If mx is closed under arbitrary unions (in other words, if mx has
property (B)), then every M —closed function is strongly M —closed
((0) = (3) holds), hence it is almost M —closed. If my is closed to
arbitrary unions, then every weakly M —closed function is M —closed,
therefore every almost M —closed function is M —closed.

In general, neither of the above implications is reversible and the
notions of M —closed function and almost M —closed function are in-
dependent, as the following examples show.



GENERALIZATIONS OF CLOSED FUNCTIONS... 49

Example 10. If mx is not closed under arbitrary unions, then it is
possible to find a function f : (X, myx) — (Y, my) that is M—closed
without being almost M —-closed (in particular, neither of (0) = (3)
and (2) = (1) holds).

Let X = {xy,x9,23} and Y = {y1,y2}. Consider mx =
{07 {z1} {zo}  {xs}, X} and my = {@, {y2}. Y}

The  family of m—closed subsets of X is Fyx =
{0, {x1, 22}, {wa, x5}, {x1, 23}, X} and the family of almost m— closed
subsets of X is P(X). The family of m—closed subsets of Y
is Fy = {0,{y1},Y} and the family of almost m—closed sub-
sets of Y is P(Y) \ {{v2}}. Define f : (X,mx) — (Y,my) by
f(x1) = f(xz) = y1 and f(x3) = yo. Then [ is M—closed, as
)= 0, F ({rr,22}) = () and f ({wn,a5}) = F(X) = Y. We see
that {x3} is almost m—closed in (X, mx), but f ({zs}) = {y2} is not
almost m—closed in (Y, my).

Example 11. If my s not closed under arbitrary unions, then it
is possible to find a function f : (X,mx) — (Y,my) that is almost
M —closed and is not M —closed (in particular, neither of (2) = (0)
and (1) = (3) holds).

Let Y = {y1,y2,y3}. Considering my = {0,{y:1}.{yo},{ys}.Y},
we seethat the family of m—closed subsets of Y is Fy =
{0,{v1, 92}, {y2, 3}, {v1,u3}, Y} Since the family of almost
m— closed subsets of Y is P (Y), for every space with minimal structure
(X, mx), every function f: (X,mx) — (Y, my) is almost M—closed.
On the other hand, a constant function f : (X, mx) — (Y, my) cannot
be M —closed.

Remark 12. From Definition § it follows that the composition g o f
of two functions f: (X,mx) — (Y,my) and g : (Y,my) — (Z,mz)
182
(i) M—closed if f and g are M—closed and also if f is weakly
M—closed and g is strongly M—closed;

(i) almost M —-closed if f and g are almost M—closed and also if
f s strongly M —closed and g is weakly M —closed;

(111) weakly M—closed if f is M —closed and g is weakly M— closed,
as well as if f 1s weakly M —-closed and g is almost M —closed;

(iv) strongly M—closed if f is almost M —closed and g is strongly
M —closed, as well as if f is strongly closed and g is M —closed.

Our next goal is to provide characterizations of almost M —closed
functions.
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First we recall some set-theoretic properties regarding inverse im-
ages under a function.

Lemma 13. Let f : X — Y be a function. Then for every A C X, we
have {y € Y+ f(y) € A} = Y\F (X \ A) and {1 (V' \ f (X \ A)) C
A.

Theorem 14. For a function [ : (X, mx) — (Y, my), the following
properties are equivalent:

(1) f is almost M— closed;

(2) For each B CY and every U € U(mx) with f 1(B) C U, there
exists V € U (my) such that BCV and f~1(V)CU

(8) For each y € Y and every U € Z/l(mX) wit h
exists V € U (my) such that y € V and f~(V) C

Proof. (1) = (2): Let B C Y and U € U (mx) with f~1(B) C U.
Consider V := Y \ f(X\U). Then f~4(V) C U and B C V, by
Lemma 13. Since U € U (mx), the set X \ U is almost mx—closed.
By our assumption (1), it follows that f (X \ U) is almost my —closed.
Then V is almost my—open, i.e. V €U (my).

(2) = (1): Let A C X be almost m—closed. We have to prove that
f(A) is almost m—closed. Note that X \ A € U (mx) and, by Lemma
13, f[71(Y'\ f(4)) € X \ A. Using our assumption (2) with B =
Y\ f(A)and U = X \ A, we find V € U (my) such that Y\ f(A) CV
and f71(V) Cc X\ A. But f~4(V) C X\ A implies V C Y\ f(A).
Therefore, V' is uniquely determined in this case, as V =Y\ f(A4). We
proved that V' =Y\ f(A) € U (my), hence f (A) is almost m—closed.

(2) = (3): This implication is obvious.

(3)=(2): Let BCY and U € U (mx) with f~1(B) C U. For each
y € B there exists V,, € U (my) such that y €V, and f71(V,) CU.
Denote V = (J V. ThenBCVandf (V) = Uf()CU

yeB yeB
Since V,, € U (my) for each y € B, we see that V € U (my). 1

1( ) C U, there

Theorem 15. For a function f: (X,mx) — (Y, my), the following
properties are equivalent:

(1) f is almost M —closed;

2){yeY:f(y) CcU} el (my) for every U € U (mx);

(3){yeY : f(y)NF #0} is almost my—-closed whenever F C
X s almost mx——closed.

Proof. (2) = (1): Let A be almost mx—closed. Then X \ A €
U(mx). By (2), {yeY:f1(y)c X\ A} € U(my). By Lemma
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B, {yeY :f1(y) cX\A} =Y\ f(A). Then Y\ f(A) € U (my).
i.e. f(A) is almost my —closed.

(1) = (2): Let U € U (mx). Denote V. ={yeY: f1(y) cU}
By Theorem 14 ((1) = (3)), for every y € V' there exists V,, € U (my)
such that y € V, and f~'(V,) C U. Since {y} C V, C V for every

y €V, we see that V = |J V. Since V, € U (my) for every y € V, it
yeV

follows that V' € U (my), as required.

(2) < (3): This is obvious by complementarity, since Y \
lyeY: ffynF#0t={yeY:f1(y) C X\ F},while X\F €
U (mx) if and only if F C X is almost mx—closed and Y\ B € U (my)
if and only if B is almost my —closed, for every B C Y. &

Remark 16. If mx s closed to arbitrary unions, by Theorem 1/
and Theorem 15 we obtain Theorem 3.1 and Theorem 3.3 of [27],
respectively.

We mention the following characterizations of weakly M —closed
functions. The proof follows the lines from the proofs of Theorem 14
and Theorem 15, in which we replace the property of almost m—open
(almost m—closed) by the stronger property of m—open (respectively,
m—closed) and we replace U (mx) by mx.

Theorem 17. For a function f: (X, mx) — (Y, my), the following
properties are equivalent:

(1) f is weakly M —closed;

(2) For each B C Y and every U € mx with f~*(B) C U, there
exists V € U (my) such that B CV and f~1(V) C U;

(3) For each y € Y and every U € mx with f~'(y) C U, there
exists V € U (my) such that y € V and f~(V) C U.

(4){y €Y : [T (y) U} € U(my) for every U € mx;

(5){yeY : [ (y)NA#£D} is almost my—-closed whenever A C
X s mx—closed.

The following characterization of almost M —closed functions in
terms of m—closures is very useful, being similar in spirit to some
characterization of almost M —open functions, see Lemma 24.

Theorem 18. For a function f: (X,mx) — (Y, my), the following
properties are equivalent:

(1) f is almost M — closed;

(2) my — CU(f(A)) C f(mx — CI(A)) for every A C X.



52 BY MARCELINA MOCANU

Proof. (1) = (2): Let A C X. Since mx — Cl is idempotent,
the set mx — CI(A) is almost my—closed. By our assumption (1),
f(mx —CIl(A)) coincides with its my—closure. Clearly, f(A) C
f(mx —CI(A)). We conclude that

my — CL(f(A)) C my — CL(f (mx — CU(A))) = [ (mx — CI(A)).

(2) = (1): Let C' C X be almost mx—closed. Then my —Cl(C) =
C, hence f(mx —Cl(C)) = f(C). By our assumption (2), my —
CIU(f(C)) C f(mx — ClC)). Then my —CI(f(C)) C f(C), therefore
f(C) is almost my —closed, q.e.d. &

Remark 19. If mx and my are both closed to arbitrary unions, by
Theorem 18 we obtain Theorem 3.2 of [27].

4. CHARACTERIZATIONS OF THE M —CONTINUITY OF AN INVERSE
FUNCTION

We recall the fundamental definition of M —continuity [32], respec-
tively the definitions of M —openness and almost M —openness [14].

Definition 20 (Popa and Noiri, [32]). A function f : (X,mx) —
(Y, my) is said to be M—continuous at x € X if for every V € my
containining f (x) there exists U € mx containing x such that f (U) C
V. The function f: (X,mx) — (Y, my) is said to be M—continuous
on a nonempty subset A of X if it is M —continuous at every x € A.

Definition 21 ( [14]). A function f : (X,mx) — (Y,my) is said
to be M—open at x € X if for each U € mx containing x we have
f(U) € my. The function f : (X,mx) — (Y,my) is said to be
M—open on a nonempty subset A of X if it is M—open at every
r € A

Definition 22 ( [14]). A function f : (X,mx) — (Y,my) is said
to be almost M—open at x € X if for each U € mx containing x
there exists V. € my such that f(x) € V. C f(U). The function
f:(X,mx) — (Y,my) is said to be almost M —open on a nonempty
subset A of X if it is almost M —open at every x € A.

We need the known characterizations of M —continuity, respectively
of almost M —openness.

Lemma 23 (Popa and Noiri, [32]). For a function f : (X,mx) —
(Y, my), the following properties are equivalent:

(1) f is M— continuous;

(2) f7XV)=mx — Int (f~1(V)) for every V € my;
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(3) f(mx —CIl(A)) T my — CI(f(A)) for every A C X;
(4) mx — CIl(f~Y(B)) C f~' (my — CIl(B)) for every BCY;
(5) f1 (my — Int(B)) C mx — Int (f~*(B)) for every BCY.

Lemma 24. [14|The following properties are equivalent for f
(X, mx) = (Y,my):
(i) f is almost M—open;
(i1) f(mx — Int(A)) C my — Int(f(A)) for every A C X;
(11i) If U € mx, then f(U) € U(mx);
(iv) mx — Int (f~Y(B)) C f~' (my — Int(B)) for every B C Y
(v) [~ (my — Cl(B)) Cmx —Cl— (f~'(B)) for every BCY.

(vi) f maps almost m—open sets to m—almost m—open sets.

Remark 25. A function f : (X,mx) — (Y,my) is M—-continuous
and almost M—open if and only if mx — Int(f~*(B)) =
f~Y(my — Int(B)) for all B C X, respectively it is M—continuous
and almost M —closed if and only if f (mx — Cl(A)) = my —CI(f(A))
for every A C X.

Comparing Theorem 18 with Lemma 23 and with Lemma 24 we ar-
rive to the following generalization of a well-known result from General
Topology.

Theorem 26. For a bijective function f : (X,mx) — (Y,my) the
following properties are equivalent:

(1) The inverse f~1: (Y,my) — (X, mx) is M —continuous;

(2) f:(X,mx)— (Y,my) is almost M —open;

(3) f:(X,mx) — (Y,my) is almost M —-closed.

Proof. We choose to prove the equivalence of each pair of properties
among (1), (2) and (3).

(2) & (3): Weuse for f: (X,mx) — (Y, my) Lemma 24 (i) < (vi)
and the definition of almost M —closed functions, as well as the set
identity f(X \ A) =Y \ f(A) for every A C X, valid for bijective f.
Alternatively, we may use the fact that the inclusion (v) in Lemma 24
with B = f(A) and A C X is equivalent to property (2) in Theorem
18, since f is bijective.

(1) < (2): This was proved in [14, Theorem 4.1}, using the following
characterizations: ¢ : (Y,my) — (X, mx) is M—continuous if and
only if g7* (U) € U (my) whenever U € my, while f : (X,mx) —
(Y, my) is almost M —open if and only if f : (X, mx) — (YU (my))
is M—open. If f is bijective, we apply the above characterizations
with g = f~1.



54 BY MARCELINA MOCANU

However, we can give here a different more direct proof. We may
use Lemma 23 ((1) < (3)), where we replace f by f~!, and Lemma 24
((i) & (v)). Alternatively, we may use Lemma 23 ((1) < (5)), where
we replace f by f~!, and Lemma 24 ((i) < (ii)).

(1) & (3): We use Lemma 23 (1) < (5) for f~! instead of f.
The inverse [~ : (Y, my) — (X, mx) is M —continuous if and only if
my — Cl(f(A)) C f(mx — CIl(A)) for every A C X.

According to Theorem 18, the latter assertion is equivalent to the
almost M —closedness of f: (X, mx)— (Y,my). 1

Corollary 27. For a bijective function f : (X,mx) — (Y, my) the
following properties are equivalent:
(1) f and its inverse f~': (Y, my) — (X, mx) are M—continuous;
(2) f(mx — Int(A)) = my — Int(f(A)) for every A C X;
(3) f(mx —CIl(A)) =my — CI(f(A)) for every A C X;
(4) f=t (my — Int(B)) = mx — Int(f~Y(B)) for every B CY;
(5) = (my — Cl(B)) = mx — CI(f~Y(B)) for every BCY.

5. INVARIANCE OF m — 0—OPENNESS

Definition 28. [24] Let (X, mx) be a space with minimal structure
and S C X. A point x € X is called:

(a) an m — 6—adherent point of S if mx — Cl(U)NS % O for every
U € mx containing x;

(b) an m — O—interior point of S if mx — Cl(V) C S for some
V € mx containing x.

Definition 29. [24] The set mx — Cl,(S) containing all the m —
O0—adherent points of S is called the m — 0—closure of S. The set
mx — Int,(S) containing all the m — 6—interior points of S is called
the m — @—interior of S.

A set A C X issaid to be m—60—closed in (X, mx) if mx —Cl,(A) =
A. The complements of m — 6 —closed sets are called m — —open sets.

The following properties have been proved in [24]. The GCOs mx —
Cl, and mx — Int, are dual to each other, grounded and isotone. A
set A C X ism—6—open in (X, mx) if and only if mx —Int,(A) = A.
For every A C X,

mx — Int,(A) C mx — Int(A) C AC mx — Cl(A) C mx — Cly(A).
In general, mx — Cly and mx — Int, are not idempotent, see [20].

Lemma 30. [18] Let (X,mx) be a space with minimal structure, A
and B subsets of X, and x € X. The following properties hold:
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(i) mx — Inty (A) € U (mx), in particular every @ — m—open set is
almost m—open;

(1) mx — Clg(B) is almost m—closed, in particular every 6 —
m—closed set is almost m— closed;

(iii) If x € mx — Cly (A), then for every m — 0—open set D C X
containing x we have D N A # ().

Corollary 31. [24, Lemma 3.6 (6)] If mx has property (B), then
mx — Intg (A) is m—open and mx — Cly (A) is m—closed, for every
ACX.

Moreover, by [24, Lemma 3.6 (5)], mx — Cl(A) = mx — Cly(A)
whenever A € myx. A more general property holds.

Lemma 32. [18] Let (X, mx) be a space with minimal structure. If
AecU(mx), then mx — Cl,(A) =mx — CI(A).

We prove the invariance of m — #—openness under maps which are
almost M —open and almost M —closed.

Theorem 33. Every function f: (X, mx) — (Y, my) which is almost
M —open and almost M —closed preserves m — 0—open sets: if A C X
is m — 6—open, then f(A) CY is m — 6—open.

Proof. Let A C X be m — #—open. In order to prove that f(A) is
m—6@—open, we will show that for every y € f(A) there exists V' € my
such that y € V.C my — CI(V) C f (A).

Fix y € f(A). Choose x € A such that y = f(x). Since A C X is
m—60—open, there exists U € mx such that x € U C mx—CIl(U) C A.
Consequently, y = f (z) € f(U) C f(mx — CUU)) C f(A).

As U € my and f is almost M—open, it follows that f(U) €
U (my ), therefore there exists a family {V;:i € I} C my such that
fU)= UV Theny € f(U) implies the existence of some j € [

il
such that y € V.

On the other hand, since f is almost M —closed, by Theorem 18
we obtain my — Cl(f(U)) C f(mx — ClU)). Obviously, f(U) C
my — CL(f(U)), hence [ (U) C my — CL(F(U)) < f (mx — CUD)).
For every i € I we have V; C f(U), therefore my — Cl(V;) C my —
CL(f(U)).

For 7 =4 we obtain

yeV; Cmy —CUV;) Cmy —CIL(f(U)) C f(mx —ClLU)) C f(A).
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In particular, y € V; C my — Cl(V;) C f(A), but V; € my and so the
proof is completed. §
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