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Abstract. The notions of upper/lower almost nearly continu-
ous (resp. of upper/lower almost c-continuous, of upper/lower [-
continuous) multifunctions have been introduced and investigated in
8] (resp. [16], [14]). In [25], the present authors obtained a unified
form of generalizations of upper/lower almost nearly continuous mul-
tifunctions. In this paper, by using the m-structure m/O(X) defined
in an ideal topological space (X, 7, 1), we define upper/lower almost
LPT ml-continuous multifunctions and obtain their properties, where
LPT denotes one of nearly compact, compact, Lindelof, connected.

1. INTRODUCTION

The notion of N-closed sets in a topological space was introduced
in [5]. Ekici [8] introduced the notions of upper/lower almost nearly
continuous multifunctions as a generalization of upper/lower nearly
continuous multifunctions [7] and upper/lower almost continuous mul-
tifunctions [26].
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Rychlewicz [32] has introduced the notion of upper/lower almost
nearly quasi-continuous multifunctions as a generalization of up-
per/lower almost nearly continuous multifunctions and upper/lower
almost quasi continuous multifunctions [31]. In [29], the present au-
thors introduced and studied the notion of upper/lower m-continuous
multifunctions. Furthermore, in [25], they introduced and studied
the notion of upper/lower almost nearly m-continuous multifunctions.
The notion generalize upper/lower m-continuous multifunctions and
upper/lower almost nearly continuous multifunctions.

In this paper, we introduce a unified form of many generalizations
of upper and lower almost nearly continuous multifunctions. First, by
mIO(X) we denote an m-structure which is constracted by a topol-
ogy 7 and an ideal I in an ideal topological space (X, 7,I). Second,
by LPT-property we denote one of N-closed, compact, connected,
Lindelof sets in a topological space. Then we define and investigate
the notion of upper/lower almost LPT mI-continuous multifunctions
F:(X,7,I)— (Y,0).

2. PRELIMINARIES

Let (X, 7) be a topological space and A a subset of X. The closure of
A and the interior of A are denoted by Cl(A) and Int(A), respectively.
A subset A is said to be regular open (resp. regular closed) if Int(C1(A))
= A (resp. Cl(Int(A)) = A).

Definition 2.1. Let (X, 7) be a topological space. A subset A of X
is said to be

(1) a-open [22] if A C Int(Cl(Int(A))),

(2) semi-open [18] if A C Cl(Int(A)),

(3) preopen [20] if A C Int(CIl(A)),

(4) B-open [1] if A C Cl(Int(Cl(A))),

(5) b-open [2] if A C Int(Cl(A)) U Cl(Int(A)).

The family of all semi-open (resp. preopen, a-open, [3-open, b-open)
sets in X is denoted by SO(X) (resp. PO(X), a(X), A(X), BO(X)).

Let (X,7) be a topological space and A a subset of X. A point
x € X is called a d-cluster point of A if Int(C1(V')) N A # () for every
open set V' containing x. The set of all J-cluster points of A is called
the d-closure of A [34] and is denoted by Cls(A). If A = Cls(A), then
A is said to be d-closed. The complement of a d-closed set is said to
be d-open. The union of all d-open sets of A is called the d-interior
of A and is denoted by Ints(A).
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Definition 2.2. A subfamily m of the power set P(X) of a nonempty
set X is called a minimal structure (briefly m-structure) [27], [28] on
X if ) € m and X € m.

By (X, m), we denote a nonempty set X with a minimal structure m
on X and call it an m-space. Each member of m is said to be m-open
and the complement of an m-open set is said to be m-closed.

Definition 2.3. Let (X, m) be an m-space. For a subset A of X, the
m-closure of A and the m-interior of A are defined in [19] as follows:
(1) mCl(A) =n{F: AC F, X\ F € m},
(2) mInt(A) =U{U : U C A,U € m}.

Remark 2.1. Let (X, 7) be a topological space and A be a subset of
X. If m =7 (resp. SO(X), PO(X), a(X), BO(X), 8(X)), then we
have
(a) mCl(A) = CI(A) (resp. sCl(A), pCl(A), aCl(A), bCl(A), 5(A)),
(b) mInt(A) = Int(A) (resp. slnt(A), plnt(A), alnt(A), blnt(A),
BInt(A)).

Lemma 2.1. (Maki et al. [19]). Let (X,m) be an m-space. For
subsets A and B of X, the following properties hold:

(1) mCl(X \ A) = X \ mInt(A) and mInt(X \ A) = X \ mCI(A),

(2) If ( X\ A) € m, then mCl(A) = A and if A € m, then mInt(A) =
A7

(3) mC1(0) = 0, mCl(X) = X, mInt()) = @ and mInt(X) = X,

(4) If A C B, then mCl(A) C mCl(B) and mInt(A) C mInt(B),

(5) mInt(A) C A C mCl(A),

(6) mCl(mCl(A)) = mCl(A) and mInt(mInt(A)) = mInt(A).

Lemma 2.2. (Popa and Noiri [28]). Let (X, m) be an m-space and A
a subset of X. Then x € mCIl(A) if and only if UN A # () for every

U € m containing x.

Definition 2.4. An m-structure m on a nonempty set X is said to
have property B [19] if the union of any family of subsets belonging to
m belongs to m.

Remark 2.2. Let (X, 7) be a topological space. Then the families 7,
SO(X), PO(X), a(X), BO(X) and 5(X) are m-structures and have
property B.

Lemma 2.3. (Popa and Noiri [30]). For an m-structure m on a
nonempty set X, the following properties are equivalent:
(1) m has property B;
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(2) If mInt(A) = A, then A € m;
(8) If mCl(A) = A, then A is m-closed.

Throughout the present paper, (X, 7) and (Y, o) (briefly X and Y')
always denote topological spaces and F': X — Y presents a multival-
ued function. For a multifunction F' : X — Y, we shall denote the
upper and lower inverse of a subset B of a space Y by F*(B) and
F~(B), respectively, that is

FH(B)={r€ X :F(x) C B} and
F(By={re X :F(x)NnB # 0}

Definition 2.5. A subset A of a topological space (X, 7) is said to
be N-closed relative to X (briefly N-closed) [5] if every cover of A by
regular open sets of X has a finite subcover.

Definition 2.6. A multifunction F : (X, 7) — (Y, 0) is said to be

(1) upper almost nearly continuous [8] at a point # € X if for each
open set V' containing F'(z) and having N-closed complement, there
exists an open set U of X containing = such that F'(U) C Int(Cl(V)),

(2) lower almost nearly continuous at a point € X if for each open
set V meeting F'(z) and having N-closed complement, there exists an
open set U of X containing x such that F'(u) NInt(C1(V)) # @ for each
ue U,

(3) upper/lower almost nearly continuous on X if it has this property
at each point of X.

3. ALMOST LPT m-CONTINUOUS MULTIFUNCTIONS

For a multifunction F' : (X, m) — (Y, o), the present authors [25]
defined upper/lower almost nearly m-continuous multifunctions as fol-
lows:

Definition 3.1. Let (X, m) be an m-space and (Y, o) a topological
space. A multifunction F': (X, m) — (Y, 0) is said to be

(1) upper almost nearly m-continuous at a point = € X if for each
open set V' containing F'(z) and having N-closed complement, there
exists an m-open set U containing z such that F(U) C Int(Cl(V)),

(2) lower almost nearly m-continuous at a point x € X if for each
open set V' meeting F'(x) and having N-closed complement, there ex-
ists an m-open set U containing x such that F(u) N Int(CL(V)) # 0
for each u € U,

(3) upper/lower almost nearly m-continuous on X if it has this prop-
erty at every point of X.
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In the following, we denote by LTP property one of N-closed, con-
nected, compact, Lindelof property.

Definition 3.2. Let (X, m) be an m-space and (Y, o) a topological
space. A multifunction F': (X, m) — (Y, o) is said to be

(1) upper almost LTP m-continuous at a point z € X if for each
open set V' containing F'(z) and having LT P complement, there exists
an m-open set U containing z such that F(U) C Int(Cl(V)),

(2) lower almost LTP m-continuous at a point x € X if for each
open set V' meeting F'(z) and having LPT complement, there exists
an m-open set U containing x such that F(u) N Int(Cl(V)) # 0 for
each u € U,

(3) upper/lower almost LTP m-continuous on X if it has this prop-
erty at every point of X.

Remark 3.1. Let F': (X,m) — (Y,0) be upper/lower almost LT P
m-continuous. If m = 7 is a topology and LTP is N-closed (resp.
compact , Lindelof), then F' is upper/lower almost nearly [8] (resp. up-
per/lower almost c-continuous [16], upper/lower almost [-continuous

[14]).

Theorem 3.1. For a multifunction F' : (X, m) — (Y, 0), the following
properties are equivalent:

(1) F is upper almost LTP m-continuous at x € X ;

(2) x € mInt(F*(Int(C1(V)))) for each open set V of Y containing
F(z) and having LTP complement;

(3) x € mInt(F*(sCL(V))) for each open set V of Y containing F(z)
and having LTP complement;

(4) x € mlnt(F*(V)) for each regular open set V of Y containing
F(z) and having LTP complement;

(5) for each regular open set V of Y containing F(z) and having LTP
complement, there exists U € m containing = such that F(U) C V.

Proof. (1) = (2): Let V be any open set of Y containing F'(x)
and having LT P complement. There exists U € m containing x such
that F(U) C Int(Cl(V')). Thus we have x € U C F*(Int(Cl(V))) and
hence z € mInt(F*(Int(CL(V)))).

(2) = (3): Since every open set is pre-open, by Lemma 3.2 of [23]
Int(C1(V)) = sCI(V') for every open set V of Y.

(3) = (4): Let V be any regular open set of Y containing F'(x)
and having LTP complement. Then by Lemma 3.2 of [23], V =
Int(CL(V)) = sCL(V).

(4) = (5): V be any regular open set of Y containing F'(x) and



102 TAKASHI NOIRI AND VALERIU POPA

having LT P complement. By (4), z € mInt(F*(V)) and hence there
exists U € m such that x € U C F*(V); hence F(U) C V.

(5) = (1): Let V be any open set of Y containing F'(z) and having
LTP complement. Then Int(Cl(V)) is a regular open set of ¥ con-
taining F'(z) and having LT P complement and hence, by (5), there
exists U € m containing x such that F'(U) C Int(CL(V)).

Theorem 3.2. For a multifunction F': (X, m) — (Y, 0), the following
properties are equivalent:

(1) F is lower almost LTP m-continuous at v € X;

(2) x € mInt(F~(Int(CL(V)))) for each open set V of Y meeting
F(z) and having LTP complement;

(3) x € mlnt(F~(sCl(V))) for each open set V of Y meeting F(z)
and having LTP complement;

(4) x € mInt(F~(V)) for each regular open set V of Y meeting F(x)
and having LTP complement;

(5) for each regular open set V of Y meeting F(z) and having LTP
complement, there exists U € m containing = such that F(u) NV # ()
for every u € U.

Proof. The proof is similar to that of Theorem 3.1.

Theorem 3.3. For a multifunction F : (X, m) — (Y, o), the following
properties are equivalent:

(1) F'is upper almost LTP m-continuous;

(2) FH(V) C mInt(F*(Int(CL(V)))) for each open set V of Y hav-
ing LTP complement,

(8) mCI(F~(Cl(Int(K)))) € F~(K) for every closed set K of Y
having LTP property;

(4) mCl(F~(Cl(Int(Cl(B))))) C F~(CI(B)) for every subset B of Y
such that C1(B) has LTP property;

(5) F™(Int(B)) C mInt(F*(Int(Cl(Int(B))))) for every subset B of
Y such that Y \ Int(B) is LTP;

(6) F*(V)) = mInt(F* (V) for every reqular open set V of Y having
LTP complement;

(7) F~(K) = mCl(F~(K)) for every regular closed set K of Y hav-
ing LTP property.

Proof. (1) = (2): Let V be any open set of Y having LTP
complement and let x € FT(V). Then we have F(z) C V. By
Theorem 3.1, we have x € mInt(F*(Int(C1(V)))). This shows that
FH(V) C mInt(F*(Int(CL(V)))).

(2) = (3): Let K be any closed set K of Y having LT P property.
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Then, Y \ K is an open set of Y having LT P complement. By (2),
we have X \ F~(K) = FT(Y \ K) C mlnt(F*(Int(CL(Y \ K)))) =
mint(X \ F~(Cl(Int(K)))) = X — mCIl(F~(Cl(Int(K)))). Therefore,
we obtain mCl(F~ (Cl(Int(K)))) C F~(K).

(3) = (4): Let B be any subset of Y whose closure has LT P prop-
erty. Then CI(B) is a closed and LPT subset of Y and by (3) we
obtain mCIl(F~ (Cl(Int(Cl(B))))) C F~(CL(B)).

(4) = (5): Let B be a subset of Y such that Y \ Int(B) is LTP.
Then, Y \ Int(B) is closed and LTP. Then, since Y \ Int(B) is
closed and LTP, we have Fr(Int(B)) = X \ F~(Y \ Int(B)) =
X\ F(C(Y \ B)) ¢ X\ mClF(Cl(Int(CL(Y \ B))))) = X\
mCl(F~ (Y \(Int(Cl(Int(B)))))) = mInt(F* (Int(Cl(Int(B))))). There-
fore, we obtain F"(Int(B)) C mInt(F*(Int(Cl(Int(B))))).

(5) = (6): Let V be any regular open set of Y having LT P com-
plement. Then Y \ Int(V) is LTP and by (5) we have F*(V) C
Int(F+(V)). Therefore, we have F™ (V) = mInt(F*(V)).

(6) = (7): Let K be any regular closed set K of Y having LT P prop-
erty. Then Y\ K is a regular open set having LT P complement. By (6)
X\F(K)=Ft(Y\K)=mlnt(FT(Y\ K)) = mInt(X \ F~(K)) =
X \ mCl(F~(K)). Therefore, we obtain F'~(K) = mCIl(F~(K)).

(7) = (1): Let x € X and V be any regular open set of Y cotaining
F(z) and having LT P complement. Then Y \ V is regular closed and
LPT. By (7), we have X \ F*(V) = F~(Y\ V) = mCl(F~ (Y \ V)) =
X \ mInt(F*(V)). Therefore, we have x € F*(V) = mInt(F*(V)).
Then, there exist U € m containing = such that F(U) C V. It fol-
lows from Theorem 3.1 that F'is upper almost LT P m-continuous at
x € X. Therefore, F' is upper almost LT P m-continuous.

Theorem 3.4. For a multifunction F' : (X, m) — (Y, 0), the following
properties are equivalent:

(1) F is lower almost LTP m-continuous;

(2) F~ (V) C mInt(F~ (Int(CL(V)))) for each open set V of Y hav-
ing LTP complement,

(3) mCl(FH(Cl(Int(K)))) € FT(K) for every closed set K of Y
having LTP property;

(4) mCl(F*(Cl(Int(Cl(B))))) € F(CI(B)) for every subset B of Y
whose closure has LTP property;

(5) F~(Int(B)) C mInt(F~ (Int(Cl(Int(B))))) for every subset B of
Y such that Y \ Int(B) is LTP;

(6) F~ (V) = mInt(F~(V)) for every reqular open set V of Y having
LTP complement;
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(7) FH(K) = mCl(F*(K)) for every reqular closed set K of Y hav-
ing LTP property.

Proof. The proof is similar to that of Theorem 3.3.

Corollary 3.1. Let (X, m) be an m-space and m have property B.
For a multifunction F : (X,m) — (Y, o), the following properties are
equivalent:

(1) F is upper almost LTP m-continuous;

(2) F*(V) is m-open for each reqular open set V of Y having LTP
complement;

(8) F~(K) is m-closed for every reqular closed set K of Y having
LTP property.

Proof. This is an immediate consequence of Theorem 3.3 and
Lemma 2.3.

Corollary 3.2. Let (X,m) be an m-space and m have property B.
For a multifunction F : (X,m) — (Y, o), the following properties are
equivalent:

(1) F is lower almost LTP m-continuous;

(2) F~(V) is m-open for each reqular open set V of Y having LTP
complement;

(3) FY(K) is m-closed for every regular closed set K of Y having
LTP property.

Proof. This is an immediate consequence of Theorem 3.4 and
Lemma 2.3.

Remark 3.2. Let (X,7) and (Y,0) be topological spaces, m = 7
(resp. SO(X)) and LTP be N-closed. Then we have the following
properties:

(1) If F:(X,m)— (Y,0) upper almost LT P m-continuous, then
by Theorem 3.3 and Corollary 3.1 we obtain Theorem 3 of [8] (resp.
Theorem 1 of [32]).

(2) If F: (X,m) — (Y,0) lower almost LT P m-continuous, then
by Theorem 3.4 and Corollary 3.2 we obtain Theorem 6 of [8] (resp.
Theorem 2 of [32]).

Corollary 3.3. Let F' : (X,m) — (Y,0) be a multifunction. If
FYK) = mCl(F(K)) (resp. FT(K) = mClF*(K))) for every
set K of Y having LTP property, then F is upper almost LTP m-
continuous (resp. lower almost LTP m-continuous).
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Theorem 3.5. For a multifunction F' : (X, m) — (Y, 0), the following
properties are equivalent:

(1) F is upper almost LTP m-continuous;

(2) mCl(F~(V)) C F~(CIV)) for every V € B(Y) such that C1(V)
has LTP property;

(3) mCl(F~(V)) C F~(CV)) for every V. € SO(Y) such that
C1(V) has LTP property;

(4) FT(V)) C mInt(F*(Int(CL(V)))) for every V€ PO(Y') having
LTP complement.

Proof. (1) = (2): Let V be any [-open set of Y such that
Cl(V) is LTP. 1t is obvious that Cl(V) is regular closed. Since F
is upper almost LT P m-continuous, by Theorem 3.3, F~(Cl(V)) =
mCIl(F~(CL(V))). Therefore, mCl(F~(V)) € mCl(F~(Cl(V))) =
F~(CYV)).

(2) = (3): Since every semi-open set is S-open, the proof is obvious.

(3) = (4): Let V be any preopen set of Y having LTP com-
plement. Then Int(Cl(V)) is a regular open set having LT P com-
plement. Then X \ Int(Cl(V)) is regular closed and LTP. There-
fore, X \ Int(C1(V)) is a semi-open set having LT P-closure. By (3),
we have X \ mInt(F*(Int(Cl(V))) = mClF~ (Y \ Int(CL(V)))) C
F~(CL(Y \ Int(CL(V)))) = X \ FT(Int(CL(V))) € X \ F*(V). There-
fore, F'*(V) C mInt(F*(Int(CL(V)))).

(4) = (1): Let V be any regular open set having LTP com-
plement. Then V is a preopen set having LT P complement and
hence FH(V)) € mInt(F*(Int(CL(V)))) = mInt(F*(V)). Therefore,
FH(V)) = mInt(F*(V)). By Theorem 3.3, F' is upper almost LT P
m-continuous.

Theorem 3.6. For a multifunction F' : (X, m) — (Y, o), the following
properties are equivalent:

(1) F is lower almost LTP m-continuous;

(2) mCI(F*(V)) C FH(CYV)) for every V € B(Y') such that C1(V)
has LTP property,

(3) mClF*(V)) C FH(CUV)) for every V € SO(Y) such that
C1(V) has LTP property;

(4) F~(V)) € mInt(F~(Int(CL(V)))) for every V € PO(Y') having
LTP complement.

Proof. The proof is similar to that of Theorem 3.5.

Corollary 3.4. For a multifunction F : (X,m) — (Y, o), the follow-
ing properties are equivalent:
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(1) F is upper almost LTP m-continuous;

(2) mClHF—(V)) € F~(aClV)) for every V. € B(Y) such that
CI(V) has LTP property;

(3) mCl(F—(V)) C F~(pClV)) for every V € SO(Y) such that
CI(V') has LTP property.

Proof. It is shown in [23] that (1) aCl(V) = CL(V) for every
Ve p(Y) and (2) pCl(V) = C(V) for every V € SO(Y'). The proof
follows from the results and Theorem 3.5.

Corollary 3.5. For a multifunction F: (X,m) — (Y, o), the follow-
ing properties are equivalent:

(1) F is lower almost LTP m-continuous;

(2) mClF*(V)) € FH(aClV)) for every V. € B(Y) such that
CI(V') has LTP property;

(3) mCl(FT(V)) ¢ FH(pClV)) for every V € SO(Y) such that
CI(V') has LTP property.

Proof. The proof follows from Theorem 3.6 similarly with Corollary
3.4.

Definition 3.3. A subset A of a topological space (X, 7) is said to be
(1) a-paracompact [35] if every cover of A by open sets of X is refined
by a cover of A which consists of open sets of X and is locally finite
in X,
(2) a-regular [15] if for each a € A and each open set U of X
containing a, there exists an open set G of X such that a € G C
Cl(G) C U.

For a multifunction F' : X — (Y,0), a multifunction C1F : X —
(Y, o) is defined in [3] as follows: (C1F')(x) = CI(F(x)) for each point
x € X. Similarly, we can define aCl1F', sCIF, pClF', SCIF', and bCIF.

Theorem 3.7. Let F': (X,m) — (Y,0) be a multifunction such that
F(x) is a-regular and a-paracompact for each x € X. Then F is upper
almost LTP m-continuous if and only if G : (X, m) — (Y, o) is upper
almost LTP m-continuous, where G denotes C1F, aClF, sClF, pCIF,
bClForCIF.

Proof. The proof is similar to that of Theorem 3.7 of [25].

Theorem 3.8. A multifunction F . (X,m) — (Y,o) is
lower almost LTP m-continuous if and only if G : (X,m) —
(Y,o) is lower almost LTP m-continuous, where G denotes

CLF, aClF, sClF, pClF, bClFor BCLF.
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Proof. The proof is similar to that of Theorem 3.8 of [25].

Theorem 3.9. For a multifunction F' : (X, m) — (Y, 0), the following
properties are equivalent:

(1) F is upper almost LTP m-continuous;

(2) mCl(F~ (Cl(Int(Cly(B))))) € F~(Cls(B)) for every subset B of
Y such that the d-closure has LTP property;

(3) mCl(F~(Cl(Int(Cl(B))))) C F~(Cls(B)) for every subset B of
Y such that the d-closure has LTP property.

Proof. The proof is similar to that of Theorem 3.9 of [25].

Theorem 3.10. For a multifunction F : (X, m) — (Y, o), the follow-
ing properties are equivalent:

(1) F is lower almost LTP m-continuous;

(2) mCI(F*(Cl(Int(Cl4(B))))) € F*(Cls(B)) for every subset B of
Y such that the d-closure has LTP property;

(3) mCl(F*(Cl(Int(Cl(B))))) € FT(Cls(B)) for every subset B of
Y such that the 6-closure has LTP property.

Proof. The proof is similar to that of Theorem 3.10 of [25].

Definition 3.4. A topological space (Y, o) is said to be LTP-normal if
for each disjoint closed sets K and H of Y, there exist open sets U and
V having LT P complement such that K CU,H CV and UNV = 0.

If LTP is N-closed, then LT P-normal is said to be N-normal [8].

Definition 3.5. An m-space (X, m) is said to be m-Ty [27] if for each
distinct points x,y € X, there exist U,V € m such that r e U,y € V
and UNV = 0.

Theorem 3.11. If F' : (X,m) — (Y,0) is an upper almost LTP m-
continuous multifunction satisfying the following conditions:

(1) F(z) is closed in Y for each x € X,

(2) F(z) N F(y) =0 for each distinct points x,y € X,

(3) (Y,0) is an LTP-normal space, and

(4) m has property B,
then (X, m) is m-T,.

Proof. The proof is similar to that of Theorem 5.1 of [25].

As a corollary of Theorem 3.11, we obtain Theorem 15 of [8] as
follows:
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Corollary 3.6. Let F': X — Y be an upper almost nearly continuous
multifunction and point closed from a toplogical space X to an N -
normal topological space Y and let F(x) N F(y) = 0 for each distinct
pair x,y € X. Then X is a Hausdorff space.

Theorem 3.12. Let (X, m) be an m-space. If for each pair of distinct
points x1 and x4 in X, there exists a multifunction F from (X, m) into
a LTP-normal space (Y, o) satisfying the following conditions:

(1) F(z1) and F(z3) are closed in Y,

(2) F is upper almost LTP m-continuous at x1 and x2, and

(3) F(x1) N F(x2) =10,
then (X, m) is m-Ts.

Proof. The proof is similar to that of Theorem 5.3 of [25].

Definition 3.6. A topological space (X,o) is said to be LTP-
connected if X cannot be written as the union of two disjoint nonempty
open sets having LT P complements.

If LT P is N-closed, then LT P-connected is said to be N-connected
[3].
Definition 3.7. An m-space (X, m) is said to be m-connected [24] if

X cannot be written as the union of two disjoint nonempty m-open
sets.

Theorem 3.13. Let (X, m) be an m-space, where m has property B.
If F: (X,m) = (Y,0) is an upper almost LTP m-continuous or lower
almost LTP m-continuous surjective multifunction such that F(x) is
connected for each x € X and (X, m) is m-connected, then (Y,0) is
LTP-connected.

Proof. The proof is similar to that of Theorem 5.4 of [25].
As a corollary of Theorem 3.13, we obtain Theorem 14 of [8] as
follows:

Corollary 3.7. Let F' be a multifunction from a connected toplogical
space X onto a topological space Y such that F' is point connected.
If F' is upper almost nearly continuous multifunction, then Y is an
N -connected space.

4. IDEAL TOPOLOGICAL SPACES

Let (X,7) be a topological space. The notion of ideals has been
introduced in [17] and [33] and further investigated in [13].
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Definition 4.1. A nonempty collection I of subsets of a set X is called
an ideal on X [17], [33] if it satisfies the following two conditions:

(1) Ae I and B C A implies B € I,

(2) A€l and B € I implies AUB € [.

A topological space (X, 7) with an ideal I on X is called an ideal
topological space and is denoted by (X, 7,I). Let (X, 7,1) be an ideal
topological space. For any subset A of X, A*([,7) ={x € X :UNA ¢
I for every U € 7(x)}, where 7(z) = {U € 7 : ¢ € U}, is called the
local function of A with respect to 7 and I [13]. Hereafter A*(I,7) is
simply denoted by A*. It is well known that C1*(A) = AU A* defines
a Kuratowski closure operator on X and the topology generated by
CI” is denoted by 7*.

Lemma 4.1. Let (X, 7,1) be an ideal topological space and A, B be
subsets of X. Then the following properties hold:

(1) A C B implies CI*(A) C CI*(B),

(2) CI"(X) = X and CI*(0) = 0,

(3) CI*(A) UCI*(B) C CI"(AU B).

(
Definition 4.2. Let (X, 7,1) be an ideal topological space. A subset
A of X is said to be

)
(2) semi-I-open [11] if A C CI*(Int(A)),
(3) pre-I-open [6] if A C Int(C1*(A)),
(4) b-I-open [4] if A C Int(CI*(A)) U Cl*(Int(A)),
(5) B-I-open [12] if A C Cl(Int(CI*(A))),
(6) weakly semi-I-open [9] if A C CI*(Int(Cl(A))),
(7) weakly b-I-open [21] if A C Cl(Int(CI*(A))) U CI*(Int(CI(A))),
(8) strongly B-I-open [10] if A C CI*(Int(CI1*(A))).

Among the sets in Definition 4.2, we have the following relations:
DIAGRAM

open = a-I-open = semi-/-open = weakly semi-/-open
\ \ \’
pre-I-open = b-I-open = weakly b-I-open

\ )
strongly §-I-open = [3-I-open
The family of all a-I-open (resp. semi-I-open, pre-I-open, b-I-
open, [-I-open, weakly semi-I-open, weakly b-I-open, strongly (-I-
open) sets in an ideal topological space (X, 7, ) is denoted by alO(X)
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(resp. SIO(X), PIO(X), BIO(X), BIO(X), WSIO(X), WBIO(X),
SBIO(X)).

Remark 4.1. If I = {(}}, then A* = CIl(A) and CI*(A) = A*U A =
CI(A). Therefore,

(1) 7 =, aIO(X) = a(X), SIO(X) = SO(X), PIO(X) = PO(X),
BIO(X) = BO(X) and SI0(X) = B(X).

(2) WSIO(X), WBIO(X), SFIO(X) and SIO(X) are coincide with

BX).

Definition 4.3. By mIO(X), we denote each one of the families 7*,
alO(X), SIO(X), PIO(X), BIO(X), SI0(X), WSIO(X), WBIO(X),
SPIO(X).

Lemma 4.2. Let (X, 7,1) be an ideal topological space. Then mlO (X )
18 an m-structure and has property B.

Proof. The proof follows from Lemma 4.1(1)(2). As an example, we
shall show that alO(X) has property B. Let A, be an a-I-open set for
each « € A. Then A, C Int(Cl*(Int(A4,))) C Int(ClI*(Int(UperAa)))
for each v € A and hence Uyep Ay C Int(CI*(Int(UyenAq))). There-
fore, UaepAq is a-I-open.

Remark 4.2. It is shown in Theorem 3.4 of [11] (resp. Theorem 2.10
of [6], Theorem 2.1 of [9], Theorem 2.7 of [21], Proposition 3 of [10])
that SIO(X) (resp. PIO(X), WSIO(X), WBIO(X), SFIO(X)) has
property B.

Definition 4.4. Let (X, 7, I) be an ideal topological space. For a sub-
set A of X, the mIO(X)-closure mCli(A) and the mIO(X)-interior
mlInt;(A) are defined as follows:

(1) mCL(A) ={F:AC F, X\ FemlO(X)},

(2) mInt;(A) = U{U : U C A,U € mlO(X)}.

Let (X,7,1) be an ideal topological space and mlO(X) the m-
structure on X. If mIO(X) = alO(X) (resp. SIO(X), PIO(X),
BIO(X), SIO(X), WSIO(X), WBIO(X), SBIO(X)), then we have

(1) mCli(A) = aCli(A) (resp. sClLi(A), pCli(A), bCL(A), BCL(A),
WSCII(A), WbClI<A), SBCII(A)),

(2) mint;(A) = alnt;(A) (resp. sInt;(A), plnt;(A), blnt;(A),
BInty(A), wsIntj(A), wbint;(A), sfInti(A)).
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5. ALMOST LTP mI-CONTINUOUS MULTIFUNCTIONS

In this section, by using the results in Section 3, we obtain many

properties of upper/lower almost LT P-continuous multifunction F :
(X, 7, 1) = (Y, 0).

Definition 5.1. Let (X, 7, 1) be an ideal topological space and (Y, o)
a topological space. A multifunction F': (X, 7,1) — (Y, 0) is said to
be

(1) upper almost LTP mI-continuous at a point € X if for each
open set V' containing F'(x) and having LT P complement, there exists
an ml-open set U containing x such that F(U) C Int(C1(V)),

(2) lower almost LTP mlI-continuous at a point x € X if for each
open set V meeting F'(x) and having LT P complement, there exists
an ml-open set U containing z such that F(u) N Int(CL(V)) # O for
each u € U,

(3) upper/lower almost LTP mI-continuous on X if it has this prop-
erty at every point of X.

Lemma 5.1. A multifunction F : (X,7,1) — (Y,0) is upper/lower
almost LTP ml-continuous if and only if a multifunction F
(X,mIO(X)) — (Y,0) is upper/lower almost LTP m-continuous.

Proof. This is obvious from the definition.

Remark 5.1. Let F': (X,7,1) — (Y, 0) be upper/lower almost LT P
ml-continuous and LT P = N-closed (resp. compact, Lindel6f, con-
nected). Moreover, let [ = {0}, then mIO(X) = 7* = 7. Therefore,
we obtain the following definitions: F': (X, 7) — (Y, 0) is upper/lower
almost nearly continuous [8] (resp. upper/lower almost c-continuous
[16], upper/lower almost l-continuous [14], upper/lower almost con-
nected continuous ).

Theorem 5.1. For a multifunction F : (X, 7,1) — (Y, 0), the follow-
ing properties are equivalent:

(1) Fis upper almost LTP ml-continuous at x € X;

(2) x € mInty(F* (Int(CL(V)))) for each open set V of Y containing
F(z) and having LTP complement;

(3) x € mlnt(FT(sCl(V))) for each open set V of Y containing
F(z) and having LTP complement;

(4) x € mInt (F*(V)) for each reqular open set V of Y containing
F(z) and having LTP complement;

(5) for each regular open set V of Y containing F(x) and having
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LTP complement, there exists U € mIO(X) containing x such that
FU)cV.

Proof. The proof is obvious by Lemma 5.1 and Theorem 3.1.

Theorem 5.2. For a multifunction F : (X, 7,1) — (Y, 0), the follow-
ing properties are equivalent:

(1) F is lower almost LTP mI-continuous at x € X;

(2) v € mlnt (F~(Int(Cl(V)))) for each open set V of Y meeting
F(z) and having LTP complement;

(3) x € mlnt;(F~(sCl(V))) for each open set V of Y meeting F(z)
and having LTP complement;

(4) x € mlnt (F~(V)) for each regular open set V of Y meeting
F(z) and having LTP complement;

(5) for each regular open set V of Y meeting F(x) and having
LTP complement, there exists U € mIO(X) containing x such that
Fu)N'V £ 0 for every u € U.

Proof. The proof is obvious by Lemma 5.1 and Theorem 3.2.

Theorem 5.3. For a multifunction F : (X, 7,1) — (Y, 0), the follow-
ing properties are equivalent:

(1) Fis upper almost LTP ml-continuous;

(2) F*(V) C mlnt;(F*(Int(C1(V)))) for each open set V of Y hav-
g LTP complement;

(3) mClL(F~(Cl(Int(K)))) C F~(K) for every closed set K of Y
having LTP complement;

(4) mCl(F~(Cl(Int(C1(B))))) C F~(CIB)) for every subset B
whose closure has LTP property;

(5) F*(Int(B)) C mlnt;(F*(Int(Cl(Int(B))))) for every subset B of
Y such that Y \ Int(B) is LTP;

(6) FT (V) = mlnt (F(V)) for every reqular open set V of Y hav-
g LTP complement;

(7) F~(K) = mCli(F~(K)) for every regular closed set K of Y
having LTP property.

Proof. The proof is obvious by Lemma 5.1 and Theorem 3.3.

Theorem 5.4. For a multifunction F : (X, 7,1) — (Y, 0), the follow-
ing properties are equivalent:

(1) F is lower almost LTP ml-continuous;

(2) F~(V) C mlnti(F~ (Int(CL(V)))) for each open set V of Y hav-
ing LTP complement,

(3) mClL(F*(Cl(Int(K)))) C FT(K) for every closed set K of Y
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having LTP property;

(4) mClLi(F*(Cl(Int(Cl(B))))) € FH(CI(B)) for every subset B of
Y whose closure has LTP property;

(5) F~(Int(B)) C mInt (F~ (Int(Cl(Int(B))))) for every subset B of
Y such that Y \ Int(B) is LTP;

(6) F~(V) = mlnt;(F~(V)) for every reqular open set V of Y hav-
g LTP complement;

(7) FH(K) = mCl(F*(K)) for every regular closed set K of Y
having LTP property.

Proof. The proof is obvious by Lemma 5.1 and Theorem 3.4.

Corollary 5.1. For a multifunction F : (X, 7,1) — (Y,0), the fol-
lowing properties are equivalent:

(1) F'is upper almost LTP ml-continuous;

(2) FH (V') is mI-open for each reqular open set V of Y having LTP
complement;

(3) F~(K) is mI-closed for every regular closed set K of Y having
LTP property.

Proof. This is an immediate consequence of Corollary 3.1 and
Lemma 4.2.

Corollary 5.2. For a multifunction F : (X, 7,1) — (Y,0), the fol-
lowing properties are equivalent:

(1) F is lower almost LTP ml-continuous;

(2) F~(V) is mI-open for each regular open set V of Y having LTP
complement;

(3) FT(K) is mI-closed for every reqular closed set K of Y having
LTP property.

Proof. This is an immediate consequence of Corollary 3.2 and
Lemma 4.2.

Theorem 5.5. For a multifunction F : (X, 7,1) — (Y, 0), the follow-
ing properties are equivalent:

(1) F is upper almost LTP ml-continuous;

(2) mCl(F~(V)) C F~(CIV)) for every V € B(Y) such that C1(V)
has LTP property;

(3) mCL(F~(V)) C F~(CUV)) for every V€ SO(Y) such that
C1(V) has LTP property;

(4) F*(V)) C mInt;(F*(Int(CL(V)))) for every V € PO(Y) having
LTP complement.

Proof. The proof is obvious by Theorem 3.5 and Lemma 5.1.
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Theorem 5.6. For a multifunction F : (X, 7,1) — (Y, 0), the follow-
ing properties are equivalent:

(1) F is lower almost LTP mlI-continuous;

(2) mClL(F+(V)) € FH(CIV)) for everyV € B(Y) such that C1(V)
has LTP property;

(3) mClL(FH(V)) c FT(CUV)) for every V € SO(Y) such that
C1(V) has LTP property;

(4) F~(V)) C mlnt;(F~ (Int(CL(V)))) for every V € PO(Y') having
LTP complement.

Proof. The proof is obvious by Theorem 3.6 and Lemma 5.1.

Corollary 5.3. For a multifunction F : (X, 7,1) — (Y,0), the fol-
lowing properties are equivalent:

(1) F is upper almost LTP mlI-continuous;

(2) mClL(F~(V)) € F~(aClV)) for every V € B(Y) such that
CI(V') has LTP property;

(3) mClL(F~(V)) € F~(pClV)) for every V € SO(Y) such that
CI(V') has LTP property.

Proof. The proof follows from Corollary 3.4.

Corollary 5.4. For a multifunction F : (X,7,1) — (Y,0), the fol-
lowing properties are equivalent:

(1) F is lower almost LTP ml-continuous;

(2) mCL(F*(V)) € FH(aCl(V)) for every V. € B(Y) such that
CI(V') has LTP property;

(3) mClL(FT(V)) ¢ FH(pClV)) for every V € SO(Y) such that
CI(V') has LTP property.

Proof. The proof follows from Corollary 3.5.

Theorem 5.7. Let F : (X,7,I) — (Y,0) be a multifunction such
that F(z) is a-regular and a-paracompact for each x € X. Then F is
upper almost LTP ml-continuous if and only if G : (X, 1,I) = (Y, 0)
1s upper almost LTP ml-continuous, where G denotes CIF, aClF,
sC1F', pClF, bC1F or SCIF.

Proof. The proof is obvious by Theorem 3.7.

Theorem 5.8. A multifunction F : (X, 1,I) — (Y, 0) is lower almost
LTP ml-continuous if and only if G : (X, 7,I) — (Y,0) is lower al-
most LTP ml-continuous, where G denotes C1F, aClF, sC1F, pCIlF,
bCI1F or SCIF.

Proof. The proof is obvious by Theorem 3.8.
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Theorem 5.9. For a multifunction F : (X, 7,1) — (Y, 0), the follow-
ing properties are equivalent:

(1) F is upper almost LTP mlI-continuous;

(2) mCly(F~(Cl(Int(Cl4(B))))) € F~(Cls(B)) for every subset B of
Y such that the d-closure has LTP property;

(3) mCli(F~ (Cl(Int(Cl(B))))) € F~(Cls(B)) for every subset B of
Y such that the 6-closure has LTP property.

Proof. The proof is obvious by Theorem 3.9.

Theorem 5.10. For a multifunction F : (X, 1,I) — (Y,0), the fol-
lowing properties are equivalent:

(1) F is lower almost LTP mlI-continuous;

(2) mClL(F*(Cl(Int(Cly(B))))) C F(Cls(B)) for every subset B of
Y such that the §-closure has LTP property;

(3) mCly(F*(Cl(Int(Cl(B))))) € F*(Cls(B)) for every subset B of
Y such that the 6-closure has LTP property.

Proof. The proof is obvious by Theorem 3.10.

Theorem 5.11. If F : (X,7,I) — (Y,0) is an upper almost LTP
ml -continuous multifunction satisfying the following conditions:

(1) F(z) is closed in Y for each x € X,

(2) F(z) N F(y) =0 for each distinct points x,y € X,

(3) (Y,0) is an LTP-normal space,
then (X, mIO(X)) is mIO(X)-Ts.

Proof. The proof is obvious by Theorem 3.11 and Lemma 4.2.

If we put LTP = N-closed and I = {0}, then as a corollary of
Theorem 5.11, we obtain Theorem 15 of [8]:

Corollary 5.5. Let F': X — Y be an upper almost nearly continuous
multifunction and point closed from a topological space X to a N -
normal topological space Y and let F(x) N F(y) = 0 for each distinct
pair z,y € X. Then X is a Hausdorff space.

Theorem 5.12. Let (X, 7,1) be an ideal topological space. If for each
pair of distinct points x1 and xo in X, there exists a multifunction
F from (X,mIO(X)) into a LTP-normal space (Y, o) satisfying the
following conditions:

(1) F(z1) and F(z3) are closed in Y,

(2) F is upper almost LTP mI-continuous at x1 and x5, and

(3) F(x1) N F(x2) =10,
then (X, mIO(X)) is mIO(X)-Ts.
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Proof. The proof is obvious by Theorem 3.12 and Lemma 4.2.

Theorem 5.13. If F : (X,7,I) — (Y,0) is an upper almost LTP
ml-continuous or lower almost LTP ml-continuous surjective multi-
function such that F(x) is connected for each x € X and (X, mIO(X))
is mIO(X)-connected, then (Y, o) is LTP-connected.

Proof. The proof is similar to that of Theorem 3.13 and Lemma 4.2.

If we put LTP = N-closed and I = {0}, then as a corollary of
Theorem 5.13, we obtain Theorem 14 of [§]:

Corollary 5.6. Let F' be a multifunction from a connected topological
space X onto a topological space Y such that F' is point connected. If
F' 1s upper almost nearly continuous multifunction, then Y is a N-
connected space.
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