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SIR DYNAMICAL MODEL WITH DEMOGRAPHY
AND LAGRANGE-HAMILTON GEOMETRIES
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Abstract. The aim of this paper is to develop, via the least
squares variational method, the Lagrange-Hamilton geometries (in the
sense of nonlinear connections, d-torsions and Lagrangian Yang-Mills
electromagnetic-like energy) produced by the SIR dynamical system
with demography in epidemiology. From a geometrical point of view,
the Jacobi instability of this SIR dynamical system with demography
is established. At the same time, some possible epidemiological and
demographic interpretations are also derived.

1. SIR DYNAMICAL SYSTEM WITH DEMOGRAPHY

There is a vast recent literature focused on epidemic mathematical
models, part of it dealing with the spread of a disease from a temporal
and spatial perspective. The resulting advantages consist in the pos-
sibility of tracking and forecasting the trend of infectious diseases, on
the basis of which public health policies can be built, contributing to
the prevention or reduction of future propagation.
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The mathematical epidemic models have been constructed either as
continuous-time models by differential equations (considered as more
tractable mathematically than the discrete models while having a di-
rect physical interpretation, thus being widely used), or as discrete-
time ones by difference equations (proved to be particularly helpful in
building the overall picture related to the present situation and the
future evolution of a disease). See, for instance, De la Sen and Ibeas
[5] or Parsamanesh et al. [15].

In mathematical modeling of epidemiology, the demographic com-
ponent is neglected in the case of fast diseases, whose evolution is
taking place for a significantly shorter period of time than the lifes-
pan of the individuals (such as in the case of childhood diseases or
influenza) (see De la Sen et al. [6]), instead for slowly progressive
diseases (such as HIV, hepatitis C, tuberculosis), given that the dis-
ease extends over a long period, sometimes for the entire lifespan of
the individuals, the effects of demography have to be considered (see
Litra [8]). The demographic events of birth and death influence the
number and the links of nodes in networks, interfering with the mech-
anisms of infection and recovery and creating a dynamic network with
effect in epidemic spreading (see Jing et al. [7]). Thus, the use of
the SIR model with demography allows a fundamental perspective on
the dynamics of infectious diseases and how they can be controlled,
insights that are almost unachievable only from tracking the disease
itself. Therefore the SIR model with demography constitutes the the-
oretical framework for designing interventions in the field of public
health (see Weiss [17]).

Note that the SIR dynamical system with demography is used in
epidemiology as a three compartmental mathematical model which is
useful to predict how a disease spreads or to estimate the duration
of an epidemic. For more details about compartmental mathematical
models in epidemiology, consult the works: Adda and Bichara [1],
Ozioko et al. [14] or Wikipedia [18], and references therein.

The SIR (Susceptible, Infectious and Recovered) dynamical system
with demography is expressed by [18§]
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where N = S(t) + I(t) + R(t) represents a population divided into
classes of susceptible, infectious and removed individuals, whose num-
bers at the moment ¢ are denoted by S(t), I(t) and R(t), and u, A,
£ and v are some parameters representing the per capita death rate,
the total birth rate, the effective per capita contact rate of infective
individuals and the per capita rate of recovery respectively.

2. FROM A GIVEN DYNAMICAL SYSTEM TO LAGRANGE-HAMILTON
GEOMETRIES

Let M be a n-dimensional smooth manifold, whose coordinates are
(). _+—. Let TM (respectively T*M) be the tangent (respectively

i=1n "

cotangent) bundle, whose coordinates are (x%,y") (respectively

($17p1)1:L7n)
Let us consider a vector field X = (X*(z)),_;- on M, which pro-
duces the dynamical system 7
) L= X)),
Because the solutions of class C? of the dynamical system (2) are the
global minimum points for the least squares Lagrangian L : TM — R,
given by!

(3)

i=1n

.

L(z,y) = 65 (y' — X'(2)) (o — X' (2)) &
L(z,y) = (y' = X'(@)" + (v = X2(2))" + .. + (y" — X"(2))?,
it follows that, via its Euler-Lagrange equations (k = 1,n)
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we can construct an entire natural collection of nonzero Lagrangian ge-
ometrical objects (such as nonlinear connection, d-torsions and Yang-
Mills electromagnetic-like energy) that characterize the initial dynam-
ical system (2). For more details about Lagrange geometry on tangent
bundles and the Lagrangian least squares variational method for dy-
namical systems, consult the works: Miron and Anastasiei [9], Udriste
and Neagu [16], [13], and Balan and Neagu [2].

IThe Einstein convention of summation is adopted all over this paper.
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Also, if we construct the least squares Hamiltonian H : T*M — R,
associated with the Lagrangian (3), which is defined by

(5) 3
6’” k
H(x,p) = S Pipi + X"(2)pr &

H(z,p) =~ (pi + 03+ ..p}) + X' (@)p1 + X*(2)p2 + ... + X" (2)pn,

B~ =

where p, = 0L/0y" and H = p,y" — L, we can build again a natu-
ral and distinct collection of nonzero Hamiltonian geometrical objects
(such as nonlinear connection and d-torsions), which also characterize
the system (2). For all details about Hamilton geometry on cotangent
bundles and the Hamiltonian least squares variational method for dy-
namical systems, see the monographs: Miron et al. [10] and Neagu
and Oana [12].

It is important to note that the above Lagrange-Hamilton geome-
tries produced by the Lagrangian (3) and Hamiltonian (5) are exposed
in detail in the monographs [2] and [12]. These are achieved via the
nonzero geometrical objects, where J(X) = (0X"/0x7) is the
Jacobian matrix of X:

ij=1n

. 1 . :
()N = (N]?)i’j:ﬁ = -3 [J(X) - TJ(X)] is the Lagrangian
nonlinear connection on the tangent bundle TM, where Nj =
IG" [dy’;

) 15) _
(2) R, = (R}k)i,jzl,? = %, V k = 1,n, are the Lagrangian d-

torsions, where

. ONI SNj 58D
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(3) EYM(x) = % - Trace [F - "F], where F = —N/, is the La-

grangian Yang-Mills electromagnetic-like energy:;

(4) N = (Ny), ;17 = J(X)+ TJ(X) is the Hamiltonian nonlinear
connection on the cotangent bundle 7% M, where
0*H 0?’H
0x/0p;,  0x'Op;
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(5) R = (Ruij); ;17 = % [J(X)— TJ(X)] = 2Ry, V k =

1,n, are the Hamiltonian d-torsions, where

SNy 6Ny 6 D )

Ryij =

oxi  oxi T dxd dxi op,

3. LAGRANGE-HAMILTON GEOMETRIES FOR SIR DYNAMICAL
SYSTEM WITH DEMOGRAPHY

It is obvious that, in the context of the SIR dynamical system (1),
we have the particular 3-dimensional manifold M = R3, whose coor-
dinates are

(mle, =1, :L‘3:R),
and we consider the vector field X = (X*(S, I, R)),_r3, which is given
by
IS IS
XS, I,R)=A—puS — B—, X*(S,I,R) = IS _ I — pl,
N N
X3(S,I,R) =~I — uR.

Applying now the geometrical ideas from the preceding section,
we deduce that the Jacobian matrix J = J(X) of the vector field
X(S,1,R) is expressed by

BIN — 8IS BSN — 8IS 8IS
PN B N2 N2
J— BIN —BIS  BSN — 8IS 8IS |
N? Nz TR TN
0 gl —p

and, consequently, we find the Lagrange-Hamilton geometrical objects
that characterize the SIR dynamical system (1):

(1) the Lagrangian nonlinear connection skew-symmetric matrix:
1
N = -5 [J—TJ] =

0 —BSN +251S — BIN BIS

N? N2
1| BSN—2BIS+BIN . BIS
2 N2 N2
BIS BIS

TN Nz T 0
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(2) the Lagrangian d-torsion skew-symmetric matrices:

Ri=—=1a 0 b
s Ny o0 )
where
1 (BI —BN+pBS 2BIN —4BIS BIN — 2518
“5( N T e ) b=
0 —c —d
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(3) the Lagrangian Yang-Mills electromagnetic-like energy:

EYM(S,I,R) = [(BSN —2BIS + BIN)? + B*I2S*+

4AN4
+(BIS + 7N2)2] ;

(4) the Hamiltonian nonlinear connection symmetric matrix:

N=J+"TJ=
BIN — BIS BIN — BSN BIS
—op — 2 = ==
N2 N? N?
BIN — BSN BSN — BIS BIS )
D e Rt A A R
BIS BIS
N N Y o

(5) the Hamiltonian d-torsion matrices are Ry, = —2Ry, V k = 1, 3.
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The matrix of deviation curvature from Kosambi-Cartan-Chern
(KCC) geometrical theory is given by the formula (see Bohmer et
al. [4])

0 -A -B
i k
P= (Pj)i,jzl,?) = Ry" = g OB ? ’

where A = ay' + cy? + ey?, B = by + dy® + fy3. Its eigenvalues are
A =0, A\y3=+iVA2+2B2 = ReA; =0, Re(\g3) =0.

In conclusion, the behavior of neighboring solutions of the Euler-
Lagrange equations (4) is Jacobi unstable. This means that the trajec-
tories of the vector field X of the SIR dynamical model (1) are neither
bunching together and are neither dispersing. For more details about
KCC theory and Jacobi stability, consult the paper [4].

4. CONCLUSIONS

Along with Al-based methods and also the statistical modeling
methods, mathematical modeling was frequently used in epidemiol-
ogy, contributing to the understanding of some aspects and leading to
certain findings that some authors admit they could not have reached
from the data alone, such as determining a herd immunity thresh-
old which makes vaccination against a disease to be effective without
making everyone immune (see Weiss [17]). Mathematical modeling
based on SIR model and artificial intelligence have both shown to be
reliable tools in the fight against pandemics (see Mohamadou et al.
[11]). Moreover, the reduction of the transmission rate in the SIR
model might find applications for timing the implementation of epi-
demic control measures, helping for an epidemic to fade out before it
becomes endemic (i.e., established in a population). See, for example,
Ballard et al. [3].

It is important to note that the interaction between the demogra-
phy and epidemic dynamics is complex. Therefore it is important to
accurately estimate the parameters of demography in order to deter-
mine the disease transmission dynamics. The mathematical epidemic
models, like the SIR-model, allow a better understanding of the re-
lationship between real-world dynamics and the varying incidence of
an endemic disease, and can be used to assess the spread of epidemics
and the impact of government intervention strategies. In such a con-
text, from our new geometric-physical approach, the surfaces of con-
stant level of the Lagrangian Yang-Mills electromagnetic-like energy
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produced by the SIR dynamical system (1) could have important con-
notations for the epidemiological phenomena taken in study. For such
a reason, it is an open problem to find the epidemiological information
contained in the shape of the surfaces of constant level (C' > 0)

Yo ﬁ [(BSN —2BIS + BIN)? + B*1%S? + (BIS+7N2)2} =C.

In this direction, we believe that the computer drawn graphics of these
surfaces are important for the study of the epidemiological phenomena
involved in the SIR dynamical system (1). For example, note that if
the effective per capita contact rate of infective individuals S is zero,
then the Lagrangian Yang-Mills electromagnetic-like energy produced
by the SIR dynamical system is constant and equal to EYM = ~?2/4,
where 7 is the per capita rate of recovery. Is there an epidemiological
meaning of this fact?
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