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Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 33 (2023), No. 1, 5 - 20

SOME REMARKS ON BIHARMONIC QUADRATIC
MAPS BETWEEN SPHERES

RAREŞ AMBROSIE

Abstract. In this note, we prove a characterization formula for
biharmonic maps in the Euclidean spheres of radius R, whose image
lies in a small hypersphere. This formula represents a generalization of
a result in [10]. Then we apply it for quadratic maps between spheres.

1. Introduction

Biharmonic maps represent a natural generalization of the well
known harmonic maps. As suggested by J. Eells and J.H. Samp-
son in [5, 6], or J. Eells and L. Lemaire in [4], biharmonic maps
ϕ : (Mm, g)→ (Nn, h) between two Riemannian manifolds are critical
points of the bienergy functional

E2 : C∞(M,N)→ R, E2(ϕ) =
1

2

∫
M

|τ(ϕ)|2 vg,

————————————–
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where M is compact and τ(ϕ) = trace∇dϕ is the tension field as-
sociated to the smooth map ϕ. In 1986, G.Y. Jiang proved in [8, 9]
that the biharmonic maps are characterized by the vanishing of their
bitension field, that is

0 = τ2(ϕ) = −∆τ(ϕ)− traceRN (dϕ(·), τ(ϕ)) dϕ(·).

The equation τ2(ϕ) = 0 is called the biharmonic equation and it is a
forth order semilinear elliptic equation.

Since any harmonic map is automatically biharmonic, we study the
biharmonic maps which are not harmonic, which are called proper
biharmonic.

While the most examples and classification results for proper bi-
harmonic maps have been obtained in the submanifolds theory (see,
for example, [7] and [14]), many other examples of proper biharmonic
maps were obtained when the maps are not immersions (see, for ex-
ample, [11], [12], [13] and [15]).

In this paper, we first establish a characterization formula for bi-
harmonic maps that take values in the Euclidean sphere, but whose
image lies in a small hypersphere. This formula is a generalization
to a previous result obtained by E. Loubeau and C. Oniciuc in [10].
Then, as an application, we consider the particular case of homoge-
neous polynomial maps of degree 2 between spheres, that are called
quadratic forms. Further, for a better understanding of the struc-
ture of the proper biharmonic quadratic forms, we construct a special
example of such a map.

Conventions. In this paper, the following sign conventions for the
rough Laplacian, that acts on the set C (ϕ−1TN) of all sections of the
pull-back bundle ϕ−1TN , and for the curvature tensor field are used

∆σ = −trace∇2σ, R(X, Y )Z = ∇X∇YZ −∇Y∇YZ −∇[X,Y ]Z.

By Sm(r) we indicate the m-dimensional Euclidean sphere of radius r
and, when r = 1, we write Sm instead of Sm(1).

2. Preliminaries

In the following, we will denote by i the canonical inclusion of the
small hypersphere Sn−1

(
R/
√

2
)

into Sn(R).
First, we recall a result from [10] which can be given in the following

way.
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Theorem 2.1. [10] Let M be a compact manifold and ψ : M →
Sn−1

(
R/
√

2
)

a non constant map. If the map ϕ = i ◦ ψ : M → Sn(R)
is proper biharmonic, then ψ is harmonic and e(ψ) is constant.

We can give the converse, where we do not need the compactness
of M .

Theorem 2.2. [10] Let ψ : M → Sn−1
(
R/
√

2
)

be a non constant
map. If ψ is harmonic and e(ψ) is constant, then the map ϕ = i ◦ ψ :
M → Sn(R) is proper biharmonic.

We also recall that for a small hypersphere Sn−1(r)×
{√

R2 − r2
}
≡

Sn−1(r) of Sn(R), the set of all vector fields tangent to Sn−1(r) is given
by

C
(
TSn−1(r)

)
=
{
X =

(
X1, . . . , Xn, 0

)
,

x1X1 + x2X2 + · · ·+ xnXn = 0
}

and a unit section in the normal bundle of Sn−1(r) in Sn(R) is

ηp =
1

R

(√
R2 − r2
r

x1, . . . ,

√
R2 − r2
r

xn,−r
)
,

where p =
(
x1, x2, . . . , xn,

√
R2 − r2

)
∈ Sn−1(r).

Lemma 2.3. Let Sn−1(r) be a small hypersphere of Sn(R) having the
radius 0 < r < R. Then the second fundamental form of Sn−1(r) in
Sn(R) is

B(X, Y ) = −
√
R2 − r2
Rr

〈X, Y 〉η.

Further, we present how the composition with an homothety modi-
fies several quantities that we will appear in our computations.

Lemma 2.4. Let ϕ̃ : M → Sn−1 be a smooth map and let h : Sn−1 →
Sn−1(r) be an homothety, h(x) = rx. Consider ψ : M → Sn−1(r) the
composition ψ = h ◦ ϕ̃. Then,

(2.1)

|dψ|2 = r2 |dϕ̃|2 ,
τ(ψ) = rτ(ϕ̃),

∆ψτ(ψ) = r∆ϕτ(ϕ̃),
τ2(ψ) = rτ2(ϕ̃).
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3. Biharmonic maps into spheres, whose image lies in a
smaller hypersphere

The next result gives a formula for the bitension field in the more
general case of maps ϕ : M → Sn(R) whose image lie in a hypersphere
of an arbitrary radius Sn−1(r).

Theorem 3.1. Let ψ : M → Sn−1(r) be a non constant map, and
consider ϕ = i ◦ ψ : M → Sn(R), where 0 < r < R. Then, the
bitension field of ϕ is given by

τ2(ϕ) = τ2(ψ) + 2

(
1

R2
− 1

r2

)
dψ
(

grad |dψ|2
)

+ 4

(
1

R2
− 1

r2

)
e(ψ)τ(ψ)

(3.1)

+

√
R2 − r2
Rr

(
2∆ (e(ψ))− 2divθ] + |τ(ψ)|2 − 4

(
2

R2
− 1

r2

)
(e(ψ))2

)
η,

where θ(X) := 〈dψ(X), τ(ψ)〉, for any vector field X tangent to M .

Proof. First, using Lemma (2.3) we get

(3.2) τ(ϕ) = τ(ψ)− 2

√
R2 − r2
Rr

e(ψ)η.

We note that ϕ cannot be harmonic.
For σ ∈ C (ψ−1TSn(r)), we have di(σ) ∈ C

(
ϕ−1TSn+1(R)

)
and

(3.3)

∇ϕ
Xp

di(σ) = diψ(p)

(
∇ψ
Xp
σ
)
− (∇di)ψ(p) (dψp (Xp) , σ(p)) , ∀p ∈M.

Thus,

(3.4) ∇ϕ
Xσ = ∇ψ

X(σ)−
√
R2 − r2
Rr

〈dψ(X), σ〉η.

In order to compute τ2(ϕ) in terms of ψ, we consider an arbitrary
point p ∈ M and a geodesic frame field {Xi}mi=1 around p. Around p
we have

∇ϕ
Xi
τ(ψ) = ∇ψ

Xi
τ(ψ)−

√
R2 − r2
Rr

〈dψ(Xi), τ(ψ)〉η.

Thus,

(3.5) ∇ψ
Xi
τ(ψ) = ∇ϕ

Xi
τ(ψ) +

√
R2 − r2
Rr

〈dψ(Xi), τ(ψ)〉η.
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For θ(X) := 〈dψ(X), τ(ψ)〉, using Equationa (3.2) and (3.5) we get

∇ψ
Xi
τ(ψ) =∇ϕ

Xi
τ(ψ) +

√
R2 − r2
Rr

θ(Xi)η

=∇ϕ
Xi
τ(ϕ) + 2

√
R2 − r2
Rr

Xi (e(ψ)) η + 2

√
R2 − r2
Rr

e(ψ)∇ϕ
Xi
η

+

√
R2 − r2
Rr

θ(Xi)η.

Thus, we obtain

∇ψ
Xi
τ(ψ) =∇ϕ

Xi
τ(ϕ) + 2

√
R2 − r2
Rr

Xi (e(ψ)) η + 2
R2 − r2

R2r2
e(ψ)dϕ(Xi)

(3.6)

+

√
R2 − r2
Rr

θ(Xi)η.

For σ = ∇ψ
Xi
τ(ψ), using Equation (3.4) we get around p

∇ϕ
Xi
∇ψ
Xi
τ(ψ) =∇ψ

Xi
∇ψ
Xi
τ(ψ)−

√
R2 − r2
Rr

〈dψ(Xi),∇ψ
Xi
τ(ψ)〉η.

Thus, we obtain

∇ψ
Xi
∇ψ
Xi
τ(ψ) =∇ϕ

Xi
∇ψ
Xi
τ(ψ) +

√
R2 − r2
Rr

〈dψ(Xi),∇ψ
Xi
τ(ψ)〉η.(3.7)

Replacing Equation (3.6) in Equation (3.7) we get

∇ψ
Xi
∇ψ
Xi
τ(ψ) = ∇ϕ

Xi
∇ϕ
Xi
τ(ϕ) + 2

√
R2 − r2
Rr

XiXie(ψ)η

+ 4

(
1

r2
− 1

R2

)
Xie(ψ)dϕ(Xi) + 2

(
1

r2
− 1

R2

)
∇ϕ
Xi

dϕ(Xi)

+

(
1

r2
− 1

R2

)
〈θ], Xi〉dϕ(Xi)

+

√
R2 − r2
Rr

(
〈∇Xi

θ], Xi〉+ 〈θ],∇Xi
Xi〉+Xi〈dψ(Xi), τ(ϕ)〉

−〈∇ϕ
Xi

dϕ(Xi), τ(ϕ)〉+ 2

(
1

r2
− 1

R2

)
〈dψ(Xi), dϕ(Xi)〉e(ψ)

)
η.
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Taking sum in the above equation, at p, we obtain

−∆ψτ(ψ) =−∆ϕτ(ϕ) +

(
1

r2
− 1

R2

)
dϕ
(
4grad (e(ψ)) + θ]

)
+ 2

(
1

r2
− 1

R2

)
e(ψ)τ(ϕ) +

√
R2 − r2
Rr

(−2∆(e(ψ))

+2divθ] − |τ(ϕ)|2 + 4

(
1

r2
− 1

R2

)
(e(ψ))2

)
η.

Thus,

∆ϕτ(ϕ) =∆ψτ(ψ) +

(
1

r2
− 1

R2

)
dϕ
(
4grad (e(ψ)) + θ]

)
+ 2

(
1

r2
− 1

R2

)
e(ψ)τ(ϕ) +

√
R2 − r2
Rr

(−2∆(e(ψ))(3.8)

+2divθ] − |τ(ϕ)|2 + 4

(
1

r2
− 1

R2

)
(e(ψ))2

)
η.

Further,

RS
n
(R) (dϕ(Xi), τ(ϕ))dϕ(Xi) =

=
1

R2
〈τ(ϕ), dϕ(Xi)〉dϕ(Xi)−

1

R2
|dϕ(Xi)|2 τ(ϕ)

=
1

R2
〈τ(ϕ), dϕ(Xi)〉dϕ(Xi)

− 1

R2
|dϕ(Xi)|2

(
τ(ψ)− 2

√
R2 − r2
Rr

e(ψ)η

)
.

Taking sum in the above equation, we get

traceRS
n
(R) (dϕ, τ(ϕ))dϕ =

(3.9)

=
1

R2
dϕ(θ])− 2

R2
e(ψ)τ(ψ) + 4

√
R2 − r2
R3r

(e(ψ))2 η.
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Using Equations (3.8) and (3.9), it follows that

τ2(ϕ) =−∆ϕτ(ϕ)− traceRS
n
(R) (dϕ, τ(ϕ)) dϕ

=−∆ψτ(ψ)− R2 − r2

R2r2
dϕ (4grad (e(ψ)))− 1

r2
dϕ
(
θ]
)

(3.10)

− 2

(
2

R2
− 1

r2

)
e(ψ)τ(ψ) +

√
R2 − r2
Rr

(2∆ (e(ψ))

−2divθ] + |τ(ψ)|2 − 4

(
2

R2
− 1

r2

)
(e(ψ))2

)
η.

Consider
1

r
Φ̃ = i ◦ ϕ̃ : M → Rn,

where i : Sn−1 → Rn is the canonical inclusion. More precisely, we
have the following diagram

M Rn

Sn−1(r) Sn−1

ψ
ϕ̃

1
r
Φ̃

i

h

We note that Φ̃ = i ◦ ψ, where i : Sn−1(r) → Rn is the canonical
inclusion. From [1] we have the following

τ2(ϕ̃) =−∆ϕ̃τ(ϕ̃)− dϕ̃(θ̃]) +

∣∣∣∣d(1

r
Φ̃

)∣∣∣∣2 τ (1

r
Φ̃

)
+

∣∣∣∣d(1

r
Φ̃

)∣∣∣∣4 1

r
Φ̃

=−∆ϕ̃τ(ϕ̃)− dϕ̃(θ̃]) +

∣∣∣∣d(1

r
Φ̃

)∣∣∣∣2 τ(ϕ̃).

Using Equations (2.1) and the last formula, we obtain

τ2(ψ) = −∆ψτ(ψ)− 1

r2
dψ
(
θ]
)

+
1

r2
|dψ|2 τ(ψ).

Thus, we have

(3.11) −∆ψτ(ψ) = τ2(ψ) +
1

r2
dψ
(
θ]
)
− 1

r2
|dψ|2 τ(ψ).

We replace Equation (3.11) in Equation (3.10) and the proof is com-
plete. �
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Remark 3.2. For R = 1, Equation (3.1) becomes

τ2(ϕ) = τ2(ψ) + 2

(
1− 1

r2

)
dψ
(
grad |dψ|2

)
+ 4

(
1− 1

r2

)
e(ψ)τ(ψ)

(3.12)

+

√
1− r2
r

(
2∆ (e(ψ))− 2divθ] + |τ(ψ)|2 − 4

(
2− 1

r2

)
(e(ψ))2

)
η.

Remark 3.3. If R = 1 and ψ has constant energy density, then Equa-
tion (3.12) becomes

τ2(ϕ) =τ2(ψ) + 4

(
1− 1

r2

)
e(ψ)τ(ψ)

(3.13)

+

√
1− r2
r

(
−2divθ] + |τ(ψ)|2 − 4

(
2− 1

r2

)
(e(ψ))2

)
η.

Using the above notations, we give the following results.

Proposition 3.4. Assume that the map ϕ is biharmonic. If M is
compact, then r ≥ 1/

√
2.

Proposition 3.5. Assume that ϕ is biharmonic, e(ϕ) is constant and
divθ] = 0. Then r ≥ 1/

√
2.

Proposition 3.6. If the map ψ is harmonic with constant energy
density, then ϕ is biharmonic if and only if r = 1/

√
2.

Further, we recall a result regarding the biharmonicity of homoge-
neous polynomial maps of degree 2 between spheres, i.e. quadratic
forms (we follow the notations and terminology in [1]). For more de-
tails about quadratic forms, see [3] and [16].

Theorem 3.7. (see [1]) Let F : Rm+1 → Rn+1 be a quadratic form
given by

F (x) =
(
X tA1X, . . . , X

tAn+1 X
)
,

such that if |x| = 1 then |F (x)| = 1. We consider ϕ : Sm → Sn
defined by ϕ(x) = F (x) and Φ = i ◦ ϕ : Sm → Rn+1. If we denote
S = A2

1 + A2
2 + · · ·+ A2

n+1 then, at a point x ∈ Sm, the bitension field
of ϕ has the following expression

τ2(ϕ)x =− 4
(
m+ 5− 4X tSX

)
(trA1, trA2, . . . , trAn+1)

+ 4
(

(m+ 3)(m+ 5)− 6(m+ 5)X tSX + 8
(
X tSX

)2)
Φ(x)(3.14)

+ 32
(
X tA1SX, . . . , X

tAn+1SX
)
.
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Further, we consider the particular case of quadratic forms when
their image lies in a small hypersphere. As an apllication to Theorem
(3.1), we compute the bitension field from Equation (3.12) taking into
account Theorem (3.7). In order to accomplish that, we use Lemma
(2.4) and some computations from [1]. Then, we recover Proposition
(3.6) for this particular case.

Consider the diagram below

Rm+1 Rn+1

Rn

Sn−1(r)

Sn−1

Sm Sn

i

F

F̃ G

Φ
Φ̃

i

i

H

h

ψ

ϕ̃

ϕ

where the small hypersphere Sn−1(r) of Sn is identified with the (n−1)-
dimensional sphere of Rn, and F : Rm+1 → Rn+1 is a quadratic form
given by

F (x) =
(
X tA1X, . . . , X

tAn+1 X
)
,

such that if |x| = 1 then |F (x)| = 1. In this case, F̃ = Pr ◦ F , where
Pr : Rn+1 → Rn is the vector function given by

Pr
(
y1, . . . , yn, yn+1

)
=
(
y1, . . . , yn

)
,

and the map Φ̃ : Sm → Rn is given by

Φ̃ = F̃∣∣Sm : Sm → Rn.
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The vector function G : Rn → Rn+1 is given by

G(y) = G(y1, . . . , yn) =

(
y1, . . . , yn,

√
1− r2
r2

|y|2
)
,

the map H : Sn−1(r)→ Sn is given by

H(y) = H(y1, . . . , yn) =
(
y1, . . . , yn,

√
1− r2

)
,

and the map h : Sn−1 → Sn−1(r) is given by

h(y) = ry.

We will compute all terms from the right hand side member of
equation (3.1). For simplicity, we set

T =τ2(ψ) + 2

(
1

R2
− 1

r2

)
dψ
(
grad |dψ|2

)
+ 4

(
1

R2
− 1

r2

)
e(ψ)τ(ψ),

N =2∆ (e(ψ))− 2divθ] + |τ(ψ)|2 − 4

(
2

R2
− 1

r2

)
(e(ψ))2 .

First, we compute N . In [1], we have already computed some of the
terms that form N , but for quadratic maps between unit spheres. Now
we need to modify the radius of the target sphere, thus we compose
F̃ with the right homothety. Consider the following diagram

Rm+1 Rn

Sm Sn−1

i

1
r
F̃

1
r
Φ̃

i

ϕ̃

We denote

S̃ =A2
1 + · · ·+ A2

n.

From [1] we recall that∣∣∣∣od(1

r
F̃

)∣∣∣∣2 = 4X t

(
1

r2
S̃

)
X =

4

r2
X tS̃X.

First, using the definition of θ and Lemma (2.4) we have

θ (X) = 〈dψ(X), τ(ψ)〉 = r2 〈dϕ̃(X), τ(ϕ̃)〉 = r2θ̃(X).
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We note that θ and θ̃ are 1-forms on Sm. Thus, divθ] = r2divθ̃]. Using
[1], we have

divθ̃] =

∣∣∣∣ o∆(1

r
F̃

)∣∣∣∣2 + 2(m+ 1)

∣∣∣∣od(1

r
F̃

)∣∣∣∣2 − 4(m+ 1)(m+ 3).

Therefore,

divθ] =r2

{∣∣∣∣ o∆(1

r
F̃

)∣∣∣∣2 +
8(m+ 1)

r2
X tS̃X − 4(m+ 1)(m+ 3)

}
.

(3.15)

Further,

2∆e(ψ) =∆ |dψ|2 = r2∆ |dϕ̃|2

=r2

{
o

∆

(∣∣∣∣od(1

r
F̃

)∣∣∣∣2
)

+ 2(m+ 1)

∣∣∣∣od(1

r
F̃

)∣∣∣∣2
}

(3.16)

=r2
{
−8tr

(
1

r2
S̃

)
+

8(m+ 1)

r2
X tS̃X

}
.

Since

τ(ϕ̃) = −
o

∆

(
1

r
F̃

)
+

(∣∣∣∣od(1

r
F̃

)∣∣∣∣2 − 2(m+ 3)

)
1

r
Φ̃,

we get

|τ(ϕ̃)|2 =

∣∣∣∣ o∆(1

r
F̃

)∣∣∣∣2 −
(∣∣∣∣od(1

r
F̃

)∣∣∣∣2 − 2(m+ 3)

)2

.

Thus,

|τ(ψ)|2 =r2 |τ(ϕ̃)|2

=r2

{∣∣∣∣ o∆(1

r
F̃

)∣∣∣∣2 − 16

r4

(
X tS̃X

)2
+

16(m+ 3)

r2
X tS̃X(3.17)

−4(m+ 3)2
}
.

Next, we have that

2e(ψ) = |dψ|2 = r2 |dϕ̃|2

=r2

{∣∣∣∣od(1

r
F̃

)∣∣∣∣2 − 4

}
.(3.18)
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Using a general property of quadratic forms (see [1]), we obtain

(3.19) 8tr

(
1

r2
S̃

)
+

∣∣∣∣ o∆(1

r
F̃

)∣∣∣∣2 = 4(m+ 1)(m+ 3).

We replace Equations (3.15), ..., (3.19) in the equation of N and by
direct calculations, we obtain
(3.20)

N = −8(m+ 1)r2 − 32r4 + 8
(
m+ 1 + 8r2

)
X tS̃X − 32

(
X tS̃X

)2
.

In order to compute T , using again [1], we have

2dψ
(
grad |dψ|2

)
= 2r3dϕ̃

(
grad |dϕ̃|2

)
= r3

{
2
o

d

(
1

r
F̃

)(
o

grad

(
o

d

(
1

r
F̃

)))
− 8

∣∣∣∣od(1

r
F̃

)∣∣∣∣2 1

r
Φ̃

}
(3.21)

= 32
(
X tA1S̃X, . . . , X

tAnS̃X
)
− 32X tS̃XΦ̃.

Using Theorem (3.7), at x ∈ Sm we have

τ2(ψ) =rτ2(ϕ̃)

=2r
(
m+ 5− 4X tS̃X

) o

∆

(
1

r
F̃

)
+ 4

(
(m+ 3)(m+ 5)− 6(m+ 5)

r2
X tS̃X +

8

r4

(
X tS̃X

)2)
Φ̃

+
32

r2

(
X tA1S̃X, . . . , X

tAnS̃X
)
.

We replace the above equations in the expression of T and by direct
calculations we obtain

T =2
(
m+ 1 + 4r2 − 4X tS̃X

) o

∆F̃ + 32
(
X tA1S̃X, . . . , X

tAnS̃X
)

+

(
4(m+ 3)(m+ 1)− 8

r2
(m+ 1)X tS̃X

(3.22)

+
32

r2

(
X tS̃X

)2
− 16(m+ 7)X tS̃X + 16(m+ 3)r2

)
Φ̃.

Now we are ready to reobtain the result in Proposition (3.6). Indeed,
if we suppose that ψ is harmonic, using a result in [1], it follows that
o

∆F̃ = 0. Moreover, the energy density of ψ is constant and S̃ =
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(m+ 3)(r2/2)Im+1. As a consequence, T vanishes and

N = −8(m+ 1)2r4 + 4(m+ 1)2r2.

Therefore, ϕ is proper biharmonic if and only if r = 1/
√

2.

Special example. Based on the examples from [1], we may think
that if a proper biharmonic quadratic form lies in a small hypersphere
Sn−1(r)×

{√
1− r2

}
of Sn, then r = 1/

√
2 and the corresponding map

ψ is a harmonic map.
In other words, one may ask the following question: if the image

of ϕ lies in a hyperplane (Π) :
〈
N, y

〉
= α, then does it follow that

the distance d (O,Π) is 1/
√

2? The answer is negative, meaning that:

according to a result of [2], if N is parallel to
o

∆F , then d (O,Π) is

indeed 1/
√

2, but if N is not parallel to
o

∆F , then d (O,Π) is not
1/
√

2. In order to support this affirmation, we construct the following
example.

Let F = (F 1, F 2, F 3, F 4) : R4 → R4,

F (x) =

(
1√
2

((
x1
)2

+
(
x2
)2 − (x3)2 − (x4)2) ,√2

(
x1x3 − x2x4

)
,

√
2
(
x1x4 + x2x3

)
,

1√
2

((
x1
)2

+
(
x2
)2

+
(
x3
)2

+
(
x4
)2))

.

By simple computations, we can see that

o

∆F =

(
0, 0, 0,− 8√

2

)
,

and 〈
−

o

∆F, F (x)
〉

=4
((
x1
)2

+
(
x2
)2

+
(
x3
)2

+
(
x4
)2)

.

If |x| = 1, then |F (x)| = 1. Thus, F takes S3 into S3. Therefore, the
image of ϕ lies in the hyperplane (Π) in R4 given by

(Π) :
〈
−

o

∆F, y
〉

= 4.

Using directly Theorem (3.7), or using [2], one can prove that ϕ = F∣∣S3

is a biharmonic map. We note that F 4 is constant on S3 and the first 3
components of ϕ are harmonic polynomials on R4 and form a harmonic
map ψ : S3 → S2(1/

√
2).

We construct a new map G : R4 → R5, given by

G (x) = (F (x) , 0) .
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Since F∣∣∣Sm
is a biharmonic map, it follows that also G∣∣∣Sm

is a bihar-

monic map. We apply the next transformation

T1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1√

2
− 1√

2

0 0 0 1√
2

1√
2

 ,
which is an isometry, on the components of G. Thus, we obtain the
map

T1 ◦G =

(
F 1, F 2, F 3,

1

2
F 4,

1

2
F 4

)
.

Next, we apply another transformation,

T2 =


1 0 0 0 0
0 1 0 0 0
0 0 1√

2
− 1√

2
0

0 0 1√
2

1√
2

0

0 0 0 0 1

 ,
which is also an isometry, to T1 ◦G, and we obtain

H = T2◦T1◦G =

(
F 1, F 2,

1√
2

(
F 3 − 1

2
F 4

)
,

1√
2

(
F 3 +

1

2
F 4

)
,
1

2
F 4

)
.

More precisely,

H (x) =

(
1√
2

((
x1
)2

+
(
x2
)2 − (x3)2 − (x4)2) ,√2

(
x1x3 − x2x4

)
,

1√
2

(√
2
(
x1x4 + x2x3

)
− 1

2
|x|2
)
,

1√
2

(√
2
(
x1x4 + x2x3

)
+

1

2
|x|2
)
,
1

2
|x|2
)
.

We can see that

o

∆H =

(
0, 0,

4√
2
,− 4√

2
,−4

)
.

and 〈
−

o

∆H,H (x)
〉

= 4
((
x1
)2

+
(
x2
)2

+
(
x3
)2

+
(
x4
)2)

.
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We consider the hyperplane (Π1) in R5, given by

(Π1) :
〈
−

o

∆H, y
〉

= 4.

The image of restriction ϕ1 = H∣∣S3 : S3 → S4 lies in the hyperplane

(Π1), but also in the hyperplane

(Π2) : 〈e5, y〉 =
1

2
.

The map ϕ1 is proper biharmonic and, indeed, the distance from the
origin to the hyperplane (Π1) is equal to 1/

√
2. But, the last com-

ponent of ϕ1 is constant 1/2, the first 4 components are not constant
and the corresponding map ψ : S3 → S3

(√
3/2
)

is not harmonic; the
distance from the origin to (Π2) is 1/2.
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Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 48 (2002), no. 2, 237–248.

[13] C. Oniciuc, New examples of biharmonic maps in spheres, Colloq.
Math. 97 (2003), no. 1, 131–139.
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