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s∗-REGULARITY IN FUZZY M-SPACES

ANJANA BHATTACHARYYA

Abstract.This paper deals with a new type of open-like set in fuzzy
minimal space [2], viz. fuzzy m−s∗-open set taking fuzzy m-semiopen
sets [3] as a basic tool. Afterwards, we introduce an idempotent op-
erator, viz. fuzzy m − s∗-closure operator. With the help of this op-
erator we introduce and study two new types of functions, viz. fuzzy
almost (m,m1)−s-continuous function and fuzzy almost (m,m1)−s∗-
continuous function. It is shown that every fuzzy almost (m,m1)−s∗-
continuous function is fuzzy almost (m,m1) − s-continuous function,
but the reverse implication is not necessarily true in general. Further-
more, we introduce fuzzy m − s∗-regular spaces, in which the above
mentioned reverse implication holds and, in addition, the classes of
fuzzy m-open sets and fuzzy m− s∗-open sets coincide.

1. Introduction

In [11], L.A. Zadeh introduced fuzzy set as follows : a fuzzy set A
is a mapping from a non-empty set X into the closed interval [0, 1],
i.e., A ∈ IX . In 1968, C.L. Chang introduced fuzzy topology [6].
In [8] Popa and Noiri introduced the notion of minimal structure in
general topology, generalizing some properties of continuous functions.
Afterwards, Alimohammady and Roohi introduced a more general
version of fuzzy topology by introducing fuzzy minimal structure, as
follows: a family M of fuzzy sets in a non-empty set X is said to be
a fuzzy minimal structure on X if α1X ∈M for every α ∈ [0, 1] [1].
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However a more general version of it (in the sense of Chang) is
introduced in [5, 7] as follows: a family F of fuzzy sets in a non-empty
set X is a fuzzy minimal structure on X if 0X ∈ F and 1X ∈ F . In
this paper, we use the notion of fuzzy minimal structure in the sense
of Chang. In [2], we introduced fuzzy minimal space (fuzzy m-space,
for short), as follows. Let X be a non-empty set and m ⊂ IX . Then
(X,m) is called fuzzy m-space if 0X ∈ m and 1X ∈ m. The members
of m are called fuzzy m-open sets and the complement of a fuzzy m-
open set is called fuzzy m-closed set [2]. Many mathematicians have
investigated different types of functions in the setting of fuzzy minimal
spaces. In this context, we have to mention [4, 10].

2. Preliminaries

Throughout this paper, we shall denote by (X,m) or simply by X a
fuzzy minimal space (fuzzy m-space, for short). The support [11] of a
fuzzy set A, denoted by suppA or A0 and is defined by suppA = {x ∈
X : A(x) 6= 0}. The fuzzy set with the singleton support {x} ⊆ X
and the value t (0 < t ≤ 1) will be denoted by xt. 0X and 1X are
the constant fuzzy sets taking values 0 and 1 respectively in X. The
complement [11] of a fuzzy set A in a X is denoted by 1X \ A and is
defined by (1X \A)(x) = 1−A(x), for each x ∈ X. For any two fuzzy
sets A,B in X, A ≤ B means A(x) ≤ B(x), for all x ∈ X [11] while
AqB means A is quasi-coincident (q-coincident, for short) [9] with B,
i.e., there exists x ∈ X such that A(x) + B(x) > 1. The negation of
these two statements will be denoted by A 6≤ B and A /qB respectively.
For any two fuzzy sets A and B in a fuzzy m-space (X,m), the union
is defined by (A

∨
B) (x) = max{A(x), B(x)}, for all x ∈ X and

the intersection is defined by (A
∧
B) (x) = min{A(x), B(x)}, for all

x ∈ X. More general, for any collection of fuzzy sets {Ai : i ∈ I},
one defines C =

∨
{Ai : i ∈ I} by C (x) = sup {Ai (x) : i ∈ I} for all

x ∈ X, respectively D =
∧
{Ai : i ∈ I} by D (x) = inf {Ai (x) : i ∈ I}

for all x ∈ X.
For a fuzzy set A and a fuzzy point xα in X, xα ∈ A means that
A(x) ≥ α. A fuzzy set A in a fuzzy m-space (X,m) is called a fuzzy
m-neighbourhood (fuzzy m-nbd, for short) of a fuzzy point xα in X if
there exists a fuzzy m-open set U in X such that xα ∈ U ≤ A [2]. If,
in addition, A is fuzzy m-open, then A is called a fuzzy m-open nbd
of xα [2]. A fuzzy set A in a fuzzy m-space (X,m) is called a fuzzy
m-q-nbd of a fuzzy point xα in X if there exists a fuzzy m-open set U
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in X such that xαqU ≤ A [2]. If, in addition, A is fuzzy m-open, then
A is called a fuzzy m-open q-nbd of xα [2].

3. Fuzzy m− s∗-Open and m− s∗-Closed Sets: Some
Properties

Using fuzzy m-semiopen set as a basic tool, here we introduce fuzzy
m−s∗-open sets, the class of which is strictly larger than that of fuzzy
m−open sets as well as that of fuzzy m−preopen sets. Afterwards,
we introduce fuzzy m − s∗-closure operator which is an idempotent
operator.

We first recall some definitions from [2, 3] for ready references.
Definition 3.1 [2]. Let X be a non-empty set and m ⊂ IX an

m-structure on X. For A ∈ IX , the m-closure of A and m-interior of
A are defined as follows :

m− clA =
∧
{F : A ≤ F, 1X \ F ∈ m}

m− intA =
∨
{D : D ≤ A,D ∈ m}

It can be observed that a given fuzzy minimal structure on X, A ∈
IX does not imply that m − intA ∈ m or that m − clA is fuzzy m-
closed. But if m satisfies M -condition (i.e., m is closed under arbitrary
union), then m− intA ∈ m and m− clA is fuzzy m-closed.

Proposition 3.2 [2]. Let X be a non-empty set and m, an m-
structure on X. Then for any A ∈ IX , a fuzzy point xα ∈ m− clA if
and only if for any U ∈ m with xαqU , UqA.

Lemma 3.3 [2]. Let X be a non empty set and m ⊂ IX be an
m-structure on X.

For A,B ∈ IX , the following hold :
(i) If A ≤ B, then m− intA ≤ m− intB and m− clA ≤ m− clB.
(ii) (a) m− cl (0X) = 0X , m− cl (1X) = 1X ,
(b) m− int (0X) = 0X , m− int (1X) = 1X .
(iii) m− int (A) ≤ A ≤ m− cl (A).
(iv) (a) m−cl (A) = A if 1X \A ∈ m, (b) m− int (A) = A, if A ∈ m.
(v) m − cl(1X \ A) = 1X \ m − int (A), (b) m − int(1X \ A) =
1X \m− cl (A).
(vi) (a) m − cl(m − clA) = m − cl (A), (b) m − int(m − intA) =
m− int (A).
(vii) m− cl(A

∧
B) ≤ m− cl (A)

∧
m− cl (B),

(b) m− int(A
∨
B) ≥ m− int (A)

∨
m− int (B).

Definition 3.4 [3]. Let (X,m) be a fuzzy m-space and A ∈ IX .
Then A is called
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(i) fuzzy m-regular open if A = m− int(m− clA)
(ii) fuzzy m-semiopen if A ≤ m− cl(m− intA)

The complement of fuzzy m-semiopen set is called fuzzy m-
semiclosed.
The union (intersection) of all fuzzy m-semiopen (resp., fuzzy m-
semiclosed) sets contained in (resp., containing) a fuzzy set A is called
fuzzy m-semiinterior (resp., fuzzy m-semiclosure) of A denoted by
m− sint (A) (resp., m− scl (A)).
The collection of all fuzzy m-semiopen (resp., fuzzy m-semiclosed) sets
in a fuzzy m-space X is denoted by FmSO(X) (resp., FmSC(X)).

Proposition 3.5 [3]. Let (X,m) be a fuzzy m-space and A ∈ IX .
Then a fuzzy point xα ∈ m − sclA if and only if for every fuzzy m-
semiopen set U in X, xαqU , UqA, i.e., for every fuzzy m-semiopen
q-nbd U of xα, UqA.

Result 3.6 [3]. Let (X,m) be a fuzzy m-space and A,B ∈ IX .
Then the following statements hold :
(i) (a) A ≤ B implies m− sintA ≤ m− sintB,
(b) A ≤ B implies m− sclA ≤ m− sclB.
(ii) (a) m− scl (0X) = 0X , m− scl1X = 1X ,
(b) m− sint (0X) = 0X , m− sint1X = 1X .
(iii) m− sint (A) ≤ A ≤ m− sclA.
(iv) (a) m− scl (A) = A if A ∈ FmSC(X),
(b) m− sint (A) = A, if A ∈ FmSO(X).
(v) (a) m− scl(1X \ A) = 1X \m− sint (A),
(b) m− sint(1X \ A) = 1X \m− scl (A).
(vi) (a) m− scl(m− sclA) = m− scl (A),
(b) m− sint(m− sintA) = m− sint (A).
(vii) (a) m− scl(A

∧
B) ≤ m− scl (A)

∧
m− scl (B),

(b) m− sint(A
∨
B) ≥ m− sint (A)

∨
m− sint (B),

(viii) (a) m− scl(A
∨
B) ≥ m− scl (A)

∨
m− scl (B),

(b) m− scl(A
∧
B) ≤ m− sint (A)

∧
m− sint (B).

Definition 3.7. A fuzzy set A in a fuzzy m-space (X,m) is called
fuzzy m− s∗-open if A ≤ m− int(m− sclA). The complement of this
set is called fuzzy m− s∗-closed set.
The collection of fuzzy m − s∗-open (resp., fuzzy m − s∗-closed) sets
in (X,m) is denoted by FmS∗O(X) (resp., FmS∗C(X)).
The union (resp., intersection) of all fuzzy m − s∗-open (resp., fuzzy
m − s∗-closed) sets contained in (containing) a fuzzy set A is called
fuzzy m − s∗-interior (resp., fuzzy m − s∗-closure) of A, denoted by
m− s∗intA (resp., m− s∗clA).
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Definition 3.8. A fuzzy set A in a fuzzy m-space (X,m) is called
fuzzy m − s∗-nbd of a fuzzy point xα if there exists a fuzzy m − s∗-
open set U in X such that xα ∈ U ≤ A. If, in addition, A is fuzzy
m− s∗-open, then A is called fuzzy m− s∗-open nbd of xα.

Definition 3.9. A fuzzy set A in a fuzzy m-space (X,m) is called
fuzzy m− s∗-q-nbd of a fuzzy point xα if there exists a fuzzy m− s∗-
open set U in X such that xαqU ≤ A. If, in addition, A is fuzzy
m− s∗-open, then A is called fuzzy m− s∗-open q-nbd of xα.

Result 3.10. Union (resp., intersection) of any two fuzzy m− s∗-
open (resp., fuzzy m− s∗-closed) sets is also so.
Proof. Let A,B be two fuzzy m−s∗-open (resp., fuzzy m−s∗-closed)
sets in a fuzzy m-space X.

Then A ≤ m− int(m− sclA), B ≤ m− int(m− sclB)
(resp., m− cl(m− sintA) ≤ A,m− cl(m− sintB) ≤ B).

Now m− int(m− scl(A
∨
B)) ≥ m− int(m− sclA

∨
m− sclB)

≥ m− int(m− sclA)
∨
m− int(m− sclB) ≥ A

∨
B

and
m− cl(m− sint(A

∧
B)) ≤ m− cl(m− sintA

∧
m− sintB)

≤ m− cl(m− sintA)
∧
m− cl(m− sintB) ≤ A

∧
B.

Remark 3.11. Intersection (resp., union) of two fuzzy m−s∗-open
(resp., fuzzy m − s∗-closed) sets may not be so as it seen from the
following example.

Example 3.12. Let X = {a, b}, m = {0X , 1X , A,B} where A(a) =
0.5, A(b) = 0.4 and B(a) = 0.5, B(b) = 0.55. Then (X,m) is a fuzzy
m-space. Now FmSO(X) = {0X , 1X , U, V } where A ≤ U ≤ 1X \ B,
B ≤ V ≤ 1X \A, and FmSC(X) = {0X , 1X , 1X \U, 1X \V } where B ≤
1X \U ≤ 1X \A, A ≤ 1X \ V ≤ 1X \B. Consider two fuzzy sets C,D
in X defined by C(a) = C(b) = 0.5, D(a) = 0.6, D(b) = 0.43. Now
m− int(m−sclC) = B ≥ C,m− int(m−sclD) = 1X > D, which im-
plies that C,D are fuzzy m− s∗-open sets in (X,m). Let E = C

∧
D.

Then E(a) = 0.5, E(b) = 0.43. Now m − int(m − sclE) = A < E,
therefore E is not fuzzy m− s∗-open in X.
Again, 1X \ C, 1X \ D are fuzzy m − s∗-closed sets in (X,m). Now
F = (1X \ C)

∨
(1X \ D) is defined by F (a) = 0.5, F (b) = 0.57 and

m−cl(m−sintF ) = 1X \A 6≤ F , therefore F is not fuzzy m−s∗-closed
in (X,m).

Theorem 3.13. For any fuzzy set A in a fuzzy m-space (X,m),
a fuzzy point xα ∈ m − s∗clA if and only if every fuzzy m − s∗-open
q-nbd U of xα, UqA.
Proof. Let xα ∈ m − s∗clA for any fuzzy set A in a fuzzy m-space
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(X,m). Let U ∈ FmS∗O(X) with xαqU . Then U(x) + α > 1, hence
xα 6∈ 1X \ U ∈ FmS∗C(X). By Definition 3.7, A 6≤ 1X \ U , therefore
there exists y ∈ X such that A(y) > 1−U(y), hence A(y) +U(y) > 1,
therefore UqA.
Conversely, assume that the given condition holds. Let U ∈
FmS∗C(X) with A ≤ U (1).

We have to show that xα ∈ U , i.e., U(x) ≥ α. If possible, let
U(x) < α. Then 1− U(x) > 1− α, which implies xαq(1X \ U) where
1X \ U ∈ FmS∗O(X). By hypothesis, (1X \ U)qA, hence there exists
y ∈ X such that 1 − U(y) + A(y) > 1, which implies by (1) that
1− A(y) + A(y > 1, which is absurd.

Theorem 3.14. m − s∗cl(m − s∗clA) = m − s∗clA for any fuzzy
set A in a fuzzy m-space (X,m).
Proof. Let A ∈ IX . Then A ≤ m− s∗clA, hence
m− s∗clA ≤ m− s∗cl(m− s∗clA) (1).
Conversely, let xα ∈ m−s∗cl(m−s∗clA). Assume that xα 6∈ m−s∗clA.

Then there exists U ∈ FmS∗O(X) such that
xαqU, U /qA (2).

But as xα ∈ m−s∗cl(m−s∗clA), Uq(m−s∗clA), there exists y ∈ X
such that U(y) + (m − s∗clA)(y) > 1, which implies U(y) + t > 1
where t = (m − s∗clA)(y). Then yt ∈ m − s∗clA and ytqU where
U ∈ FmS∗O(X). Then by definition, UqA, contradicts (2).

So m− s∗cl(m− s∗clA) ≤ m− s∗clA (3).
Combining (1) and (3), we get the proof.
Note 3.15. Fuzzy m-semiopen set and fuzzy m − s∗-open set are

independent notions, as follows from the next two examples.
Example 3.16. FmSO(X) 6⊆ FmS∗O(X)

Consider Example 3.12. Here E ∈ FmSO(X), but E 6∈ FmS∗O(X).
Example 3.17. FmS∗O(X) 6⊆ FmSO(X)

Consider Example 3.12. Here C ∈ FmS∗O(X), but C 6∈ FmSO(X).
Note 3.18. It is obvious that every fuzzy m-open set is fuzzy

m− s∗-open. But the converse is not true, in general, as follows from
Example 3.12. Here C ∈ FmS∗O(X), but C 6∈ m.

4. Fuzzy Almost (m,m1)-s-Continuous Functions: Some
Characterizations

In this section we introduce the notion of fuzzy almost (m,m1)-s-
continuous function between two fuzzy m-spaces and then characterize
it via several ways.

Definition 4.1. A function f : (X,m)→ (Y,m1) is said to be fuzzy
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almost (m,m1)-s-continuous if for each fuzzy point xα in X and every
fuzzy m1-nbd V of f(xα) in Y , m − scl(f−1(V )) is a fuzzy m-nbd of
xα in X.

Theorem 4.2. For a function f : (X,m) → (Y,m1) where m1

satisfies M-condition, the following statements are equivalent :
(a) f is fuzzy almost (m,m1)-s-continuous,
(b) f−1(B) ≤ m− int(m− scl(f−1(B))), for all fuzzy m1-open set B
of Y ,
(c) f(m− clA) ≤ m1 − cl(f(A)), for all A ∈ FmSO(X).

Proof (a) ⇒ (b). Let B be any fuzzy m1-open set in Y and xα ∈
f−1(B). Then f(xα) ∈ B, therefore B is a fuzzy m1-nbd of f(xα).
By (a), m − scl(f−1(B)) is a fuzzy m-nbd of xα in X, hence xα ∈
m− int(m−scl(f−1(B))). Then f−1(B) ≤ m− int(m−scl(f−1(B))).
(b) ⇒ (a). Let xα be a fuzzy point in X and B be a fuzzy m1-nbd of
f(xα) in Y . Then xα ≤ f−1(B) ≤ m− int(m− scl(f−1(B))) (by (b))
≤ m− scl(f−1(B)), so m− scl(f−1(B)) is a fuzzy m-nbd of xα in X.
(b) ⇒ (c). Let A ∈ FmSO(X). Then 1Y \m1 − cl(f(A)) is a fuzzy
m1-open set in Y (as m1 satisfies M -condition).
By (b), f−1(1Y \m1 − cl(f(A)))
≤ m− int(m− scl(f−1(1Y \m1 − cl(f(A)))))
= m− int(m− scl(1X \ f−1(m1 − cl(f(A)))))
≤ m − int(m − scl(1X \ f−1(f(A)))) ≤ m − int(m − scl(1X \ A)) =
1X \m− cl(m− sint (A))
= 1X \m− cl (A). Then 1X \ f−1(m1 − cl(f(A))) ≤ 1X \m− cl (A),
therefore m − cl (A) ≤ f−1(m1 − cl(f(A))), hence f(m − cl (A)) ≤
m1 − cl(f(A)).
(c) ⇒ (b). Let B be any fuzzy m1-open set in Y . Then
m− sint(f−1(1Y \B)) ∈ FmSO(X) (as m1 satisfies M -condition).

By (c),
f(m−cl(m−sint(f−1(1Y \B)))) ≤ m1−cl(f(m−sint(f−1(1Y \B))))
≤ m1 − cl(f(f−1(1Y \ B))) ≤ m1 − cl(1Y \ B) = 1Y \ B (as m1

satisfies M -condition), therefore f−1(B) = 1X \ f−1(1Y \ B) ≤ 1X \
m−cl(m−sint(f−1(1Y \B))) = 1X \m−cl(m−sint(1X \f−1(B))) =
m− int(m− scl(f−1(B))).

Remark 4.3. It is clear from Theorem 4.2 that the inverse image
of any fuzzy m1-open set under a fuzzy almost (m,m1)-s-continuous
function is fuzzy m− s∗-open.

Theorem 4.4. For a function f : (X,m) → (Y,m1) where m1

satisfies M-condition, the following statements are equivalent :
(a) f is fuzzy almost (m,m1)-s-continuous,
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(b) f−1(B) ≤ m− int(m− scl(f−1(B))), for all fuzzy m1-open sets B
of Y ,
(c) for each fuzzy point xα in X and each fuzzy m1-open nbd V of
f(xα) in Y , there exists U ∈ FmS∗O(X) containing xα such that
f(U) ≤ V ,
(d) f−1(F ) ∈ FmS∗C(X), for all fuzzy m1-closed sets F in Y ,
(e) for each fuzzy point xα in X, the inverse image under f of every
fuzzy m1-nbd of f(xα) in Y is a fuzzy m− s∗-nbd of xα in X,
(f) f(m− s∗cl (A)) ≤ m1 − cl(f(A)), for all A ∈ IX ,
(g) m− s∗cl(f−1(B)) ≤ f−1(m1 − cl (B)), for all B ∈ IY ,
(h) f−1(m1 − int (B)) ≤ m− s∗int(f−1(B)), for all B ∈ IY .

Proof (a) ⇔ (b). Follows from Theorem 4.2 (a) ⇔ (b).
(b)⇒ (c). Let xα be a fuzzy point in X and V be a fuzzy open m1-nbd
of f(xα) in Y . By (b), f−1(V ) ≤ m− int(m− scl(f−1(V ))) (1) .
Now f(xα) ∈ V implies xα ∈ f−1(V ) (= U , say).

Then xα ∈ U and by (1), U = f−1(V )) ∈ FmS∗O(X) and
f(U) = f(f−1(V )) ≤ V .
(c) ⇒ (b). Let V be a fuzzy m1-open set in Y and let xα ∈ f−1(V ).
Then f(xα) ∈ V , therefore V is a fuzzy m1-open nbd of f(xα) in
Y . By (c), there exists U ∈ FmS∗O(X) containing xα such that
f(U) ≤ V . Then xα ∈ U ≤ f−1(V ). Now U ≤ m− int(m− scl (U)).
Then U ≤ m − int(m − scl (U)) ≤ m − int(m − scl(f−1(V ))), hence
xα ∈ U ≤ m− int(m− scl(f−1(V ))), which implies
f−1(V ) ≤ m− int(m− scl(f−1(V ))).
(b) ⇔ (d). Obvious.
(b)⇒ (e). Let W be a fuzzy m1-nbd of f(xα) in Y . Then there exists
a fuzzy m1-open set V in Y such that f(xα) ∈ V ≤ W , hence V is a
fuzzy m1-open nbd of f(xα) in Y . Then by (b), f−1(V ) ∈ FmS∗O(X)
and xα ∈ f−1(V ) ≤ f−1(W ), therefore f−1(W ) is a fuzzy m− s∗-nbd
of xα.
(e) ⇒ (b). Let V be a fuzzy m1-open set in Y and xα ∈ f−1(V ).
Then f(xα) ∈ V , hence V is a fuzzy m1-open nbd of f(xα) in
Y . By (e), f−1(V ) is a fuzzy m − s∗-nbd of xα. Then there ex-
ists U ∈ FmS∗O(X) containing xα such that U ≤ f−1(V ). Then
xα ∈ U ≤ m − int(m − scl (U)) ≤ m − int(m − scl(f−1(V ))), hence
f−1(V ) ≤ m− int(m− scl(f−1(V ))).
(d) ⇒ (f). Let A ∈ IX . Then m1 − cl(f(A)) is a fuzzy m1-
closed set in Y (as m1 satisfies M -condition). By (d), f−1(m1 −
cl(f(A))) ∈ FmS∗C(X) containing A. Therefore, m − s∗cl (A) ≤
m−s∗cl(f−1(m1−cl(f(A)))) = f−1(m1−cl(f(A))), hence f(m−s∗clA)
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≤ m1 − cl(f(A)).
(f) ⇒ (d). Let B be a fuzzy m1-closed set in Y . Then f−1(B) ∈ IX .
By (f), as m1 satisfies M -condition we get f(m − s∗cl(f−1(B))) ≤
m1− cl(f(f−1(B))) ≤ m1− cl (B) = B, therefore m− s∗cl(f−1(B)) ≤
f−1(B), hence f−1(B) ∈ FmS∗C(X).
(f) ⇒ (g). Let B ∈ IY . Then f−1(B) ∈ IX . By (f),
f(m− s∗cl(f−1(B))) ≤ m1 − cl(f(f−1(B))) ≤ m1 − cl (B), hence
m− s∗cl(f−1(B)) ≤ f−1(m1 − cl (B)).
(g) ⇒ (f). Let A ∈ IX . Let B = f(A). Then B ∈ IY . By (g), m −
s∗cl (A) = m−s∗cl(f−1(B)) ≤ f−1(m1−cl (B)) = f−1(m1−cl(f(A))),
therefore f(m− s∗cl (A)) ≤ m1 − cl(f(A)).
(b) ⇒ (h). Let B ∈ IY . Then m − int (B) is a fuzzy m1-open set in
Y (as m1 satisfies M -condition). By (b), f−1(m1 − int (B))
≤ m − int(m − scl(f−1(m1 − int (B)))), hence f−1(m1 − int (B)) ∈
FmS∗O(X), which implies f−1(m1 − int (B)) = m− s∗int(f−1(m1 −
int (B))) ≤ m− s∗int(f−1(B)).
(h) ⇒ (b). Let A be any fuzzy m1-open set in Y . Then f−1(A) =
f−1(m1− int (A)) (as m1 satisfies M -condition) ≤ m− s∗int(f−1(A))
(by (h)), hence f−1(A) ∈ FmS∗O(X).

Theorem 4.5. A function f : (X,m) → (Y,m1) is fuzzy almost
(m,m1)-s-continuous if and only if for each fuzzy point xα in X and
each fuzzy m1-open q-nbd V of f(xα) in Y , there exists a fuzzy
m− s∗-open set W in X with xαqW such that f(W ) ≤ V .

Proof. Let f be fuzzy almost (m,m1)-s-continuous function and
xα be a fuzzy point in X and V be a fuzzy m1-open set in Y with
f(xα)qV . Let f(x) = y. Then V (y) + α > 1, i.e. V (y) > 1 − α,
hence V (y) > β > 1 − α, for some real number β. Then V is
a fuzzy m1-open nbd of yβ. By Theorem 4.4 (a)⇒(c), there exists
W ∈ FmS∗O(X) containing xβ, i.e., W (x) ≥ β such that f(W ) ≤ V .
Then W (x) ≥ β > 1− α, hence xαqW and f(W ) ≤ V .
Conversely, let the given condition hold and let V be a fuzzy m1-
open set in Y . Put W = f−1(V ). If W = 0X , then we are done.
Suppose W 6= 0X . Then for any x ∈ W0, let y = f(x). Then
W (x) = [f−1(V )](x) = V (f(x)) = V (y). Let us choose m ∈ N
where N is the set of all natural numbers such that 1/m ≤ W (x).
Put αn = 1 + 1/n − W (x) , for all n ∈ N . Then for n ∈ N and
n ≥ m, hence 1 + 1/n ≤ 1 + 1/m, therefore αn = 1 + 1/n −W (x) ≤
1 + 1/m − W (x) ≤ 1. Again αn > 0, for all n ∈ N , hence
0 < αn ≤ 1 so that V (y) + αn > 1, therefore yαnqV and then V
is a fuzzy m1-open q-nbd of yαn . By the given condition, there exists
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Ux
n ∈ FmS∗O(X) such that xαnqU

x
n and f(Ux

n ) ≤ V , for all n ≥ m.
Let Ux =

∨
{Ux

n : n ∈ N , n ≥ m}. Then Ux ∈ FmS∗O(X) (by Result
3.10) and f(Ux) ≤ V . Now n ≥ m implies Ux

n (x) + αn > 1, therefore
Ux
n (x) + 1 + 1/n −W (x) > 1, hence Ux

n (x) > W (x) − 1/n, therefore
Ux
n (x) ≥ W (x), for each x ∈ W0. Then W ≤ Ux

n , for all n ≥ m and

for all x ∈ W0, hence W ≤ Ux, for all x ∈ W0 ⇒ W ≤
∨
x∈W0

Ux = U

(say) (1)
and f(Ux) ≤ V , for all x ∈ W implies f(U) ≤ V , hence U ≤

f−1(f(U)) ≤ f−1(V ) = W (2).
By (1) and (2), U = W = f−1(V ), therefore f−1(V ) ∈ FmS∗O(X).

Hence by Theorem 4.2, f is fuzzy almost (m,m1)-s-continuous.
Remark 4.6. Let f : (X,m)→ (Y,m1) be fuzzy almost (m,m1)-s-

continuous function where m1 satisfies M -condition. Since every fuzzy
m1-regular open set is fuzzy m1-open set in Y , by Remark 4.3, we can
easily see that the inverse image of fuzzy m1-regular open set under
fuzzy almost (m,m1)-s-continuous function is fuzzy m − s∗-open set
in X. But the converse may not be true, as it seen from the following
example.

Example 4.7. Let X = {a, b}, m = {0X , 1X , A,B}, m1 = {0X , 1X}
where A(a) = 0.5, A(b) = 0.4, B(a) = 0.5, B(b) = 0.55. Then
(X,m) and (X,m1) are fuzzy m-spaces. Consider the identity func-
tion i : (X,m) → (X,m1). Clearly every fuzzy set in (X,m1) is
fuzzy m1-s

∗-open set in (X,m1). Consider the fuzzy set C defined by
C(a) = C(b) = 0.5. Then C ∈ Fm1S

∗O(X). Now i−1(C) = C which
is not fuzzy m-regular open set in (X,m), though i is clearly fuzzy
almost (m,m1)-s-continuous function.

Remark 4.8. The inverse image of a fuzzy m1-semiopen set un-
der fuzzy almost (m,m1)-s-continuous function may not be fuzzy m-
semiopen as well as fuzzy m − s∗-open, as follows from the following
example.

Example 4.9. Let X = {a, b}, m = {0X , 1X , C}, m1 =
{0X , 1X , A,B}, where A(a) = 0.5, A(b) = 0.3, B(a) = 0.5, B(b) =
0.4, C(a) = 0.5, C(b) = 0.4. Then (X,m) and (X,m1) are fuzzy
m-spaces. Consider the identity function i : (X,m) → (X,m1).
Clearly i is a fuzzy almost (m,m1) − s-continuous function. In-
deed, FmSO(X) = {0X , 1X , U} where C ≤ U ≤ 1X \ C and
FmSC(X) = {0X , 1X , 1X \ U} where C ≤ 1X \ U ≤ 1X \ C. Then
i−1(A) = A = m − int(m − scl(i−1(A))) = m − int(m − scl(A)) =
m − int(C) = C ≥ A, hence A ∈ FmS∗O(X). Also i−1(B) = B,
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m− int(m− sclB) = m− intC = C = B, therefore B ∈ FmS∗O(X).
Consider a fuzzy set D in X defined by D(a) = 0.5, D(b) = 0.35. Now
m1−cl(m1−intD) = m1−clA = 1X \B ≥ D, hence D ∈ Fm1SO(X).
Now i−1(D) = D. m − cl(m − intD) = m − cl0X = 0X , therefore
D 6∈ FmSO(X). Hence the result.
Consider the fuzzy set E defined by E(a) = E(b) = 0.5. Then m1 −
cl(m1 − intE) = m1 − clB = 1X \B ≥ E, therefore E ∈ Fm1SO(X).
Now i−1(E) = E, m− int(m− sclE) = m− intE = C 6≥ E, therefore
E 6∈ FmS∗O(X).

Remark 4.10. Composition of two fuzzy almost (m,m1)-s-
continuous functions may not be so, as it seen from the next example.

Example 4.11. Let X = {a, b}, m = {0X , 1X , A,B}, m1 =
{0X , 1X}, m2 = {0X , 1X , C} where A(a) = 0.5, A(b) = 0.4, B(a) =
0.5, B(b) = 0.55, C(a) = 0.5, C(b) = 0.43. Then (X,m), (X,m1)
and (X,m2) are fuzzy m-spaces. Consider two identity functions
i1 : (X,m) → (X,m1) and i2 : (X,m1) → (X,m2). Clearly i1 and
i2 are fuzzy almost (m,m1)− s-continuous, respectively fuzzy almost
(m1,m2)-s-continuous. Let i3 = i1 ◦ i2. Then i3 : (X,m) → (X,m2).
Now C ∈ m2, i

−1
3 (C) = C 6≤ m − int(m − sclC) = A, hence

C 6∈ FmS∗O(X) and therefore i3 is not a fuzzy almost (m,m2) − s-
continuous function.

5. Fuzzy Almost (m,m1)-s
∗-Continuous Function: Some

Characterizations

In this section we introduce fuzzy almost (m,m1)-s
∗-continuous

function which is fuzzy almost s-continuous and the converse is true
only under certain condition.

Definition 5.1. A function f : (X,m) → (Y,m1) is called fuzzy
almost (m,m1)-s

∗-continuous if the inverse image of every fuzzy m1-
s∗-open set in Y is fuzzy m− s∗-open in X.

Theorem 5.2. For a function f : (X,m) → (Y,m1) where m1

satisfies M-condition, the following statements are equivalent :
(a) f is fuzzy almost (m,m1)-s∗-continuous,
(b) for each fuzzy point xα in X and each fuzzy m1-s

∗-open nbd V of
f(xα) in Y , there exists a fuzzy m− s∗-open nbd U of xα in X such
that f(U) ≤ V ,
(c) f−1(F ) ∈ FmS∗C(X), for all F ∈ Fm1S

∗C(Y ),
(d) for each fuzzy point xα in X, the inverse image under f of every
fuzzy m1-s

∗-open nbd of f(xα) in Y is a fuzzy m− s∗-open nbd of xα
in X,



16 ANJANA BHATTACHARYYA

(e) f(m− s∗clA) ≤ m1 − s∗cl(f(A)), for all A ∈ IX ,
(f) m− s∗cl(f−1(B)) ≤ f−1(m1 − s∗cl (B)), for all B ∈ IY ,
(g) f−1(m1 − s∗int (B)) ≤ m− s∗int(f−1(B)), for all B ∈ IY .

Proof. The proof is similar to that of Theorem 4.4 and hence is
omitted.

Theorem 5.3. A function f : (X,m) → (Y,m1) is fuzzy almost
(m,m1) − s∗-continuous if and only if for each fuzzy point xα in X
and corresponding to any fuzzy m1 − s∗-open q-nbd V of f(xα) in
Y , there exists a fuzzy m − s∗-open q-nbd W of xα in X such that
f(W ) ≤ V .

Proof. The proof is similar to that of Theorem 4.5 and hence is
omitted.

Remark 5.4. Clearly, the composition of two fuzzy almost (m,m1)-
s∗-continuous functions is fuzzy almost (m,m1)− s∗-continuous.

Theorem 5.5. If f : (X,m) → (Y,m1) is fuzzy almost (m,m1)−
s∗-continuous and g : (Y,m1)→ (Z,m2) is fuzzy almost (m1,m2)− s-
continuous, then g ◦f : (X,m)→ (Z,m2) is fuzzy almost (m,m2)−s-
continuous.

Proof. Obvious.
Remark 5.6. Every fuzzy almost (m,m1)− s∗-continuous function

is fuzzy almost (m,m1) − s-continuous, but the converse is not true,
in general, as follows from the following example.

Example 5.7. There exists a fuzzy almost (m,m1)− s-continuous
function which is not fuzzy almost (m,m1)− s∗-continuous.
Let X = {a, b}, m = {0X , 1X , A}, m1 = {0X , 1X , B} where A(a) =
0.33, A(b) = 0.67, B(a) = B(b) = 0.4. Then (X,m) and (X,m1) are
fuzzy m-spaces. Now FmSO(X) = {0X , 1X , U} where U ≥ A and
FmSC(X) = {0X , 1X , 1X \U} where 1X \U ≤ 1X \A. Fm1SO(X) =
{0X , 1X , V } where B ≤ V ≤ 1X \ B and Fm1SC(X) = {0X , 1X , 1X \
V } where B ≤ 1X \ V ≤ 1X \ B. Consider the identity function
i : (X,m) → (X,m1). Now i−1(B) = B,m − int(m − scl (B)) =
m − int1X = 1X > B, hence i is fuzzy almost (m,m1)-s-continuous.
Let D be a fuzzy set in X, defined by D(a) = D(b) = 0.3. Now
m1 − int(m1scl (D)) = B > D, hence D ∈ Fm1S

∗O(X). Then
i−1(D) = D. But m− int(m− scl(i−1(D))) = m− int(m− scl (D)) =
m− int (D) = 0X < D, therefore D 6∈ FmS∗O(X), which implies that
i is not fuzzy almost (m,m1)-s

∗-continuous.
To achieve the converse of Remark 5.6, we have to introduce the

following concept.
Definition 5.8. A function f : (X,m)→ (Y,m1) is said to be fuzzy
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(m,m1)-semiopen if f(U) is fuzzy m1-semiopen in Y for every fuzzy
m-semiopen set U in X.

Lemma 5.9. If f : (X,m)→ (Y,m1) is a fuzzy (m,m1)-semiopen
function, then f−1(m1 − sclU) ≤ m − scl(f−1(U)), for any fuzzy set
U in Y .

Proof. Let xα 6∈ m − scl(f−1(U)) for some fuzzy set U in Y .
Then there exists W ∈ FmSO(X) such that xαqW , W /qf−1(U),
hence f(W ) /qU . As f is fuzzy (m,m1)-semiopen function, f(W ) ∈
Fm1SO(Y ). Now xαqW , hence f(xα)qf(W ), therefore f(W ) is a
fuzzy m1-semiopen q-nbd of f(xα) in Y , but f(W ) /qU implies f(xα) 6∈
m1sclU , whence xα 6∈ f−1(m1sclU).

Theorem 5.10. If f : (X,m) → (Y,m1) is fuzzy almost (m,m1)-
s-continuous and fuzzy (m,m1)-semiopen function, then f is a fuzzy
almost (m,m1)-s∗-continuous function.

Proof. Let V ∈ Fm1S
∗O(Y ). Then V ≤ m1 − int(m1sclV ).

Since f is fuzzy almost (m,m1)-s-continuous and we have Theo-
rem 4.4 ((a)⇔ (b)), it follows that f−1(V ) ≤ f−1(m1 − int(m1 −
sclV )) ≤ m− int(m− scl(f−1(m1− int(m1− sclV )))) ≤ m− int(m−
scl(f−1(m1sclV ))) ≤ m− int(m− scl(m− scl(f−1(V )))) (by Lemma
5.9) = m− int(m− scl(f−1(V ))), that implies f−1(V ) ∈ FmS∗O(X),
therefore f is a fuzzy almost (m,m1)− s∗-continuous function.

6. Fuzzy m− s∗-Regular Space

In this section a new type of fuzzy regularity, viz, fuzzy m − s∗-
regularity is introduced in which fuzzy m-closed (resp., fuzzy m-open)
set and fuzzy m− s∗-closed (resp., fuzzy m− s∗-open) set coincide.

Definition 6.1. A fuzzy m-space (X,m) is said to be fuzzy m−s∗-
regular if for each fuzzy m−s∗-closed set F in X and each fuzzy point
xα in X with xαq(1X \F ), there exist a fuzzy m-open set U in X and
a fuzzy m− s∗-open set V in X such that xαqU , F ≤ V and U /qV .

Theorem 6.2. For a fuzzy m-space (X,m) where m satisfies the
M-condition, the following statements are equivalent:
(a) X is fuzzy m− s∗-regular,
(b) for each fuzzy point xα in X and each fuzzy m − s∗-open set U
in X with xαqU , there exists a fuzzy m-open set V in X such that
xαqV ≤ m− s∗clV ≤ U ,
(c) for each fuzzy m− s∗-closed set F in X we have⋂
{m− cl (V ) : F ≤ V, V ∈ FmS∗O(X)} = F ,

(d) for each fuzzy set G in X and each fuzzy m − s∗-open set U in
X such that GqU , there exists a fuzzy m-open set V in X such that
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GqV and m− s∗clV ≤ U .
Proof (a)⇒(b). Let xα be a fuzzy point in X and U , a fuzzy m−s∗-

open set in X with xαqU . By (a), there exist a fuzzy m-open set V
and a fuzzy m − s∗-open set W in X such that xαqV , 1X \ U ≤ W ,
V /qW . Then xαqV ≤ 1X \W ≤ U , hence xαqV and m − s∗cl (V ) ≤
m− s∗cl(1X \W ) = 1X \W ≤ U , therefore xαqV ≤ m− s∗clV ≤ U .
(b)⇒(a). Let F be a fuzzy m− s∗-closed set in X and xα be a fuzzy
point in X with xαq(1X\F ). Then 1X\F ∈ FmS∗O(X). By (b), there
exists a fuzzym-open set V inX such that xαqV ≤ m−s∗clV ≤ 1X\F .
Put U = 1X \m − s∗clV . Then U ∈ FmS∗O(X) (as m satisfies M -
condition) and xαqV , F ≤ U and U /qV .
(b)⇒(c). Let F be fuzzy m − s∗-closed set in X. It is clear that
F ≤

⋂
{m− cl (V ) : F ≤ V, V ∈ FmS∗O(X)}.

Conversely, let xα 6∈ F . Then F (x) < α implies xαq(1X \ F ) where
1X \F ∈ FmS∗O(X). By (b), there exists a fuzzy m-open set U in X
such that xαqU ≤ m−s∗clU ≤ 1X \F . Put V = 1X \m−s∗clU . Then
F ≤ V and U /qV , hence xα 6∈ m − cl (V ), therefore

⋂
{m − cl (V ) :

F ≤ V, V ∈ FmS∗O(X)} ≤ F .
(c)⇒(b). Let V be any fuzzy m − s∗-open set in X and xα be any
fuzzy point in X with xαqV . Then V (x) +α > 1, hence xα 6∈ (1X \V )
where 1X \ V ∈ FmS∗C(X). By (c), there exists G ∈ FmS∗O(X)
such that 1X \ V ≤ G and xα 6∈ m− cl (G). Then there exists a fuzzy
m-open set U in X with xαqU , U /qG, hence U ≤ 1X \G ≤ V , therefore
xαqU ≤ m− s∗clU ≤ m− s∗cl(1X \G) = 1X \G ≤ V .
(c)⇒(d). Let G be any fuzzy set in X and U be any fuzzy m − s∗-
open set in X with GqU . Then there exists x ∈ X such that G(x) +
U(x) > 1. Let G(x) = α. Then xαqU implies xα 6∈ 1X \ U where
1X \ U ∈ FmS∗C(X). By (c), there exists W ∈ FmS∗O(X) such
that 1X \ U ≤ W and xα 6∈ m − cl (W ), hence (m − cl (W ))(x) < α,
therefore xαq(1X \m− cl (W )). Let V = 1X \m− cl (W ). Then V is
fuzzy m-open in X (as m satisfies the M -condition) and V (x)+α > 1,
hence V (x) +G(x) > 1, therefore V qG and
m−s∗cl (V ) = m−s∗cl(1X \m−clW ) ≤ m−s∗cl(1X \W ) = 1X \W ≤
U .
(d)⇒(b). Obvious.

Note 6.3. It is clear from Theorem 6.2 that in a fuzzy m − s∗-
regular space, every fuzzy m − s∗-closed set is fuzzy m-closed and
hence every fuzzy m − s∗-open set is fuzzy m-open. As a result, in a
fuzzy m− s∗-regular space, the collection of all fuzzy m-closed (resp.,
fuzzy m-open) sets and fuzzy m− s∗-closed (resp., fuzzy m− s∗-open)
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sets coincide.
Theorem 6.4. If f : (X,m)→ (Y,m1) is a fuzzy almost (m,m1)-

s-continuous function and Y is a fuzzy m − s∗-regular space, then f
is a fuzzy almost (m,m1)− s∗-continuous function.

Proof. Let xα be a fuzzy point in X and V be any fuzzy m1-s
∗-

open q-nbd of f(xα) in Y where Y is fuzzy m− s∗-regular space. By
Theorem 6.2 (a)⇒(b), there exists a fuzzy m1-open set W in Y such
that f(xα)qW ≤ m1s

∗clW ≤ V . Since f is fuzzy almost (m,m1)-s-
continuous, by Theorem 4.5, there exists U ∈ FmS∗O(X) with xαqU
and f(U) ≤ W ≤ V . By Theorem 5.3, f is fuzzy almost (m,m1)-s

∗-
continuous function.
We recall the following definitions from [3] for ready references.

Definition 6.5 [3]. A collection U of fuzzy sets in a fuzzy minimal
space (X,m) is said to be a fuzzy cover of X if

⋃
U = 1X . If, in

addition, every member of U is fuzzy m-open, then U is called a fuzzy
m-open cover of X.

Definition 6.6 [3]. A fuzzy cover U of a fuzzy minimal space (X,m)
is said to have a finite subcover U0 if U0 is a finite subcollection of U
such that

⋃
U0 = 1X .

Definition 6.7 [3]. A fuzzy m-space (X,m) is said to be fuzzy
almost m-compact if every fuzzy m-open cover U of X has a finite
proximate subcover, i.e., there exists a finite subcollection U0 of U
such that {m− cl (U) : U ∈ U0} is also a fuzzy cover of X.

Theorem 6.8. If f : (X,m)→ (Y,m1) is a fuzzy almost (m,m1)-
s-continuous, surjective function and X is a fuzzy m− s∗-regular and
fuzzy almost m-compact space, then Y is a fuzzy almost m1-compact
space.

Proof. Let U = {Uα : α ∈ Λ} be a fuzzy m1-open cover of Y . Then
as f is a fuzzy almost (m,m1)−s-continuous function, V = {f−1(Uα) :
α ∈ Λ} is a fuzzy m− s∗-open cover and hence a fuzzy m-open cover
of X, as X is fuzzy m− s∗-regular space. Since X is fuzzy almost m-
compact, there are finitely many members U1, U2, ..., Un of U such that
n⋃
i=1

m−cl(f−1(Ui)) = 1X . Since X is fuzzy m−s∗-regular, by Theorem

6.2, m−cl (A) = m−s∗cl (A) and so 1X =
n⋃
i=1

m−s∗cl(f−1(Ui)), hence

1Y = f(
n⋃
i=1

m− s∗cl(f−1(Ui))) =
n⋃
i=1

f(m− s∗cl(f−1(Ui)))
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≤(by Theorem 4.4 (a)⇒(f))
n⋃
i=1

m1 − cl(f(f−1(Ui))) ≤
n⋃
i=1

m1 − cl(Ui),

hence
n⋃
i=1

m1 − cl(Ui) = 1Y , which implies that Y is a fuzzy almost

m-compact space.
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