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UPPER AND LOWER ALMOST LPT
mI-CONTINUOUS MULTIFUNCTIONS

TAKASHI NOIRI AND VALERIU POPA

Abstract. The notions of upper/lower almost nearly continu-
ous (resp. of upper/lower almost c-continuous, of upper/lower l-
continuous) multifunctions have been introduced and investigated in
[8] (resp. [16], [14]). In [25], the present authors obtained a unified
form of generalizations of upper/lower almost nearly continuous mul-
tifunctions. In this paper, by using the m-structure mIO(X) defined
in an ideal topological space (X, τ, I), we define upper/lower almost
LPT mI-continuous multifunctions and obtain their properties, where
LPT denotes one of nearly compact, compact, Lindelöf, connected.

1. Introduction

The notion of N -closed sets in a topological space was introduced
in [5]. Ekici [8] introduced the notions of upper/lower almost nearly
continuous multifunctions as a generalization of upper/lower nearly
continuous multifunctions [7] and upper/lower almost continuous mul-
tifunctions [26].
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Rychlewicz [32] has introduced the notion of upper/lower almost
nearly quasi-continuous multifunctions as a generalization of up-
per/lower almost nearly continuous multifunctions and upper/lower
almost quasi continuous multifunctions [31]. In [29], the present au-
thors introduced and studied the notion of upper/lower m-continuous
multifunctions. Furthermore, in [25], they introduced and studied
the notion of upper/lower almost nearly m-continuous multifunctions.
The notion generalize upper/lower m-continuous multifunctions and
upper/lower almost nearly continuous multifunctions.

In this paper, we introduce a unified form of many generalizations
of upper and lower almost nearly continuous multifunctions. First, by
mIO(X) we denote an m-structure which is constracted by a topol-
ogy τ and an ideal I in an ideal topological space (X, τ, I). Second,
by LPT -property we denote one of N -closed, compact, connected,
Lindelöf sets in a topological space. Then we define and investigate
the notion of upper/lower almost LPT mI-continuous multifunctions
F : (X, τ, I)→ (Y, σ).

2. Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of
A and the interior of A are denoted by Cl(A) and Int(A), respectively.
A subset A is said to be regular open (resp. regular closed) if Int(Cl(A))
= A (resp. Cl(Int(A)) = A).

Definition 2.1. Let (X, τ) be a topological space. A subset A of X
is said to be

(1) α-open [22] if A ⊂ Int(Cl(Int(A))),
(2) semi-open [18] if A ⊂ Cl(Int(A)),
(3) preopen [20] if A ⊂ Int(Cl(A)),
(4) β-open [1] if A ⊂ Cl(Int(Cl(A))),
(5) b-open [2] if A ⊂ Int(Cl(A)) ∪ Cl(Int(A)).

The family of all semi-open (resp. preopen, α-open, β-open, b-open)
sets in X is denoted by SO(X) (resp. PO(X), α(X), β(X), BO(X)).

Let (X, τ) be a topological space and A a subset of X. A point
x ∈ X is called a δ-cluster point of A if Int(Cl(V )) ∩ A 6= ∅ for every
open set V containing x. The set of all δ-cluster points of A is called
the δ-closure of A [34] and is denoted by Clδ(A). If A = Clδ(A), then
A is said to be δ-closed. The complement of a δ-closed set is said to
be δ-open. The union of all δ-open sets of A is called the δ-interior
of A and is denoted by Intδ(A).
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Definition 2.2. A subfamily m of the power set P(X) of a nonempty
set X is called a minimal structure (briefly m-structure) [27], [28] on
X if ∅ ∈ m and X ∈ m.

By (X,m), we denote a nonempty set X with a minimal structure m
on X and call it an m-space. Each member of m is said to be m-open
and the complement of an m-open set is said to be m-closed.

Definition 2.3. Let (X,m) be an m-space. For a subset A of X, the
m-closure of A and the m-interior of A are defined in [19] as follows:

(1) mCl(A) = ∩{F : A ⊂ F,X \ F ∈ m},
(2) mInt(A) = ∪{U : U ⊂ A,U ∈ m}.

Remark 2.1. Let (X, τ) be a topological space and A be a subset of
X. If m = τ (resp. SO(X), PO(X), α(X), BO(X), β(X)), then we
have

(a) mCl(A) = Cl(A) (resp. sCl(A), pCl(A), αCl(A), bCl(A), β(A)),
(b) mInt(A) = Int(A) (resp. sInt(A), pInt(A), αInt(A), bInt(A),

βInt(A)).

Lemma 2.1. (Maki et al. [19]). Let (X,m) be an m-space. For
subsets A and B of X, the following properties hold:

(1) mCl(X \ A) = X \mInt(A) and mInt(X \ A) = X \mCl(A),
(2) If (X\A) ∈ m, then mCl(A) = A and if A ∈ m, then mInt(A) =

A,
(3) mCl(∅) = ∅, mCl(X) = X, mInt(∅) = ∅ and mInt(X) = X,
(4) If A ⊂ B, then mCl(A) ⊂ mCl(B) and mInt(A) ⊂ mInt(B),
(5) mInt(A) ⊂ A ⊂ mCl(A),
(6) mCl(mCl(A)) = mCl(A) and mInt(mInt(A)) = mInt(A).

Lemma 2.2. (Popa and Noiri [28]). Let (X,m) be an m-space and A
a subset of X. Then x ∈ mCl(A) if and only if U ∩ A 6= ∅ for every
U ∈ m containing x.

Definition 2.4. An m-structure m on a nonempty set X is said to
have property B [19] if the union of any family of subsets belonging to
m belongs to m.

Remark 2.2. Let (X, τ) be a topological space. Then the families τ ,
SO(X), PO(X), α(X), BO(X) and β(X) are m-structures and have
property B.

Lemma 2.3. (Popa and Noiri [30]). For an m-structure m on a
nonempty set X, the following properties are equivalent:

(1) m has property B;
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(2) If mInt(A) = A, then A ∈ m;
(3) If mCl(A) = A, then A is m-closed.

Throughout the present paper, (X, τ) and (Y, σ) (briefly X and Y )
always denote topological spaces and F : X → Y presents a multival-
ued function. For a multifunction F : X → Y , we shall denote the
upper and lower inverse of a subset B of a space Y by F+(B) and
F−(B), respectively, that is

F+(B) = {x ∈ X : F (x) ⊂ B} and
F−(B) = {x ∈ X : F (x) ∩B 6= ∅}.

Definition 2.5. A subset A of a topological space (X, τ) is said to
be N-closed relative to X (briefly N-closed) [5] if every cover of A by
regular open sets of X has a finite subcover.

Definition 2.6. A multifunction F : (X, τ)→ (Y, σ) is said to be
(1) upper almost nearly continuous [8] at a point x ∈ X if for each

open set V containing F (x) and having N -closed complement, there
exists an open set U of X containing x such that F (U) ⊂ Int(Cl(V )),

(2) lower almost nearly continuous at a point x ∈ X if for each open
set V meeting F (x) and having N -closed complement, there exists an
open set U of X containing x such that F (u)∩Int(Cl(V )) 6= ∅ for each
u ∈ U ,

(3) upper/lower almost nearly continuous onX if it has this property
at each point of X.

3. Almost LPT m-continuous multifunctions

For a multifunction F : (X,m) → (Y, σ), the present authors [25]
defined upper/lower almost nearly m-continuous multifunctions as fol-
lows:

Definition 3.1. Let (X,m) be an m-space and (Y, σ) a topological
space. A multifunction F : (X,m)→ (Y, σ) is said to be

(1) upper almost nearly m-continuous at a point x ∈ X if for each
open set V containing F (x) and having N -closed complement, there
exists an m-open set U containing x such that F (U) ⊂ Int(Cl(V )),

(2) lower almost nearly m-continuous at a point x ∈ X if for each
open set V meeting F (x) and having N -closed complement, there ex-
ists an m-open set U containing x such that F (u) ∩ Int(Cl(V )) 6= ∅
for each u ∈ U ,

(3) upper/lower almost nearly m-continuous on X if it has this prop-
erty at every point of X.
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In the following, we denote by LTP property one of N -closed, con-
nected, compact, Lindelöf property.

Definition 3.2. Let (X,m) be an m-space and (Y, σ) a topological
space. A multifunction F : (X,m)→ (Y, σ) is said to be

(1) upper almost LTP m-continuous at a point x ∈ X if for each
open set V containing F (x) and having LTP complement, there exists
an m-open set U containing x such that F (U) ⊂ Int(Cl(V )),

(2) lower almost LTP m-continuous at a point x ∈ X if for each
open set V meeting F (x) and having LPT complement, there exists
an m-open set U containing x such that F (u) ∩ Int(Cl(V )) 6= ∅ for
each u ∈ U ,

(3) upper/lower almost LTP m-continuous on X if it has this prop-
erty at every point of X.

Remark 3.1. Let F : (X,m) → (Y, σ) be upper/lower almost LTP
m-continuous. If m = τ is a topology and LTP is N -closed (resp.
compact , Lindelöf), then F is upper/lower almost nearly [8] (resp. up-
per/lower almost c-continuous [16], upper/lower almost l-continuous
[14]).

Theorem 3.1. For a multifunction F : (X,m)→ (Y, σ), the following
properties are equivalent:

(1) F is upper almost LTP m-continuous at x ∈ X;
(2) x ∈ mInt(F+(Int(Cl(V )))) for each open set V of Y containing

F(x) and having LTP complement;
(3) x ∈ mInt(F+(sCl(V ))) for each open set V of Y containing F(x)

and having LTP complement;
(4) x ∈ mInt(F+(V )) for each regular open set V of Y containing

F(x) and having LTP complement;
(5) for each regular open set V of Y containing F(x) and having LTP

complement, there exists U ∈ m containing x such that F (U) ⊂ V .

Proof. (1) ⇒ (2): Let V be any open set of Y containing F (x)
and having LTP complement. There exists U ∈ m containing x such
that F (U) ⊂ Int(Cl(V )). Thus we have x ∈ U ⊂ F+(Int(Cl(V ))) and
hence x ∈ mInt(F+(Int(Cl(V )))).

(2) ⇒ (3): Since every open set is pre-open, by Lemma 3.2 of [23]
Int(Cl(V )) = sCl(V ) for every open set V of Y .

(3) ⇒ (4): Let V be any regular open set of Y containing F (x)
and having LTP complement. Then by Lemma 3.2 of [23], V =
Int(Cl(V )) = sCl(V ).

(4) ⇒ (5): V be any regular open set of Y containing F (x) and



102 TAKASHI NOIRI AND VALERIU POPA

having LTP complement. By (4), x ∈ mInt(F+(V )) and hence there
exists U ∈ m such that x ∈ U ⊂ F+(V ); hence F (U) ⊂ V .

(5) ⇒ (1): Let V be any open set of Y containing F (x) and having
LTP complement. Then Int(Cl(V )) is a regular open set of Y con-
taining F (x) and having LTP complement and hence, by (5), there
exists U ∈ m containing x such that F (U) ⊂ Int(Cl(V )).

Theorem 3.2. For a multifunction F : (X,m)→ (Y, σ), the following
properties are equivalent:

(1) F is lower almost LTP m-continuous at x ∈ X;
(2) x ∈ mInt(F−(Int(Cl(V )))) for each open set V of Y meeting

F(x) and having LTP complement;
(3) x ∈ mInt(F−(sCl(V ))) for each open set V of Y meeting F(x)

and having LTP complement;
(4) x ∈ mInt(F−(V )) for each regular open set V of Y meeting F(x)

and having LTP complement;
(5) for each regular open set V of Y meeting F(x) and having LTP

complement, there exists U ∈ m containing x such that F (u) ∩ V 6= ∅
for every u ∈ U .

Proof. The proof is similar to that of Theorem 3.1.

Theorem 3.3. For a multifunction F : (X,m)→ (Y, σ), the following
properties are equivalent:

(1) F is upper almost LTP m-continuous;
(2) F+(V ) ⊂ mInt(F+(Int(Cl(V )))) for each open set V of Y hav-

ing LTP complement;
(3) mCl(F−(Cl(Int(K)))) ⊂ F−(K) for every closed set K of Y

having LTP property;
(4) mCl(F−(Cl(Int(Cl(B))))) ⊂ F−(Cl(B)) for every subset B of Y

such that Cl(B) has LTP property;
(5) F+(Int(B)) ⊂ mInt(F+(Int(Cl(Int(B))))) for every subset B of

Y such that Y \ Int(B) is LTP;
(6) F+(V ) = mInt(F+(V )) for every regular open set V of Y having

LTP complement;
(7) F−(K) = mCl(F−(K)) for every regular closed set K of Y hav-

ing LTP property.

Proof. (1) ⇒ (2): Let V be any open set of Y having LTP
complement and let x ∈ F+(V ). Then we have F (x) ⊂ V . By
Theorem 3.1, we have x ∈ mInt(F+(Int(Cl(V )))). This shows that
F+(V ) ⊂ mInt(F+(Int(Cl(V )))).

(2) ⇒ (3): Let K be any closed set K of Y having LTP property.
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Then, Y \ K is an open set of Y having LTP complement. By (2),
we have X \ F−(K) = F+(Y \ K) ⊂ mInt(F+(Int(Cl(Y \ K)))) =
mInt(X \ F−(Cl(Int(K)))) = X − mCl(F−(Cl(Int(K)))). Therefore,
we obtain mCl(F−(Cl(Int(K)))) ⊂ F−(K).

(3) ⇒ (4): Let B be any subset of Y whose closure has LTP prop-
erty. Then Cl(B) is a closed and LPT subset of Y and by (3) we
obtain mCl(F−(Cl(Int(Cl(B))))) ⊂ F−(Cl(B)).

(4) ⇒ (5): Let B be a subset of Y such that Y \ Int(B) is LTP .
Then, Y \ Int(B) is closed and LTP . Then, since Y \ Int(B) is
closed and LTP , we have F+(Int(B)) = X \ F−(Y \ Int(B)) =
X \ F−(Cl(Y \ B)) ⊂ X \ mCl(F−(Cl(Int(Cl(Y \ B))))) = X \
mCl(F−(Y \(Int(Cl(Int(B)))))) = mInt(F+(Int(Cl(Int(B))))). There-
fore, we obtain F+(Int(B)) ⊂ mInt(F+(Int(Cl(Int(B))))).

(5) ⇒ (6): Let V be any regular open set of Y having LTP com-
plement. Then Y \ Int(V ) is LTP and by (5) we have F+(V ) ⊂
Int(F+(V )). Therefore, we have F+(V ) = mInt(F+(V )).

(6)⇒ (7): LetK be any regular closed setK of Y having LTP prop-
erty. Then Y \K is a regular open set having LTP complement. By (6)
X \ F−(K) = F+(Y \K) = mInt(F+(Y \K)) = mInt(X \ F−(K)) =
X \mCl(F−(K)). Therefore, we obtain F−(K) = mCl(F−(K)).

(7)⇒ (1): Let x ∈ X and V be any regular open set of Y cotaining
F (x) and having LTP complement. Then Y \ V is regular closed and
LPT . By (7), we have X \F+(V ) = F−(Y \V ) = mCl(F−(Y \V )) =
X \ mInt(F+(V )). Therefore, we have x ∈ F+(V ) = mInt(F+(V )).
Then, there exist U ∈ m containing x such that F (U) ⊂ V . It fol-
lows from Theorem 3.1 that F is upper almost LTP m-continuous at
x ∈ X. Therefore, F is upper almost LTP m-continuous.

Theorem 3.4. For a multifunction F : (X,m)→ (Y, σ), the following
properties are equivalent:

(1) F is lower almost LTP m-continuous;
(2) F−(V ) ⊂ mInt(F−(Int(Cl(V )))) for each open set V of Y hav-

ing LTP complement;
(3) mCl(F+(Cl(Int(K)))) ⊂ F+(K) for every closed set K of Y

having LTP property;
(4) mCl(F+(Cl(Int(Cl(B))))) ⊂ F+(Cl(B)) for every subset B of Y

whose closure has LTP property;
(5) F−(Int(B)) ⊂ mInt(F−(Int(Cl(Int(B))))) for every subset B of

Y such that Y \ Int(B) is LTP;
(6) F−(V ) = mInt(F−(V )) for every regular open set V of Y having

LTP complement;
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(7) F+(K) = mCl(F+(K)) for every regular closed set K of Y hav-
ing LTP property.

Proof. The proof is similar to that of Theorem 3.3.

Corollary 3.1. Let (X,m) be an m-space and m have property B.
For a multifunction F : (X,m) → (Y, σ), the following properties are
equivalent:

(1) F is upper almost LTP m-continuous;
(2) F+(V ) is m-open for each regular open set V of Y having LTP

complement;
(3) F−(K) is m-closed for every regular closed set K of Y having

LTP property.

Proof. This is an immediate consequence of Theorem 3.3 and
Lemma 2.3.

Corollary 3.2. Let (X,m) be an m-space and m have property B.
For a multifunction F : (X,m) → (Y, σ), the following properties are
equivalent:

(1) F is lower almost LTP m-continuous;
(2) F−(V ) is m-open for each regular open set V of Y having LTP

complement;
(3) F+(K) is m-closed for every regular closed set K of Y having

LTP property.

Proof. This is an immediate consequence of Theorem 3.4 and
Lemma 2.3.

Remark 3.2. Let (X, τ) and (Y, σ) be topological spaces, m = τ
(resp. SO(X)) and LTP be N -closed. Then we have the following
properties:

(1) If F : (X,m) → (Y, σ) upper almost LTP m-continuous, then
by Theorem 3.3 and Corollary 3.1 we obtain Theorem 3 of [8] (resp.
Theorem 1 of [32]).

(2) If F : (X,m) → (Y, σ) lower almost LTP m-continuous, then
by Theorem 3.4 and Corollary 3.2 we obtain Theorem 6 of [8] (resp.
Theorem 2 of [32]).

Corollary 3.3. Let F : (X,m) → (Y, σ) be a multifunction. If
F−1(K) = mCl(F−1(K)) (resp. F+(K) = mCl(F+(K))) for every
set K of Y having LTP property, then F is upper almost LTP m-
continuous (resp. lower almost LTP m-continuous).
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Theorem 3.5. For a multifunction F : (X,m)→ (Y, σ), the following
properties are equivalent:

(1) F is upper almost LTP m-continuous;
(2) mCl(F−(V )) ⊂ F−(Cl(V )) for every V ∈ β(Y ) such that Cl(V)

has LTP property;
(3) mCl(F−(V )) ⊂ F−(Cl(V )) for every V ∈ SO(Y ) such that

Cl(V) has LTP property;
(4) F+(V )) ⊂ mInt(F+(Int(Cl(V )))) for every V ∈ PO(Y ) having

LTP complement.

Proof. (1) ⇒ (2): Let V be any β-open set of Y such that
Cl(V ) is LTP . It is obvious that Cl(V ) is regular closed. Since F
is upper almost LTP m-continuous, by Theorem 3.3, F−(Cl(V )) =
mCl(F−(Cl(V ))). Therefore, mCl(F−(V )) ⊂ mCl(F−(Cl(V ))) =
F−(Cl(V )).

(2)⇒ (3): Since every semi-open set is β-open, the proof is obvious.
(3) ⇒ (4): Let V be any preopen set of Y having LTP com-

plement. Then Int(Cl(V )) is a regular open set having LTP com-
plement. Then X \ Int(Cl(V )) is regular closed and LTP . There-
fore, X \ Int(Cl(V )) is a semi-open set having LTP -closure. By (3),
we have X \ mInt(F+(Int(Cl(V ))) = mCl(F−(Y \ Int(Cl(V )))) ⊂
F−(Cl(Y \ Int(Cl(V )))) = X \ F+(Int(Cl(V ))) ⊂ X \ F+(V ). There-
fore, F+(V ) ⊂ mInt(F+(Int(Cl(V )))).

(4) ⇒ (1): Let V be any regular open set having LTP com-
plement. Then V is a preopen set having LTP complement and
hence F+(V )) ⊂ mInt(F+(Int(Cl(V )))) = mInt(F+(V )). Therefore,
F+(V )) = mInt(F+(V )). By Theorem 3.3, F is upper almost LTP
m-continuous.

Theorem 3.6. For a multifunction F : (X,m)→ (Y, σ), the following
properties are equivalent:

(1) F is lower almost LTP m-continuous;
(2) mCl(F+(V )) ⊂ F+(Cl(V )) for every V ∈ β(Y ) such that Cl(V)

has LTP property;
(3) mCl(F+(V )) ⊂ F+(Cl(V )) for every V ∈ SO(Y ) such that

Cl(V) has LTP property;
(4) F−(V )) ⊂ mInt(F−(Int(Cl(V )))) for every V ∈ PO(Y ) having

LTP complement.

Proof. The proof is similar to that of Theorem 3.5.

Corollary 3.4. For a multifunction F : (X,m) → (Y, σ), the follow-
ing properties are equivalent:
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(1) F is upper almost LTP m-continuous;
(2) mCl(F−(V )) ⊂ F−(αCl(V )) for every V ∈ β(Y ) such that

Cl(V ) has LTP property;
(3) mCl(F−(V )) ⊂ F−(pCl(V )) for every V ∈ SO(Y ) such that

Cl(V ) has LTP property.

Proof. It is shown in [23] that (1) αCl(V ) = Cl(V ) for every
V ∈ β(Y ) and (2) pCl(V ) = Cl(V ) for every V ∈ SO(Y ). The proof
follows from the results and Theorem 3.5.

Corollary 3.5. For a multifunction F : (X,m) → (Y, σ), the follow-
ing properties are equivalent:

(1) F is lower almost LTP m-continuous;
(2) mCl(F+(V )) ⊂ F+(αCl(V )) for every V ∈ β(Y ) such that

Cl(V ) has LTP property;
(3) mCl(F+(V )) ⊂ F+(pCl(V )) for every V ∈ SO(Y ) such that

Cl(V ) has LTP property.

Proof. The proof follows from Theorem 3.6 similarly with Corollary
3.4.

Definition 3.3. A subset A of a topological space (X, τ) is said to be
(1) α-paracompact [35] if every cover of A by open sets of X is refined

by a cover of A which consists of open sets of X and is locally finite
in X,

(2) α-regular [15] if for each a ∈ A and each open set U of X
containing a, there exists an open set G of X such that a ∈ G ⊂
Cl(G) ⊂ U .

For a multifunction F : X → (Y, σ), a multifunction ClF : X →
(Y, σ) is defined in [3] as follows: (ClF )(x) = Cl(F (x)) for each point
x ∈ X. Similarly, we can define αClF , sClF , pClF , βClF , and bClF .

Theorem 3.7. Let F : (X,m) → (Y, σ) be a multifunction such that
F (x) is α-regular and α-paracompact for each x ∈ X. Then F is upper
almost LTP m-continuous if and only if G : (X,m)→ (Y, σ) is upper
almost LTP m-continuous, where G denotes ClF, αClF, sClF, pClF,
bClForβClF .

Proof. The proof is similar to that of Theorem 3.7 of [25].

Theorem 3.8. A multifunction F : (X,m) → (Y, σ) is
lower almost LTP m-continuous if and only if G : (X,m) →
(Y, σ) is lower almost LTP m-continuous, where G denotes
ClF, αClF, sClF, pClF, bClForβClF .
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Proof. The proof is similar to that of Theorem 3.8 of [25].

Theorem 3.9. For a multifunction F : (X,m)→ (Y, σ), the following
properties are equivalent:

(1) F is upper almost LTP m-continuous;
(2) mCl(F−(Cl(Int(Clδ(B))))) ⊂ F−(Clδ(B)) for every subset B of

Y such that the δ-closure has LTP property;
(3) mCl(F−(Cl(Int(Cl(B))))) ⊂ F−(Clδ(B)) for every subset B of

Y such that the δ-closure has LTP property.

Proof. The proof is similar to that of Theorem 3.9 of [25].

Theorem 3.10. For a multifunction F : (X,m)→ (Y, σ), the follow-
ing properties are equivalent:

(1) F is lower almost LTP m-continuous;
(2) mCl(F+(Cl(Int(Clδ(B))))) ⊂ F+(Clδ(B)) for every subset B of

Y such that the δ-closure has LTP property;
(3) mCl(F+(Cl(Int(Cl(B))))) ⊂ F+(Clδ(B)) for every subset B of

Y such that the δ-closure has LTP property.

Proof. The proof is similar to that of Theorem 3.10 of [25].

Definition 3.4. A topological space (Y, σ) is said to be LTP-normal if
for each disjoint closed sets K and H of Y , there exist open sets U and
V having LTP complement such that K ⊂ U,H ⊂ V and U ∩ V = ∅.

If LTP is N -closed, then LTP -normal is said to be N -normal [8].

Definition 3.5. An m-space (X,m) is said to be m-T2 [27] if for each
distinct points x, y ∈ X, there exist U, V ∈ m such that x ∈ U, y ∈ V
and U ∩ V = ∅.

Theorem 3.11. If F : (X,m) → (Y, σ) is an upper almost LTP m-
continuous multifunction satisfying the following conditions:

(1) F(x) is closed in Y for each x ∈ X,
(2) F (x) ∩ F (y) = ∅ for each distinct points x, y ∈ X,
(3) (Y, σ) is an LTP-normal space, and
(4) m has property B,

then (X,m) is m-T2.

Proof. The proof is similar to that of Theorem 5.1 of [25].

As a corollary of Theorem 3.11, we obtain Theorem 15 of [8] as
follows:
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Corollary 3.6. Let F : X → Y be an upper almost nearly continuous
multifunction and point closed from a toplogical space X to an N-
normal topological space Y and let F (x) ∩ F (y) = ∅ for each distinct
pair x, y ∈ X. Then X is a Hausdorff space.

Theorem 3.12. Let (X,m) be an m-space. If for each pair of distinct
points x1 and x2 in X, there exists a multifunction F from (X,m) into
a LTP-normal space (Y, σ) satisfying the following conditions:

(1) F (x1) and F (x2) are closed in Y,
(2) F is upper almost LTP m-continuous at x1 and x2, and
(3) F (x1) ∩ F (x2) = ∅,

then (X,m) is m-T2.

Proof. The proof is similar to that of Theorem 5.3 of [25].

Definition 3.6. A topological space (X, σ) is said to be LTP-
connected if X cannot be written as the union of two disjoint nonempty
open sets having LTP complements.

If LTP is N -closed, then LTP -connected is said to be N -connected
[8].

Definition 3.7. An m-space (X,m) is said to be m-connected [24] if
X cannot be written as the union of two disjoint nonempty m-open
sets.

Theorem 3.13. Let (X,m) be an m-space, where m has property B.
If F : (X,m)→ (Y, σ) is an upper almost LTP m-continuous or lower
almost LTP m-continuous surjective multifunction such that F (x) is
connected for each x ∈ X and (X,m) is m-connected, then (Y, σ) is
LTP-connected.

Proof. The proof is similar to that of Theorem 5.4 of [25].

As a corollary of Theorem 3.13, we obtain Theorem 14 of [8] as
follows:

Corollary 3.7. Let F be a multifunction from a connected toplogical
space X onto a topological space Y such that F is point connected.
If F is upper almost nearly continuous multifunction, then Y is an
N-connected space.

4. Ideal topological spaces

Let (X, τ) be a topological space. The notion of ideals has been
introduced in [17] and [33] and further investigated in [13].
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Definition 4.1. A nonempty collection I of subsets of a set X is called
an ideal on X [17], [33] if it satisfies the following two conditions:

(1) A ∈ I and B ⊂ A implies B ∈ I,
(2) A ∈ I and B ∈ I implies A ∪B ∈ I.

A topological space (X, τ) with an ideal I on X is called an ideal
topological space and is denoted by (X, τ, I). Let (X, τ, I) be an ideal
topological space. For any subset A of X, A?(I, τ) = {x ∈ X : U∩A /∈
I for every U ∈ τ(x)}, where τ(x) = {U ∈ τ : x ∈ U}, is called the
local function of A with respect to τ and I [13]. Hereafter A?(I, τ) is
simply denoted by A?. It is well known that Cl?(A) = A ∪ A? defines
a Kuratowski closure operator on X and the topology generated by
Cl? is denoted by τ ?.

Lemma 4.1. Let (X, τ, I) be an ideal topological space and A, B be
subsets of X. Then the following properties hold:

(1) A ⊂ B implies Cl?(A) ⊂ Cl?(B),
(2) Cl?(X) = X and Cl?(∅) = ∅,
(3) Cl?(A) ∪ Cl?(B) ⊂ Cl?(A ∪B).

Definition 4.2. Let (X, τ, I) be an ideal topological space. A subset
A of X is said to be

(1) α-I-open [11] if A ⊂ Int(Cl?(Int(A))),
(2) semi-I-open [11] if A ⊂ Cl?(Int(A)),
(3) pre-I-open [6] if A ⊂ Int(Cl?(A)),
(4) b-I-open [4] if A ⊂ Int(Cl?(A)) ∪ Cl?(Int(A)),
(5) β-I-open [12] if A ⊂ Cl(Int(Cl?(A))),
(6) weakly semi-I-open [9] if A ⊂ Cl?(Int(Cl(A))),
(7) weakly b-I-open [21] if A ⊂ Cl(Int(Cl?(A))) ∪ Cl?(Int(Cl(A))),
(8) strongly β-I-open [10] if A ⊂ Cl?(Int(Cl?(A))).

Among the sets in Definition 4.2, we have the following relations:

DIAGRAM

open ⇒ α-I-open ⇒ semi-I-open ⇒ weakly semi-I-open
⇓ ⇓ ⇓

pre-I-open ⇒ b-I-open ⇒ weakly b-I-open
⇓ ⇑

strongly β-I-open ⇒ β-I-open

The family of all α-I-open (resp. semi-I-open, pre-I-open, b-I-
open, β-I-open, weakly semi-I-open, weakly b-I-open, strongly β-I-
open) sets in an ideal topological space (X, τ, I) is denoted by αIO(X)
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(resp. SIO(X), PIO(X), BIO(X), βIO(X), WSIO(X), WBIO(X),
SβIO(X)).

Remark 4.1. If I = {∅}, then A? = Cl(A) and Cl?(A) = A? ∪ A =
Cl(A). Therefore,

(1) τ ? = τ , αIO(X) = α(X), SIO(X) = SO(X), PIO(X) = PO(X),
BIO(X) = BO(X) and βIO(X) = β(X).

(2) WSIO(X), WBIO(X), SβIO(X) and βIO(X) are coincide with
β(X).

Definition 4.3. By mIO(X), we denote each one of the families τ ?,
αIO(X), SIO(X), PIO(X), BIO(X), βIO(X), WSIO(X), WBIO(X),
SβIO(X).

Lemma 4.2. Let (X, τ, I) be an ideal topological space. Then mIO(X)
is an m-structure and has property B.

Proof. The proof follows from Lemma 4.1(1)(2). As an example, we
shall show that αIO(X) has property B. Let Aα be an α-I-open set for
each α ∈ Λ. Then Aα ⊂ Int(Cl?(Int(Aα))) ⊂ Int(Cl?(Int(∪α∈ΛAα)))
for each α ∈ Λ and hence ∪α∈ΛAα ⊂ Int(Cl?(Int(∪α∈ΛAα))). There-
fore, ∪α∈ΛAα is α-I-open.

Remark 4.2. It is shown in Theorem 3.4 of [11] (resp. Theorem 2.10
of [6], Theorem 2.1 of [9], Theorem 2.7 of [21], Proposition 3 of [10])
that SIO(X) (resp. PIO(X), WSIO(X), WBIO(X), SβIO(X)) has
property B.

Definition 4.4. Let (X, τ, I) be an ideal topological space. For a sub-
set A of X, the mIO(X)-closure mClI(A) and the mIO(X)-interior
mIntI(A) are defined as follows:

(1) mClI(A) = ∩{F : A ⊂ F,X \ F ∈ mIO(X)},
(2) mIntI(A) = ∪{U : U ⊂ A,U ∈ mIO(X)}.

Let (X, τ, I) be an ideal topological space and mIO(X) the m-
structure on X. If mIO(X) = αIO(X) (resp. SIO(X), PIO(X),
BIO(X), βIO(X), WSIO(X), WBIO(X), SβIO(X)), then we have

(1) mClI(A) = αClI(A) (resp. sClI(A), pClI(A), bClI(A), βClI(A),
wsClI(A), wbClI(A), sβClI(A)),

(2) mIntI(A) = αIntI(A) (resp. sIntI(A), pIntI(A), bIntI(A),
βIntI(A), wsIntI(A), wbIntI(A), sβIntI(A)).
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5. Almost LTP mI-continuous multifunctions

In this section, by using the results in Section 3, we obtain many
properties of upper/lower almost LTP -continuous multifunction F :
(X, τ, I)→ (Y, σ).

Definition 5.1. Let (X, τ, I) be an ideal topological space and (Y, σ)
a topological space. A multifunction F : (X, τ, I) → (Y, σ) is said to
be

(1) upper almost LTP mI-continuous at a point x ∈ X if for each
open set V containing F (x) and having LTP complement, there exists
an mI-open set U containing x such that F (U) ⊂ Int(Cl(V )),

(2) lower almost LTP mI-continuous at a point x ∈ X if for each
open set V meeting F (x) and having LTP complement, there exists
an mI-open set U containing x such that F (u) ∩ Int(Cl(V )) 6= ∅ for
each u ∈ U ,

(3) upper/lower almost LTP mI-continuous on X if it has this prop-
erty at every point of X.

Lemma 5.1. A multifunction F : (X, τ, I) → (Y, σ) is upper/lower
almost LTP mI-continuous if and only if a multifunction F :
(X,mIO(X))→ (Y, σ) is upper/lower almost LTP m-continuous.

Proof. This is obvious from the definition.

Remark 5.1. Let F : (X, τ, I)→ (Y, σ) be upper/lower almost LTP
mI-continuous and LTP = N -closed (resp. compact, Lindelöf, con-
nected). Moreover, let I = {∅}, then mIO(X) = τ ? = τ . Therefore,
we obtain the following definitions: F : (X, τ)→ (Y, σ) is upper/lower
almost nearly continuous [8] (resp. upper/lower almost c-continuous
[16], upper/lower almost l-continuous [14], upper/lower almost con-
nected continuous ).

Theorem 5.1. For a multifunction F : (X, τ, I)→ (Y, σ), the follow-
ing properties are equivalent:

(1) F is upper almost LTP mI-continuous at x ∈ X;
(2) x ∈ mIntI(F

+(Int(Cl(V )))) for each open set V of Y containing
F(x) and having LTP complement;

(3) x ∈ mIntI(F
+(sCl(V ))) for each open set V of Y containing

F(x) and having LTP complement;
(4) x ∈ mIntI(F

+(V )) for each regular open set V of Y containing
F(x) and having LTP complement;

(5) for each regular open set V of Y containing F(x) and having
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LTP complement, there exists U ∈ mIO(X) containing x such that
F (U) ⊂ V .

Proof. The proof is obvious by Lemma 5.1 and Theorem 3.1.

Theorem 5.2. For a multifunction F : (X, τ, I)→ (Y, σ), the follow-
ing properties are equivalent:

(1) F is lower almost LTP mI-continuous at x ∈ X;
(2) x ∈ mIntI(F

−(Int(Cl(V )))) for each open set V of Y meeting
F(x) and having LTP complement;

(3) x ∈ mIntI(F
−(sCl(V ))) for each open set V of Y meeting F(x)

and having LTP complement;
(4) x ∈ mIntI(F

−(V )) for each regular open set V of Y meeting
F(x) and having LTP complement;

(5) for each regular open set V of Y meeting F(x) and having
LTP complement, there exists U ∈ mIO(X) containing x such that
F (u) ∩ V 6= ∅ for every u ∈ U .

Proof. The proof is obvious by Lemma 5.1 and Theorem 3.2.

Theorem 5.3. For a multifunction F : (X, τ, I)→ (Y, σ), the follow-
ing properties are equivalent:

(1) F is upper almost LTP mI-continuous;
(2) F+(V ) ⊂ mIntI(F

+(Int(Cl(V )))) for each open set V of Y hav-
ing LTP complement;

(3) mClI(F
−(Cl(Int(K)))) ⊂ F−(K) for every closed set K of Y

having LTP complement;
(4) mClI(F

−(Cl(Int(Cl(B))))) ⊂ F−(Cl(B)) for every subset B
whose closure has LTP property;

(5) F+(Int(B)) ⊂ mIntI(F
+(Int(Cl(Int(B))))) for every subset B of

Y such that Y \ Int(B) is LTP;
(6) F+(V ) = mIntI(F

+(V )) for every regular open set V of Y hav-
ing LTP complement;

(7) F−(K) = mClI(F
−(K)) for every regular closed set K of Y

having LTP property.

Proof. The proof is obvious by Lemma 5.1 and Theorem 3.3.

Theorem 5.4. For a multifunction F : (X, τ, I)→ (Y, σ), the follow-
ing properties are equivalent:

(1) F is lower almost LTP mI-continuous;
(2) F−(V ) ⊂ mIntI(F

−(Int(Cl(V )))) for each open set V of Y hav-
ing LTP complement;

(3) mClI(F
+(Cl(Int(K)))) ⊂ F+(K) for every closed set K of Y
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having LTP property;
(4) mClI(F

+(Cl(Int(Cl(B))))) ⊂ F+(Cl(B)) for every subset B of
Y whose closure has LTP property;

(5) F−(Int(B)) ⊂ mIntI(F
−(Int(Cl(Int(B))))) for every subset B of

Y such that Y \ Int(B) is LTP;
(6) F−(V ) = mIntI(F

−(V )) for every regular open set V of Y hav-
ing LTP complement;

(7) F+(K) = mClI(F
+(K)) for every regular closed set K of Y

having LTP property.

Proof. The proof is obvious by Lemma 5.1 and Theorem 3.4.

Corollary 5.1. For a multifunction F : (X, τ, I) → (Y, σ), the fol-
lowing properties are equivalent:

(1) F is upper almost LTP mI-continuous;
(2) F+(V ) is mI-open for each regular open set V of Y having LTP

complement;
(3) F−(K) is mI-closed for every regular closed set K of Y having

LTP property.

Proof. This is an immediate consequence of Corollary 3.1 and
Lemma 4.2.

Corollary 5.2. For a multifunction F : (X, τ, I) → (Y, σ), the fol-
lowing properties are equivalent:

(1) F is lower almost LTP mI-continuous;
(2) F−(V ) is mI-open for each regular open set V of Y having LTP

complement;
(3) F+(K) is mI-closed for every regular closed set K of Y having

LTP property.

Proof. This is an immediate consequence of Corollary 3.2 and
Lemma 4.2.

Theorem 5.5. For a multifunction F : (X, τ, I)→ (Y, σ), the follow-
ing properties are equivalent:

(1) F is upper almost LTP mI-continuous;
(2) mClI(F

−(V )) ⊂ F−(Cl(V )) for every V ∈ β(Y ) such that Cl(V)
has LTP property;

(3) mClI(F
−(V )) ⊂ F−(Cl(V )) for every V ∈ SO(Y ) such that

Cl(V) has LTP property;
(4) F+(V )) ⊂ mIntI(F

+(Int(Cl(V )))) for every V ∈ PO(Y ) having
LTP complement.

Proof. The proof is obvious by Theorem 3.5 and Lemma 5.1.
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Theorem 5.6. For a multifunction F : (X, τ, I)→ (Y, σ), the follow-
ing properties are equivalent:

(1) F is lower almost LTP mI-continuous;
(2) mClI(F

+(V )) ⊂ F+(Cl(V )) for every V ∈ β(Y ) such that Cl(V)
has LTP property;

(3) mClI(F
+(V )) ⊂ F+(Cl(V )) for every V ∈ SO(Y ) such that

Cl(V) has LTP property;
(4) F−(V )) ⊂ mIntI(F

−(Int(Cl(V )))) for every V ∈ PO(Y ) having
LTP complement.

Proof. The proof is obvious by Theorem 3.6 and Lemma 5.1.

Corollary 5.3. For a multifunction F : (X, τ, I) → (Y, σ), the fol-
lowing properties are equivalent:

(1) F is upper almost LTP mI-continuous;
(2) mClI(F

−(V )) ⊂ F−(αCl(V )) for every V ∈ β(Y ) such that
Cl(V ) has LTP property;

(3) mClI(F
−(V )) ⊂ F−(pCl(V )) for every V ∈ SO(Y ) such that

Cl(V ) has LTP property.

Proof. The proof follows from Corollary 3.4.

Corollary 5.4. For a multifunction F : (X, τ, I) → (Y, σ), the fol-
lowing properties are equivalent:

(1) F is lower almost LTP mI-continuous;
(2) mClI(F

+(V )) ⊂ F+(αCl(V )) for every V ∈ β(Y ) such that
Cl(V ) has LTP property;

(3) mClI(F
+(V )) ⊂ F+(pCl(V )) for every V ∈ SO(Y ) such that

Cl(V ) has LTP property.

Proof. The proof follows from Corollary 3.5.

Theorem 5.7. Let F : (X, τ, I) → (Y, σ) be a multifunction such
that F (x) is α-regular and α-paracompact for each x ∈ X. Then F is
upper almost LTP mI-continuous if and only if G : (X, τ, I)→ (Y, σ)
is upper almost LTP mI-continuous, where G denotes ClF , αClF ,
sClF , pClF , bClF or βClF .

Proof. The proof is obvious by Theorem 3.7.

Theorem 5.8. A multifunction F : (X, τ, I)→ (Y, σ) is lower almost
LTP mI-continuous if and only if G : (X, τ, I) → (Y, σ) is lower al-
most LTP mI-continuous, where G denotes ClF , αClF , sClF , pClF ,
bClF or βClF .

Proof. The proof is obvious by Theorem 3.8.
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Theorem 5.9. For a multifunction F : (X, τ, I)→ (Y, σ), the follow-
ing properties are equivalent:

(1) F is upper almost LTP mI-continuous;
(2) mClI(F

−(Cl(Int(Clδ(B))))) ⊂ F−(Clδ(B)) for every subset B of
Y such that the δ-closure has LTP property;

(3) mClI(F
−(Cl(Int(Cl(B))))) ⊂ F−(Clδ(B)) for every subset B of

Y such that the δ-closure has LTP property.

Proof. The proof is obvious by Theorem 3.9.

Theorem 5.10. For a multifunction F : (X, τ, I) → (Y, σ), the fol-
lowing properties are equivalent:

(1) F is lower almost LTP mI-continuous;
(2) mClI(F

+(Cl(Int(Clδ(B))))) ⊂ F+(Clδ(B)) for every subset B of
Y such that the δ-closure has LTP property;

(3) mClI(F
+(Cl(Int(Cl(B))))) ⊂ F+(Clδ(B)) for every subset B of

Y such that the δ-closure has LTP property.

Proof. The proof is obvious by Theorem 3.10.

Theorem 5.11. If F : (X, τ, I) → (Y, σ) is an upper almost LTP
mI-continuous multifunction satisfying the following conditions:

(1) F(x) is closed in Y for each x ∈ X,
(2) F (x) ∩ F (y) = ∅ for each distinct points x, y ∈ X,
(3) (Y, σ) is an LTP-normal space,

then (X,mIO(X)) is mIO(X)-T2.

Proof. The proof is obvious by Theorem 3.11 and Lemma 4.2.

If we put LTP = N -closed and I = {∅}, then as a corollary of
Theorem 5.11, we obtain Theorem 15 of [8]:

Corollary 5.5. Let F : X → Y be an upper almost nearly continuous
multifunction and point closed from a topological space X to a N-
normal topological space Y and let F (x) ∩ F (y) = ∅ for each distinct
pair x, y ∈ X. Then X is a Hausdorff space.

Theorem 5.12. Let (X, τ, I) be an ideal topological space. If for each
pair of distinct points x1 and x2 in X, there exists a multifunction
F from (X,mIO(X)) into a LTP-normal space (Y, σ) satisfying the
following conditions:

(1) F (x1) and F (x2) are closed in Y,
(2) F is upper almost LTP mI-continuous at x1 and x2, and
(3) F (x1) ∩ F (x2) = ∅,

then (X,mIO(X)) is mIO(X)-T2.



116 TAKASHI NOIRI AND VALERIU POPA

Proof. The proof is obvious by Theorem 3.12 and Lemma 4.2.

Theorem 5.13. If F : (X, τ, I) → (Y, σ) is an upper almost LTP
mI-continuous or lower almost LTP mI-continuous surjective multi-
function such that F (x) is connected for each x ∈ X and (X,mIO(X))
is mIO(X)-connected, then (Y, σ) is LTP-connected.

Proof. The proof is similar to that of Theorem 3.13 and Lemma 4.2.

If we put LTP = N -closed and I = {∅}, then as a corollary of
Theorem 5.13, we obtain Theorem 14 of [8]:

Corollary 5.6. Let F be a multifunction from a connected topological
space X onto a topological space Y such that F is point connected. If
F is upper almost nearly continuous multifunction, then Y is a N-
connected space.
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[2] D. Andrijević, On b-open sets, Mat. Vesnik 48 (1996), 59–64.
[3] T. Bânzaru, Multifunctions and M-product spaces (Romanian), Bul. St. Tehn.
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