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s*- REGULARITY IN FUZZY M-SPACES

ANJANA BHATTACHARYYA

Abstract.This paper deals with a new type of open-like set in fuzzy
minimal space [2], viz. fuzzy m — s*-open set taking fuzzy m-semiopen
sets [3] as a basic tool. Afterwards, we introduce an idempotent op-
erator, viz. fuzzy m — s*-closure operator. With the help of this op-
erator we introduce and study two new types of functions, viz. fuzzy
almost (m, my) — s-continuous function and fuzzy almost (m,m;) — s*-
continuous function. It is shown that every fuzzy almost (m,m;) — s*-
continuous function is fuzzy almost (m,m;) — s-continuous function,
but the reverse implication is not necessarily true in general. Further-
more, we introduce fuzzy m — s*-regular spaces, in which the above
mentioned reverse implication holds and, in addition, the classes of
fuzzy m-open sets and fuzzy m — s*-open sets coincide.

1. Introduction

In [11], L.A. Zadeh introduced fuzzy set as follows : a fuzzy set A
is a mapping from a non-empty set X into the closed interval [0, 1],
ie., A € IY. In 1968, C.L. Chang introduced fuzzy topology [6].
In [8] Popa and Noiri introduced the notion of minimal structure in
general topology, generalizing some properties of continuous functions.
Afterwards, Alimohammady and Roohi introduced a more general
version of fuzzy topology by introducing fuzzy minimal structure, as
follows: a family M of fuzzy sets in a non-empty set X is said to be
a fuzzy minimal structure on X if alx € M for every a € [0,1] [1].
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However a more general version of it (in the sense of Chang) is
introduced in [5, 7] as follows: a family F of fuzzy sets in a non-empty
set X is a fuzzy minimal structure on X if Ox € F and 1x € F. In
this paper, we use the notion of fuzzy minimal structure in the sense
of Chang. In [2], we introduced fuzzy minimal space (fuzzy m-space,
for short), as follows. Let X be a non-empty set and m C IX. Then
(X, m) is called fuzzy m-space if Ox € m and 1x € m. The members
of m are called fuzzy m-open sets and the complement of a fuzzy m-
open set is called fuzzy m-closed set [2]. Many mathematicians have
investigated different types of functions in the setting of fuzzy minimal
spaces. In this context, we have to mention [4, 10].

2. PRELIMINARIES

Throughout this paper, we shall denote by (X, m) or simply by X a
fuzzy minimal space (fuzzy m-space, for short). The support [11] of a
fuzzy set A, denoted by suppA or Ay and is defined by suppA = {z €
X : A(z) # 0}. The fuzzy set with the singleton support {z} C X
and the value t (0 < ¢ < 1) will be denoted by z;. 0x and 1x are
the constant fuzzy sets taking values 0 and 1 respectively in X. The
complement [11] of a fuzzy set A in a X is denoted by 1x \ A and is
defined by (1x \ A)(x) =1 — A(x), for each z € X. For any two fuzzy
sets A, B in X, A < B means A(zx) < B(x), for all x € X [11] while
AgB means A is quasi-coincident (g-coincident, for short) [9] with B,
i.e., there exists * € X such that A(z) + B(x) > 1. The negation of
these two statements will be denoted by A £ B and A¢B respectively.
For any two fuzzy sets A and B in a fuzzy m-space (X, m), the union
is defined by (AV B) (z) = maz{A(z), B(x)}, for all z € X and
the intersection is defined by (A A B) (x) = min{A(x), B(z)}, for all
x € X. More general, for any collection of fuzzy sets {A; :i € I},
one defines C' = \/{A;:i €I} by C(x) = sup{A;(x):ie€ I} for all
x € X, respectively D = A{A;:i €1} by D(z) =inf{A; (z):i € I}
for all z € X.

For a fuzzy set A and a fuzzy point z, in X, z, € A means that
A(z) > a. A fuzzy set A in a fuzzy m-space (X, m) is called a fuzzy
m-neighbourhood (fuzzy m-nbd, for short) of a fuzzy point z, in X if
there exists a fuzzy m-open set U in X such that z, € U < A [2]. If,
in addition, A is fuzzy m-open, then A is called a fuzzy m-open nbd
of x4 [2]. A fuzzy set A in a fuzzy m-space (X, m) is called a fuzzy
m-~g-nbd of a fuzzy point z, in X if there exists a fuzzy m-open set U
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in X such that z,qU < A [2]. If, in addition, A is fuzzy m-open, then
A is called a fuzzy m-open ¢-nbd of z,, [2].

3. Fuzzy m — s*~-OPEN AND m — s*~-CLOSED SETS: SOME
PROPERTIES

Using fuzzy m-semiopen set as a basic tool, here we introduce fuzzy
m — s*-open sets, the class of which is strictly larger than that of fuzzy
m—open sets as well as that of fuzzy m—preopen sets. Afterwards,
we introduce fuzzy m — s*-closure operator which is an idempotent
operator.

We first recall some definitions from [2, 3] for ready references.

Definition 3.1 [2]. Let X be a non-empty set and m C I* an
m-structure on X. For A € IX, the m-closure of A and m-interior of
A are defined as follows :

m—clAz/\{F:ASF,lX\FGm}

m—intA=\/{D:D§A,D€m}

It can be observed that a given fuzzy minimal structure on X, A €
I does not imply that m — intA € m or that m — clA is fuzzy m-
closed. But if m satisfies M-condition (i.e., m is closed under arbitrary
union), then m — intA € m and m — clA is fuzzy m-closed.

Proposition 3.2 [2]. Let X be a non-empty set and m, an m-
structure on X. Then for any A € I, a fuzzy point 2, € m — clA if
and only if for any U € m with z,qU, UqA.

Lemma 3.3 [2]. Let X be a non empty set and m C IX be an
m-structure on X.

For A, B € IX, the following hold :
(i) If A< B, then m —intA <m —intB and m — clA < m — clB.
(ii) (a) m —cl (0x) =0x, m—cl(lx) = 1x,
(b) m — int (0X> == Ox, m — Znt(lx) = 1X-
(1ii) m —int (A) < A <m —cl(A).
() (a) m—cl(A) =Aif 1Ix\Aem, (b)) m—int(A)=A, if Aem.
(v) m —cl(lx \ A) = 1x \ m —int (A), (b) m —int(lx \ A) =
1X \ m — cl (A)
(vi) (a) m — cl(m — clA) = m — cl(A), (b) m —int(m — intA) =
m —int (A).
(vii) m — cl(ANB) <m—cl(A) Am — cl (B),
(b) m —int(A\ B) > m —int (A)\/ m —int (B).

Definition 3.4 [3]. Let (X, m) be a fuzzy m-space and A € I¥.
Then A is called
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(i) fuzzy m-regular open if A =m — int(m — clA)
(ii) fuzzy m-semiopen if A < m — cl(m —intA)

The complement of fuzzy m-semiopen set is called fuzzy m-
semiclosed.
The union (intersection) of all fuzzy m-semiopen (resp., fuzzy m-
semiclosed) sets contained in (resp., containing) a fuzzy set A is called
fuzzy m-semiinterior (resp., fuzzy m-semiclosure) of A denoted by
m — sint (A) (resp., m — scl (A)).
The collection of all fuzzy m-semiopen (resp., fuzzy m-semiclosed) sets
in a fuzzy m-space X is denoted by FmSO(X) (resp., FmSC(X)).

Proposition 3.5 [3]. Let (X, m) be a fuzzy m-space and A € I*¥.
Then a fuzzy point z, € m — sclA if and only if for every fuzzy m-
semiopen set U in X, z,qU, UqA, i.e., for every fuzzy m-semiopen
g-nbd U of z,, UgA.

Result 3.6 [3]. Let (X,m) be a fuzzy m-space and A, B € IX.
Then the following statements hold :

) A < B implies m — sclA < m — sclB.
i) (a) m —scl (0x) = 0x, m — scllx = 1x,
) m — sint (0x) = 0x, m — sintlxy = 1y.
i
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iv) (a) m —scl (A) = A if Ae FmSC(X),

b) m — sint (A) = A, if A € FmSO(X).

v) (a) m—scl(1x \ A) = 1x \ m — sint (A),

b) m —sint(lx \ A) = 1x \ m — scl (A).

vi) (a) m — scl(m — sclA) = m — scl (A),

b) m — sint(m — sintA) = m — sint (A).

vii) (a) m — scl(A A\ B) <m — scl (A) Am — scl (B),
b) m — sint(A\ B) > m — sint (A) \/ m — sint (B),
viii) (a) m — scl(A\ B) > m — scl (A)\/ m — scl (B),
b) m — scl(A N\ B) <m — sint (A) A m — sint (B).

Definition 3.7. A fuzzy set A in a fuzzy m-space (X, m) is called
fuzzy m — s*-open if A < m —int(m — sclA). The complement of this
set is called fuzzy m — s*-closed set.

The collection of fuzzy m — s*-open (resp., fuzzy m — s*-closed) sets
in (X, m) is denoted by FmS*O(X) (resp., FmS*C(X)).

The union (resp., intersection) of all fuzzy m — s*-open (resp., fuzzy
m — s*-closed) sets contained in (containing) a fuzzy set A is called
fuzzy m — s*-interior (resp., fuzzy m — s*-closure) of A, denoted by
m — s*intA (resp., m — s*clA).
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Definition 3.8. A fuzzy set A in a fuzzy m-space (X, m) is called
fuzzy m — s*-nbd of a fuzzy point z, if there exists a fuzzy m — s*-
open set U in X such that z, € U < A. If, in addition, A is fuzzy
m — s*-open, then A is called fuzzy m — s*-open nbd of z,,.

Definition 3.9. A fuzzy set A in a fuzzy m-space (X, m) is called
fuzzy m — s*-¢-nbd of a fuzzy point z,, if there exists a fuzzy m — s*-
open set U in X such that z,qU < A. If, in addition, A is fuzzy
m — s*-open, then A is called fuzzy m — s*-open g-nbd of z,.

Result 3.10. Union (resp., intersection) of any two fuzzy m — s*-
open (resp., fuzzy m — s*-closed) sets is also so.
Proof. Let A, B be two fuzzy m — s*-open (resp., fuzzy m — s*-closed)
sets in a fuzzy m-space X.

Then A < m — int(m — sclA), B < m — int(m — sclB)
(resp., m — cl(m — sintA) < A,m — cl(m — sintB) < B).

Now m — int(m — scl(A\/ B)) > m —int(m — sclA\/ m — sclB)
> m —int(m — sclA) \/ m — int(m — sclB) > A\/ B

and

m — cl(m — sint(A A\ B)) <m — cl(m — sintA \ m — sintB)
<m —cl(m — sintA) A\m — cl(m — sintB) < A\ B.

Remark 3.11. Intersection (resp., union) of two fuzzy m — s*-open
(resp., fuzzy m — s*-closed) sets may not be so as it seen from the
following example.

Example 3.12. Let X = {a,b}, m ={0x,1x, A, B} where A(a) =

0.5, A(b) = 0.4 and B(a) = 0.5, B(b) = 0.55. Then (X, m) is a fuzzy
m-space. Now FmSO(X) = {0x,1x,U,V} where A < U < 1x \ B,
B < \% < 1)(\14, and FmSC’(X) = {Ox, 1)(, 1)(\U, 1)(\V} where B <
Ix\U <1x\A, A<1x\V <1x\ B. Consider two fuzzy sets C, D
in X defined by C(a) = C(b) = 0.5,D(a) = 0.6, D(b) = 0.43. Now
m—int(m—sclC) = B > C,m—int(m—sclD) = 1x > D, which im-
plies that C, D are fuzzy m — s*-open sets in (X, m). Let £ = C' A\ D.
Then E(a) = 0.5, E(b) = 0.43. Now m — int(m — sclE) = A < E,
therefore E is not fuzzy m — s*-open in X.
Again, 1x \ C,1x \ D are fuzzy m — s*-closed sets in (X, m). Now
F=(1x\C)V(lx \ D) is defined by F(a) = 0.5, F(b) = 0.57 and
m—cl(m—sintF) = 1x\ A £ F, therefore F is not fuzzy m—s*-closed
in (X, m).

Theorem 3.13. For any fuzzy set A in a fuzzy m-space (X, m),
a fuzzy point x, € m — s*clA if and only if every fuzzy m — s*-open
qg-nbd U of z,, UqA.

Proof. Let x, € m — s*clA for any fuzzy set A in a fuzzy m-space
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(X,m). Let U € FmS*O(X) with x,qU. Then U(x) + a > 1, hence
To € 1x \U € FmS*C(X). By Definition 3.7, A £ 1x \ U, therefore
there exists y € X such that A(y) > 1 —U(y), hence A(y)+U(y) > 1,
therefore UqA.

Conversely, assume that the given condition holds. Let U €
FmS*C(X) with A<U (1).

We have to show that z, € U, ie., U(x) > «. If possible, let
U(x) < a. Then 1 —U(z) > 1 — «, which implies z,q(1x \ U) where
Ix \U € FmS*O(X). By hypothesis, (1x \ U)gA, hence there exists
y € X such that 1 — U(y) + A(y) > 1, which implies by (1) that
1— A(y) + A(y > 1, which is absurd.

Theorem 3.14. m — s*cl(m — s*clA) = m — s*clA for any fuzzy
set A in a fuzzy m-space (X, m).

Proof. Let A € IX. Then A < m — s*clA, hence
m — s*clA < m — s*cl(m — s*clA) (1).
Conversely, let 2, € m—s*cl(m—s*clA). Assume that z, € m—s*clA.

Then there exists U € FmS*O(X) such that
zaqU, UgA (2).

But as z, € m—s*cl(m—s*clA), Ug(m—s*clA), there exists y € X
such that U(y) + (m — s*clA)(y) > 1, which implies U(y) + ¢ > 1
where t = (m — s*clA)(y). Then y € m — s*clA and y,qU where
U € FmS*O(X). Then by definition, UgA, contradicts (2).

So m — s*cl(m — s*clA) < m — s*clA (3).

Combining (1) and (3), we get the proof.

Note 3.15. Fuzzy m-semiopen set and fuzzy m — s*-open set are
independent notions, as follows from the next two examples.

Example 3.16. FmSO(X) € FmS*O(X)

Consider Example 3.12. Here £ € FmSO(X), but E ¢ FmS*O(X).

Example 3.17. FmS*O(X) € FmSO(X)

Consider Example 3.12. Here C' € FmS*O(X), but C € FmSO(X).

Note 3.18. It is obvious that every fuzzy m-open set is fuzzy
m — s*-open. But the converse is not true, in general, as follows from
Example 3.12. Here C' € FmS*O(X), but C & m.

4. Fuzzy ALMOST (m,m;)-s-CONTINUOUS FUNCTIONS: SOME
CHARACTERIZATIONS

In this section we introduce the notion of fuzzy almost (m, ms)-s-
continuous function between two fuzzy m-spaces and then characterize
it via several ways.

Definition 4.1. A function f : (X, m) — (Y, m,) is said to be fuzzy
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almost (m, mq)-s-continuous if for each fuzzy point z, in X and every
fuzzy my-nbd V of f(z,) in Y, m — scl(f~1(V)) is a fuzzy m-nbd of
T, in X.

Theorem 4.2. For a function f : (X,m) — (Y,my) where my

satisfies M -condition, the following statements are equivalent :

(a) f is fuzzy almost (m,my)-s-continuous,

(b) f~YB) <m —int(m — scl(f~1(B))), for all fuzzy my-open set B
of Y,

(c) f(m —clA) <mq —cl(f(A)), for all A € FmSO(X).

Proof (a) = (b). Let B be any fuzzy ms-open set in Y and z, €
f7YB). Then f(z,) € B, therefore B is a fuzzy m;-nbd of f(z,).
By (a), m — scl(f~Y(B)) is a fuzzy m-nbd of z, in X, hence x, €
m —int(m — scl(f~1(B))). Then f~Y(B) < m—int(m —scl(f~1(B))).
(b) = (a). Let x, be a fuzzy point in X and B be a fuzzy mi-nbd of
f(xs) in Y. Then x, < f7YB) <m —int(m — scl(f~1(B))) (by (b))
<m —sc(f~Y(B)), so m — scl(f~1(B)) is a fuzzy m-nbd of x, in X.
(b) = (c). Let A € FmSO(X). Then 1y \ my — cl(f(A)) is a fuzzy
mi-open set in Y (as m; satisfies M-condition).

By (b), f=H 1y \muy — cl(f(A)))

<m —int(m — scl(f~(1y \my — cl(f(A

= i — int(m — sel(1x \ f~ (1 — cl(f(A)))))
<m —int(m — scl(lx \ f71(f(A)))) <m —int(m — scl(1x \ A)) =
Ix \ m — cl(m — sint (A))

=1x \m—cl(A). Then 1x \ f~'(my — cl(f(A))) < 1x \m —cl(A),
therefore m — cl (A) < f~Y(my — cl(f(A))), hence f(m — cl(A)) <
my — cl(f(A)).

(c) = (b). Let B be any fuzzy ms-open set in Y. Then

m — sint(f~'(1y \ B)) € FmSO(X) (as m, satisfies M-condition).

By (c),

Fm—cl(m— sint(f~(1y'\ B)))) < my — cl(f(m — sint(f~(1y\ B))))
< m —d(f(f7'(ly \ B))) < my —c(ly \ B) = 1y \ B (as my
satisfies M-condition), therefore f~(B) = 1x \ f~'(1y \ B) < 1x \
m—cl(m—sint(f~1(1y \ B))) = 1x \m—cl(m—sint(1x \ f~1(B))) =
m — int(m — scl(f~1(B))).

Remark 4.3. It is clear from Theorem 4.2 that the inverse image
of any fuzzy mi-open set under a fuzzy almost (m, m;)-s-continuous
function is fuzzy m — s*-open.

Theorem 4.4. For a function f : (X,m) — (Y,mq) where my
satisfies M -condition, the following statements are equivalent :

(a) f is fuzzy almost (m,my)-s-continuous,
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(b) f~YB) <m—int(m—scl(f~Y(B))), for all fuzzy mi-open sets B
of Y,
(c) for each fuzzy point z, in X and each fuzzy mq-open nbd V of
f(zy) in Y, there exists U € FmS*O(X) containing x, such that
(d) f7Y(F) e FmS*C(X), for all fuzzy mi-closed sets F in'Y,
(e) for each fuzzy point x, in X, the inverse image under f of every
fuzzy my-nbd of f(x4) inY is a fuzzy m — s*-nbd of x, in X,
(f) f(m — s*cl (A)) <my —c(f(A)), for all A€ I,
(9) m —s*cl(f~Y(B)) < f~Ymy — cl(B)), for all B IV,
(h) f~1(my —int (B)) < m — s*int(f~Y(B)), for all B € IV,

Proof (a) < (b). Follows from Theorem 4.2 (a) < (b).
(b) = (c). Let z, be a fuzzy point in X and V be a fuzzy open m;-nbd
of f(zo) inY. By (b), f71(V) <m —int(m — scl(f~1(V))) (1) .
Now f(x,) € V implies z, € f~1(V) (= U, say).

Then x, € U and by (1), U = f4(V)) € FmS*O(X) and
FO) = F(F V) < V.
(c) = (b). Let V be a fuzzy mi-open set in Y and let z, € f~1(V).
Then f(z,) € V, therefore V is a fuzzy my-open nbd of f(z,) in
Y. By (c), there exists U € FmS*O(X) containing x, such that
f(U) < V. Then z, € U < f~4V). Now U < m — int(m — scl (U)).
Then U < m — int(m — scl (U)) < m —int(m — scl(f~1(V))), hence
o € U <m —int(m — scl(f~1(V))), which implies
YY) <m —int(m — scl(f~1(V))).
(b) < (d). Obvious.
(b) = (e). Let W be a fuzzy m;-nbd of f(z,) in Y. Then there exists
a fuzzy mi-open set V in Y such that f(z,) € V < W, hence V is a
fuzzy my-open nbd of f(x,) in Y. Then by (b), f~1(V) € FmS*O(X)
and z, € f~H(V) < f~Y(W), therefore f~1(W) is a fuzzy m — s*-nbd
of z,,.
(e) = (b). Let V be a fuzzy mi-open set in Y and z, € f~1(V).
Then f(z,) € V, hence V is a fuzzy ms-open nbd of f(z,) in
Y. By (e), f7%V) is a fuzzy m — s*nbd of x,. Then there ex-
ists U € FmS*O(X) containing x, such that U < f~1(V). Then
To € U <m —int(m — scl (U)) < m —int(m — scl(f~1(V))), hence
FHV) <m —int(m — scl(f~1(V))).
(d) = (f). Let A € I*. Then m; — cl(f(A)) is a fuzzy my-
closed set in Y (as m; satisfies M-condition). By (d), f~'(m; —
c(f(A))) € FmS*C(X) containing A. Therefore, m — s*cl (A) <
m—s"cl(f~ (m1—cl(f(A)))) = f~ (m1—cl(f(A))), hence f(m—s"clA)
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< my — cl(f(A)).

(f) = (d). Let B be a fuzzy m;-closed set in Y. Then f~1(B) € IX.
By (f), as m; satisfies M-condition we get f(m — s*cl(f~1(B))) <
my —c(f(f~Y(B))) <my—cl(B) = B, therefore m — s*cl(f~}(B)) <
f~YB), hence f~(B) € FmS*C(X).

(f) = (g). Let B € IY. Then f~1(B) € I*. By (f),

F(m — s*el(j~(B))) < my — A(f(f(B))) < m ~ el (B), hence

m — s*cl(f~Y(B)) < f~Y(my — cl (B)).

(g) = (f). Let A € I*. Let B= f(A). Then B € I'. By (g), m —
sl (A) =m=s"cl(f~1(B)) < f~H(m1—cl(B)) = [~ (m1—cl(f(A))),
therefore f(m — s*cl (A)) < my — cl(f(A)).

(b) = (h). Let B € IY. Then m — int (B) is a fuzzy my-open set in
Y (as my satisfies M-condition). By (b), f~*(my — int (B))

< m —int(m — scl(f~(my — int (B)))), hence f~(m, —int (B)) €
FmS*O(X), which implies f~'(m; —int (B)) = m — s*int(f~ (m; —
int (B))) <m — s*int(f~1(B)).

(h) = (b). Let A be any fuzzy mj-open set in Y. Then f~1(A) =
f~Ymy —int (A)) (as my satisfies M-condition) < m — s*int(f~1(A))
(by (h)), hence f~1(A) € FmS*O(X).

Theorem 4.5. A function f : (X,m) — (Y,my) is fuzzy almost
(m, my)-s-continuous if and only if for each fuzzy point x, in X and
each fuzzy mq-open q-nbd V of f(z,) in Y, there exists a fuzzy
m — s*-open set W in X with x,qW such that f(W) < V.

Proof. Let f be fuzzy almost (m,m;)-s-continuous function and
Zo be a fuzzy point in X and V' be a fuzzy mi-open set in Y with
f(za)qV. Let f(x) = y. Then V(y) + a > 1, ie. V(y) > 1 — q,
hence V(y) > B > 1 — a, for some real number 5. Then V is
a fuzzy ms-open nbd of yg. By Theorem 4.4 (a)=(c), there exists
W € FmS*O(X) containing xg, i.e., W(z) > [ such that f(W) < V.
Then W(x) > 5 > 1 — a, hence z,¢W and f(W) < V.

Conversely, let the given condition hold and let V' be a fuzzy mq-
open set in Y. Put W = f~1(V). If W = 0Oy, then we are done.
Suppose W # 0Ox. Then for any x € Wy, let y = f(x). Then
W(z) = [[7'(V)](z) = V(f(z)) = V(y). Let us choose m € N
where A is the set of all natural numbers such that 1/m < W(z).
Put o, = 1+ 1/n — W(x) , for all n € N. Then for n € N and
n > m, hence 1+ 1/n < 1+ 1/m, therefore o, = 1+ 1/n — W(x) <
1+1/m—W(z) < 1. Again o, > 0, for all n € N, hence
0 < a, <1 so that V(y) + o, > 1, therefore y,,¢V and then V
is a fuzzy mi-open ¢-nbd of y,, . By the given condition, there exists



14 ANJANA BHATTACHARYYA

Ur € FmS*O(X) such that z,,qU? and f(U?) <V, for all n > m.
Let U* = \/{UZ : n € N,n > m}. Then U* € FmS*O(X) (by Result
3.10) and f(U*) < V. Now n > m implies U*(z) + a,, > 1, therefore
U¥(x)+14+1/n—W(z) > 1, hence UZ(z) > W(x) — 1/n, therefore
Ur(x) > W(x), for each x € Wy. Then W < U?, for all n > m and
for all z € Wy, hence W < U?, forallz € Wy = W < \/ U" =U

(say) (1)

and f(U*) <V, for all x € W implies f(U) < V, hence U <
) < V) =w (2).

By (1) and (2), U = W = f~}(V), therefore f~*(V) € FmS*O(X).
Hence by Theorem 4.2, f is fuzzy almost (m,m;)-s-continuous.

Remark 4.6. Let f: (X, m) — (Y, mq) be fuzzy almost (m, m;)-s-
continuous function where m, satisfies M-condition. Since every fuzzy
my-regular open set is fuzzy mi-open set in Y, by Remark 4.3, we can
easily see that the inverse image of fuzzy m;i-regular open set under
fuzzy almost (m,m;)-s-continuous function is fuzzy m — s*-open set
in X. But the converse may not be true, as it seen from the following
example.

Example 4.7. Let X = {CL, b}, m = {Ox, 1)(,A,B}, my = {Ox, 1)(}
where A(a) = 0.5,A(b) = 0.4,B(a) = 0.5,B(b) = 0.55. Then
(X, m) and (X, m,) are fuzzy m-spaces. Consider the identity func-
tion ¢ : (X,m) — (X,my). Clearly every fuzzy set in (X,mq) is
fuzzy mq-s*-open set in (X, m). Consider the fuzzy set C' defined by
C(a) = C(b) = 0.5. Then C € Fm;S*O(X). Now i~*(C) = C which
is not fuzzy m-regular open set in (X, m), though i is clearly fuzzy
almost (m, m;)-s-continuous function.

Remark 4.8. The inverse image of a fuzzy mq-semiopen set un-
der fuzzy almost (m,m;)-s-continuous function may not be fuzzy m-
semiopen as well as fuzzy m — s*-open, as follows from the following
example.

Example 4.9. Let X = {a,0}, m = {0x,1x,C}, my =
{0x,1x, A, B}, where A(a) = 0.5, A(b) = 0.3,B(a) = 0.5,B(b) =
0.4,C(a) = 0.5,C(b) = 0.4. Then (X,m) and (X,m,) are fuzzy
m-spaces. Consider the identity function i : (X, m) — (X, mq).
Clearly ¢ is a fuzzy almost (m,m;) — s-continuous function. In-
deed, FmSO(X) = {0x,1x,U} where C < U < 1x \ C and
FmSC(X) = {0x,1x,1x \ U} where C < 1x \U < 1x \ C. Then
iTHA) = A =m —int(m — scl(i71(A))) = m — int(m — scl(A)) =
m —int(C) = C > A, hence A € FmS*O(X). Also i7'(B) = B,

zeWy
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m —int(m — sclB) = m —intC = C = B, therefore B € FmS*O(X).
Consider a fuzzy set D in X defined by D(a) = 0.5, D(b) = 0.35. Now
my—cl(my—intD) = my—clA =1x\B > D, hence D € Fm;SO(X).
Now i~ '(D) = D. m — cl(m — intD) = m — cl0x = Ox, therefore
D ¢ FmSO(X). Hence the result.
Consider the fuzzy set E defined by E(a) = E(b) = 0.5. Then m, —
cl(my —intE) =my —clB = 1x \ B > E, therefore £ € Fm;50(X).
Now i~ (E) = E, m —int(m — sclE) = m —intE = C } E, therefore
E ¢ FmS*O(X).

Remark 4.10. Composition of two fuzzy almost (m,m;)-s-
continuous functions may not be so, as it seen from the next example.

Example 4.11. Let X = {a,b}, m = {0x,1x,A,B}, m;y =
{0x,1x}, mg = {0x,1x,C} where A(a) = 0.5, A(b) = 0.4, B(a) =
0.5, B(b) = 0.55,C(a) = 0.5,C(b) = 0.43. Then (X,m), (X,m)
and (X, mgy) are fuzzy m-spaces. Consider two identity functions
iv : (X,m) = (X,mq) and iy : (X,my) — (X, mg). Clearly i; and
iy are fuzzy almost (m,m;) — s-continuous, respectively fuzzy almost
(mq, mg)-s-continuous. Let i3 = i1 0 i. Then i3 : (X, m) — (X, my).
Now C € my,iz'(C) = C £ m — int(m — sclC) = A, hence
C ¢ FmS*O(X) and therefore i3 is not a fuzzy almost (m,msy) — s-
continuous function.

5. Fuzzy ALMOST (m,m;)-s*-~-CONTINUOUS FUNCTION: SOME
CHARACTERIZATIONS

In this section we introduce fuzzy almost (m,m;)-s*-continuous
function which is fuzzy almost s-continuous and the converse is true
only under certain condition.

Definition 5.1. A function f : (X,m) — (Y, my) is called fuzzy
almost (m, mq)-s*-continuous if the inverse image of every fuzzy m;-
s*-open set in Y is fuzzy m — s*-open in X.

Theorem 5.2. For a function f : (X,m) — (Y,mq) where my
satisfies M -condition, the following statements are equivalent :

(a) [ is fuzzy almost (m,my)-s*-continuous,

(b) for each fuzzy point x, in X and each fuzzy mq-s*-open nbd V of
f(xy) in Y, there exists a fuzzy m — s*-open nbd U of x, in X such
that f(U) <V,

(c) f7YF) € FmS*C(X), for all F € FmS*C(Y),

(d) for each fuzzy point x, in X, the inverse image under f of every
fuzzy my-s*-open nbd of f(x,) inY is a fuzzy m — s*-open nbd of x,
m X,
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(e) f(m—s clA) <my — s*cl(f(A)), for all A€ I¥,
(f) m —s*cl(f~1(B)) < f~Y(my — s*cl (B)), for all B € IY,
(9) f~t(my — s*int (B)) < m — s*int(f~Y(B)), for all B € IY.

Proof. The proof is similar to that of Theorem 4.4 and hence is
omitted.

Theorem 5.3. A function f : (X,m) — (Y,my) is fuzzy almost
(m,my) — s*-continuous if and only if for each fuzzy point x, in X
and corresponding to any fuzzy my — s*-open g-nbd V of f(x,) in
Y, there exists a fuzzy m — s*-open q-nbd W of x, in X such that
fw) <v.

Proof. The proof is similar to that of Theorem 4.5 and hence is
omitted.

Remark 5.4. Clearly, the composition of two fuzzy almost (m, m;)-
s*-continuous functions is fuzzy almost (m,m;) — s*-continuous.

Theorem 5.5. If f:(X,m)— (Y,m) is fuzzy almost (m,my) —
s*-continuous and g : (Y,m1) — (Z,my) is fuzzy almost (mq, msg) — s-
continuous, then go f : (X, m) — (Z,mg) is fuzzy almost (m,msy) — s-
continuous.

Proof. Obvious.

Remark 5.6. Every fuzzy almost (m, m;) — s*-continuous function
is fuzzy almost (m,m;) — s-continuous, but the converse is not true,
in general, as follows from the following example.

Example 5.7. There exists a fuzzy almost (m,m;) — s-continuous

function which is not fuzzy almost (m,m;) — s*-continuous.
Let X = {a,b}, m = {0x,1x, A}, my = {Ox,1x, B} where A(a) =
0.33, A(b) = 0.67, B(a) = B(b) = 0.4. Then (X, m) and (X, m;) are
fuzzy m-spaces. Now FmSO(X) = {0x,1x,U} where U > A and
FmSC(X) = {Ox,lx,lx\U} where 1)(\U S 1x\A leSO(X) =
{Ox,lx,V} where B S \%4 S 1)(\B and lesC(X) = {Ox, 1)(, 1X \
V} where B < 1x \V < 1x \ B. Consider the identity function
i (X,m) = (X,m;). Now i }(B) = B,m — int(m — scl (B)) =
m —intly = 1x > B, hence i is fuzzy almost (m,m;)-s-continuous.
Let D be a fuzzy set in X, defined by D(a) = D(b) = 0.3. Now
my — int(myscl (D)) = B > D, hence D € Fm;S*O(X). Then
i~Y(D) = D. But m —int(m — scl(i=*(D))) = m —int(m — scl (D)) =
m—int (D) = 0x < D, therefore D ¢ FmS*O(X), which implies that
i is not fuzzy almost (m,m;)-s*-continuous.

To achieve the converse of Remark 5.6, we have to introduce the
following concept.

Definition 5.8. A function f : (X, m) — (Y, m;) is said to be fuzzy
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(m, my)-semiopen if f(U) is fuzzy m,-semiopen in Y for every fuzzy
m-semiopen set U in X.

Lemma 5.9. If f:(X,m)— (Y,mq) is a fuzzy (m,m)-semiopen
function, then f~1(my — sclU) < m — scl(f~H(U)), for any fuzzy set
UinY.

Proof. Let z, € m — scl(f~'(U)) for some fuzzy set U in Y.
Then there exists W € FmSO(X) such that x,qW, W¢f(U),
hence f(W)qU. As f is fuzzy (m,m;)-semiopen function, f(W) €
FmiSO(Y). Now x,qW, hence f(z,)qf(W), therefore f(W) is a
fuzzy mi-semiopen ¢-nbd of f(z,) in Y, but f(W)qU implies f(z,) &
mysclU, whence z, € f~1(mysclU).

Theorem 5.10. If f: (X,m) — (Y,my) is fuzzy almost (m,my)-
s-continuous and fuzzy (m,my)-semiopen function, then f is a fuzzy
almost (m,my)-s*-continuous function.

Proof. Let V € Fm;S*O(Y). Then V < my — int(mysclV).
Since f is fuzzy almost (m,m;)-s-continuous and we have Theo-
rem 4.4 ((a)& (b)), it follows that f~'(V) < f~'(m; — int(m; —
sclV')) < m—int(m — scl(f~'(my —int(m; — sclV)))) < m—int(m —
scl(f~HmysclV))) < m —int(m — scl(m — scl(f~(V)))) (by Lemma
5.9) = m —int(m — scl(f~1(V))), that implies f~(V) € FmS*O(X),

therefore f is a fuzzy almost (m,m;) — s*-continuous function.

6. Fuzzy m — s*~-REGULAR SPACE

In this section a new type of fuzzy regularity, viz, fuzzy m — s*-
regularity is introduced in which fuzzy m-closed (resp., fuzzy m-open)
set and fuzzy m — s*-closed (resp., fuzzy m — s*-open) set coincide.

Definition 6.1. A fuzzy m-space (X, m) is said to be fuzzy m — s*-
regular if for each fuzzy m — s*-closed set F' in X and each fuzzy point
To in X with z,q(1x \ F), there exist a fuzzy m-open set U in X and
a fuzzy m — s*-open set V' in X such that z,qU, F <V and Uq¢V.

Theorem 6.2. For a fuzzy m-space (X, m) where m satisfies the
M -condition, the following statements are equivalent:

(a) X is fuzzy m — s*-regular,

(b) for each fuzzy point x, in X and each fuzzy m — s*-open set U
i X with x,qU, there exists a fuzzy m-open set V in X such that
TaqV <m —s*clV < U,

(c) for each fuzzy m — s*-closed set F' in X we have

({m—c(V): F<V,VeFnmS*OX)}=F,

(d) for each fuzzy set G in X and each fuzzy m — s*-open set U in
X such that GqU, there exists a fuzzy m-open set V in X such that
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GqV and m — s*clV < U.

Proof (a)=(b). Let z, be a fuzzy point in X and U, a fuzzy m—s*-
open set in X with z,qU. By (a), there exist a fuzzy m-open set V'
and a fuzzy m — s*-open set W in X such that z,qV, 1x \ U < W,
VgW. Then xoqV < 1x \ W < U, hence x,qV and m — s*cl (V) <
m—s*cl(1x \ W) =1x \ W < U, therefore z,qV < m — s*clV < U.
(b)=(a). Let F be a fuzzy m — s*-closed set in X and z, be a fuzzy
point in X with 2,¢(1x\F). Then 1x\F € FmS*O(X). By (b), there
exists a fuzzy m-open set V' in X such that z,qV < m—s*clV < 1x\F.
Put U = 1x \m — s*clV. Then U € FmS*O(X) (as m satisfies M-
condition) and z,qV, F < U and Uq¢V'.

(b)=(c). Let F be fuzzy m — s*-closed set in X. It is clear that
F<{m—c(V): F<V,V € FmS*O(X)}.

Conversely, let z, ¢ F. Then F(z) < « implies z,q(1x \ F') where
Ix \ F € FmS*O(X). By (b), there exists a fuzzy m-open set U in X
such that x,qU < m—s*clU < 1x\ F. Put V = 1x\m—s*clU. Then
F <V and UgV, hence z, &€ m — ¢l (V), therefore (\{m — cl (V) :
F<V,VeFmSOX)} <F.

(c)=>(b). Let V be any fuzzy m — s*-open set in X and z, be any
fuzzy point in X with z,qV. Then V(x) +a > 1, hence z, € (1x\ V)
where 1x \ V € FmS*C(X). By (c), there exists G € FmS*O(X)
such that 1x \ V < G and x, € m — ¢l (G). Then there exists a fuzzy
m-open set U in X with x,qU, U¢G, hence U < 1x\G < V', therefore
ToqU <m —s*clU <m —s*cl(1x \G) =1x \G < V.

(c)=(d). Let G be any fuzzy set in X and U be any fuzzy m — s*-
open set in X with GqU. Then there exists © € X such that G(z) +
U(x) > 1. Let G(z) = a. Then z,qU implies z, & 1x \ U where
Ix \U € FmS*C(X). By (c), there exists W € FmS*O(X) such
that 1x \ U < W and z, € m — cl (W), hence (m — cl (W))(z) < «,
therefore z,q(1x \m —cl (W)). Let V.=1x \ m — ¢l (W). Then V is
fuzzy m-open in X (as m satisfies the M-condition) and V (x)+a > 1,
hence V(x) + G(z) > 1, therefore V¢G and

m—s*cl (V) =m—s*cl(lx \m—clW) <m—s*cl(1x\W) = 1x\W <
U.

(d)=(b). Obvious.

Note 6.3. It is clear from Theorem 6.2 that in a fuzzy m — s*-
regular space, every fuzzy m — s*-closed set is fuzzy m-closed and
hence every fuzzy m — s*-open set is fuzzy m-open. As a result, in a
fuzzy m — s*-regular space, the collection of all fuzzy m-closed (resp.,
fuzzy m-open) sets and fuzzy m — s*-closed (resp., fuzzy m — s*-open)
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sets coincide.

Theorem 6.4. If f: (X, m)— (Y,mq) is a fuzzy almost (m,my)-
s-continuous function and Y s a fuzzy m — s*-reqular space, then f
is a fuzzy almost (m,my) — s*-continuous function.

Proof. Let x, be a fuzzy point in X and V' be any fuzzy m;-s*-
open ¢-nbd of f(z,) in Y where Y is fuzzy m — s*-regular space. By
Theorem 6.2 (a)=(b), there exists a fuzzy mj-open set W in Y such
that f(z.)gW < mys*cdW < V. Since f is fuzzy almost (m,m;)-s-
continuous, by Theorem 4.5, there exists U € FmS*O(X) with x,qU
and f(U) <W < V. By Theorem 5.3, f is fuzzy almost (m,my)-s*-
continuous function.

We recall the following definitions from [3] for ready references.

Definition 6.5 [3]. A collection U of fuzzy sets in a fuzzy minimal
space (X,m) is said to be a fuzzy cover of X if (JU = 1x. If, in
addition, every member of U is fuzzy m-open, then U is called a fuzzy
m~open cover of X.

Definition 6.6 [3]. A fuzzy cover U of a fuzzy minimal space (X, m)
is said to have a finite subcover U, if Uy is a finite subcollection of U
such that |JUy = 1x.

Definition 6.7 [3]. A fuzzy m-space (X, m) is said to be fuzzy
almost m-compact if every fuzzy m-open cover U of X has a finite
proximate subcover, i.e., there exists a finite subcollection U, of U
such that {m — ¢l (U) : U € Uy} is also a fuzzy cover of X.

Theorem 6.8. If f:(X,m)— (Y,my) is a fuzzy almost (m,m;)-
s-continuous, surjective function and X 1is a fuzzy m — s*-reqular and
fuzzy almost m-compact space, then Y is a fuzzy almost mi-compact
space.

Proof. Let Y = {U, : @ € A} be a fuzzy ms-open cover of Y. Then
as f is a fuzzy almost (m, m;) — s-continuous function, V = {f~}(U,) :
a € A} is a fuzzy m — s*-open cover and hence a fuzzy m-open cover
of X, as X is fuzzy m — s*-regular space. Since X is fuzzy almost m-
compact, there are finitely many members Uy, Us, ..., U,, of U such that

Um— c(f~1(U;)) = 1x. Since X is fuzzy m — s*-regular, by Theorem
i=1

6.2, m—cl(A) =m—s*cl (A) andso 1x = Um—s*cl(f_l(Ui)), hence

i=1
n

by = f(Um = s7el(F71U) = Ufm = s*el(F7H(U0))

i=1
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<(by Theorem 4.4 (a)=(f)) Um1 —c(f(f7HY))) < Um1 — c(U;),

hence Um1 — cl(U;) = 1y, which implies that Y is a fuzzy almost

i=1

m-compact space.
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