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SOME GROWTH PROPERTIES OF COMPOSITE
ENTIRE FUNCTIONS RELATING TO (α, β, γ)-ORDER

AND (α, β, γ)-TYPE

TANMAY BISWAS, CHINMAY BISWAS, SARMILA BHATTACHARYYA

Abstract. In this paper, we establish some growth properties of
composite entire functions on the basis of their (α, β, γ)-order and
(α, β, γ)-type.

1. Introduction

We denote by C the set of all finite complex numbers. Let f =
+∞∑
n=0

anz
n be an entire function defined on C. The maximum modulus

function Mf (r) of f on |z| = r is defined as Mf = max
|z|=r
|f (z)|. We use

the standard notations and definitions of the theory of entire functions
which are available in [7, 8] and therefore we do not explain those in
details.

First of all, let L be a class of continuous non-negative on
(−∞,+∞) functions α such that α(x) = α(x0) ≥ 0 for x ≤ x0 with
α(x) ↑ +∞ as x0 ≤ x → +∞. We say that α ∈ L1, if α ∈ L and
α(a + b) ≤ α(a) + α(b) + c for all a, b ≥ R0 and fixed c ∈ (0,+∞).
Further we say that α ∈ L2, if α ∈ L and α(x+O(1)) = (1+o(1))α(x)
as x→ +∞. Finally, α ∈ L3, if α ∈ L and α(a+ b) ≤ α(a) + α(b) for
all a, b ≥ R0, i.e., α is subadditive. Clearly L3 ⊂ L1.
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Particularly, when α ∈ L3, then one can easily verify that
α(mr) ≤ mα(r), m (≥ 2) is an integer. Up to a normalization, subad-
ditivity is implied by concavity. Indeed, if α(r) is concave on [0,+∞)
and satisfies α(0) ≥ 0, then for t ∈ [0, 1],

α(tx) = α(tx+ (1− t) · 0)

≥ tα(x) + (1− t)α(0) ≥ tα(x),

so that by choosing t = a
a+b

or t = b
a+b

,

α(a+ b) =
a

a+ b
α(a+ b) +

b

a+ b
α(a+ b)

≤ α

(
a

a+ b
(a+ b)

)
+ α

(
b

a+ b
(a+ b)

)
= α(a) + α(b), a, b ≥ 0.

As a non-decreasing, subadditive and unbounded function, α(r) sat-
isfies

α(r) ≤ α(r +R0) ≤ α(r) + α(R0)

for any R0 ≥ 0. This yields that α(r) ∼ α(r + R0) as r → +∞.
Throughout the present paper we take α, α1, α2, α3 ∈ L1, β ∈ L2,
γ ∈ L3.

Heittokangas et al. [3] have introduced a new concept of ϕ-order
of entire function considering ϕ as subadditive function. For details
one may see [3]. Later on Beläıdi et al. [1] have extended the idea and
have introduced the definitions of (α, β, γ)-order and (α, β, γ)-lower
order of an entire function f, which are as follows:

Definition 1. [1] The (α, β, γ)-order denoted by ρ(α,β,γ)[f ] and
(α, β, γ)-lower order denoted by λ(α,β,γ)[f ] of an entire function f are
defined as:

ρ(α,β,γ)[f ] = lim sup
r→+∞

α(log[2](M(r, f)))

β (log(γ(r)))

and λ(α,β,γ)[f ] = lim inf
r→+∞

α(log[2](M(r, f)))

β (log(γ(r)))
.

Remark 2. Let α(r) = log[p] r, (p ≥ 0), β(r) = log[q] r, (q ≥ 0) and

γ(r) = r, where log[k] x = log(log[k−1] x) (k ≥ 1), with convention that

log[0] x = x. If p = 0 and q = 0, i.e., α(r) = β(r) = r, Definition 1
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coincides with the usual order and lower order, when α(r) = log[p−1] r,
(p ≥ 1), β(r) = r, we obtain the iterated p-order and iterated lower p-

order (see [6]), moreover when α(r) = log[p−1] r and β(r) = log[q−1] r,
(p ≥ q ≥ 1), we get the (p, q)-order and lower (p, q)-order (see [4, 5]).

Beläıdi et al. [2] have also introduced the definition of another
growth indicator, called (α, β, γ)-type of an entire function f in the
following way:

Definition 3. [2] The (α, β, γ)-type denoted by σ(α,β,γ)[f ], of an entire

function f having finite positive (α, β, γ)-order
(
0 < ρ(α,β,γ)[f ] < +∞

)
is defined as:

σ(α,β,γ)[f ] = lim sup
r→+∞

exp(α(log[2] (M (r, f))))

(exp (β (log(γ(r)))))ρ(α,β,γ)[f ]
.

In this line, further one may introduce the definition of (α, β, γ)-lower
type of an entire function f which is as follows:

The (α, β, γ)-lower type denoted by σ(α,β,γ)[f ] of an entire function f

having finite positive (α, β, γ)-order
(
0 < ρ(α,β,γ)[f ] < +∞

)
is defined

as:

σ(α,β,γ)[f ] = lim inf
r→+∞

exp(α(log[2] (M (r, f))))

(exp (β (log(γ(r)))))ρ(α,β,γ)[f ]
.

It is obvious that 0 ≤ σ(α,β,γ)[f ] ≤ σ(α,β,γ)[f ] ≤ +∞.

Analogously, to determine the relative growth of two entire
functions having same non-zero finite (α, β, γ)-lower order, one can in-
troduce the definitions of (α, β, γ)-weak type and (α, β, γ)-upper weak
type of an entire function f of finite positive (α, β, γ)-lower order which
are as follows:

Definition 4. The (α, β, γ)-weak type denoted by τ(α,β,γ)[f ] and
(α, β, γ)-upper weak type denoted by τ (α,β,γ)[f ] of an entire function

f having finite positive (α, β, γ)-lower order
(
0 < λ(α,β,γ)[f ] < +∞

)
are defined as:

τ (α,β,γ)[f ] = lim sup
r→+∞

exp(α(log[2] (M (r, f))))

(exp (β (log(γ(r)))))λ(α,β,γ)[f ]

and τ(α,β,γ)[f ] = lim inf
r→+∞

exp(α(log[2] (M (r, f))))

(exp (β (log(γ(r)))))λ(α,β,γ)[f ]
.

It is obvious that 0 ≤ τ(α,β,γ)[f ] ≤ τ (α,β,γ)[f ] ≤ +∞.
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In this paper we study some growth properties relating to the
composition of two entire functions on the basis of (α, β, γ)-order,
(α, β, γ)-type and (α, β, γ)-weak type as compared to the growth of
their corresponding left and right factors.

2. Main results

In this section, the main results of the paper are presented.

Theorem 5. Let f and g be two entire functions such that 0 <
λ(α1,β,γ)[f(g)] ≤ ρ(α1,β,γ)[f(g)] < +∞ and 0 < λ(α2,β,γ)[f ] ≤
ρ(α2,β,γ)[f ] < +∞. Then

λ(α1,β,γ)[f(g)]

ρ(α2,β,γ)[f ]
≤ lim inf

r→+∞

α1

(
log[2](M(r, f(g)))

)
α2

(
log[2](M(r, f))

)
≤ min

{
λ(α1,β,γ)[f(g)]

λ(α2,β,γ)[f ]
,
ρ(α1,β,γ)[f(g)]

ρ(α2,β,γ)[f ]

}
≤ max

{
λ(α1,β,γ)[f(g)]

λ(α2,β,γ)[f ]
,
ρ(α1,β,γ)[f(g)]

ρ(α2,β,γ)[f ]

}

≤ lim sup
r→+∞

α1

(
log[2](M(r, f(g)))

)
α2

(
log[2](M(r, f))

) ≤
ρ(α1,β,γ)[f(g)]

λ(α2,β,γ)[f ]
.

Proof. From the definitions of λ(α1,β,γ)[f(g)], ρ(α1,β,γ)[f(g)], λ(α2,β,γ)[f ]
and ρ(α2,β,γ)[f ], we have for arbitrary positive ε and for all sufficiently
large values of r that

(1) α1

(
log[2](M(r, f(g)))

)
>
(
λ(α1,β,γ)[f(g)]− ε

)
β(log(γ(r))),

(2) α1

(
log[2](M(r, f(g)))

)
≤
(
ρ(α1,β,γ)[f(g)] + ε

)
β(log(γ(r))),

(3) α2

(
log[2](M(r, f))

)
>
(
λ(α2,β,γ)[f ]− ε

)
β(log(γ(r)))

(4) and α2

(
log[2](M(r, f))

)
≤
(
ρ(α2,β,γ)[f ] + ε

)
β(log(γ(r))).

Again for a sequence of values of r tending to infinity,

(5) α1

(
log[2](M(r, f(g)))

)
≤
(
λ(α1,β,γ)[f(g)] + ε

)
β(log(γ(r))),



SOME GROWTH PROPERTIES OF COMPOSITE ENTIRE FUNCTIONS 25

(6) α1

(
log[2](M(r, f(g)))

)
>
(
ρ(α1,β,γ)[f(g)]− ε

)
β(log(γ(r))),

(7) α2

(
log[2](M(r, f))

)
≤
(
λ(α2,β,γ)[f ] + ε

)
β(log(γ(r)))

(8) and α2

(
log[2](M(r, f))

)
>
(
ρ(α2,β,γ)[f ]− ε

)
β(log(γ(r))).

Now from (1) and (4) it follows for all sufficiently large values of r
that

α1

(
log[2](M(r, f(g)))

)
α2

(
log[2](M(r, f))

) >
λ(α1,β,γ)[f(g)]− ε
ρ(α2,β,γ)[f ] + ε

.

As ε (> 0) is arbitrary, we obtain that

(9) lim inf
r→+∞

α1

(
log[2](M(r, f(g)))

)
α2

(
log[2](M(r, f))

) >
λ(α1,β,γ)[f(g)]

ρ(α2,β,γ)[f ]
.

Combining (3) and (5) , we have for a sequence of values of r tending
to infinity that

α1

(
log[2](M(r, f(g)))

)
α2

(
log[2](M(r, f))

) ≤
λ(α1,β,γ)[f(g)] + ε

λ(α2,β,γ)[f ]− ε
.

Since ε (> 0) is arbitrary it follows that

(10) lim inf
r→+∞

α1

(
log[2](M(r, f(g)))

)
α2

(
log[2](M(r, f))

) ≤
λ(α1,β,γ)[f(g)]

λ(α2,β,γ)[f ]
.

Again from (1) and (7), for a sequence of values of r tending to
infinity, we get

α1

(
log[2](M(r, f(g)))

)
α2

(
log[2](M(r, f))

) ≥
λ(α1,β,γ)[f(g)]− ε
λ(α2,β,γ)[f ] + ε

.

As ε (> 0) is arbitrary, we get from above that

(11) lim sup
r→+∞

α1

(
log[2](M(r, f(g)))

)
α2

(
log[2](M(r, f))

) ≥
λ(α1,β,γ)[f(g)]

λ(α2,β,γ)[f ]
.
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It follows from (2) and (3) , for all sufficiently large values of r that

α1

(
log[2](M(r, f(g)))

)
α2

(
log[2](M(r, f))

) ≤
ρ(α1,β,γ)[f(g)] + ε

λ(α2,β,γ)[f ]− ε
.

Since ε (> 0) is arbitrary, we obtain that

(12) lim sup
r→+∞

α1

(
log[2](M(r, f(g)))

)
α2

(
log[2](M(r, f))

) ≤
ρ(α1,β,γ)[f(g)]

λ(α2,β,γ)[f ]
.

Now from (2) and (8) , it follows for a sequence of values of r tending
to infinity that

α1

(
log[2](M(r, f(g)))

)
α2

(
log[2](M(r, f))

) ≤
ρ(α1,β,γ)[f(g)] + ε

ρ(α2,β,γ)[f ]− ε
.

As ε (> 0) is arbitrary, we obtain that

(13) lim inf
r→+∞

α1

(
log[2](M(r, f(g)))

)
α2

(
log[2](M(r, f))

) ≤
ρ(α1,β,γ)[f(g)]

ρ(α2,β,γ)[f ]
.

Combining (4) and (6) , we get for a sequence of values of r tending
to infinity that

α1

(
log[2](M(r, f(g)))

)
α2

(
log[2](M(r, f))

) >
ρ(α1,β,γ)[f(g)]− ε
ρ(α2,β,γ)[f ] + ε

.

Since ε (> 0) is arbitrary, it follows that

(14) lim sup
r→+∞

α1

(
log[2](M(r, f(g)))

)
α2

(
log[2](M(r, f))

) >
ρ(α1,β,γ)[f(g)]

ρ(α2,β,γ)[f ]
.

Thus the theorem follows from (9) , (10) , (11), (12) , (13) and (14) .

Remark 6. If we take “ 0 < λ(α3,β,γ)[g] ≤ ρ(α3,β,γ)[g] < +∞” instead
of “ 0 < λ(α2,β,γ)[f ] ≤ ρ(α2,β,γ)[f ] < +∞” and other conditions remain
same, the conclusion of Theorem 5 remains true with “λ(α3,β,γ)[g]”,

“ρ(α3,β,γ)[g]” and “α3

(
log[2](M(r, g))

)
” in replace of “λ(α2,β,γ)[f ]”,

“ρ(α2,β,γ)[f ]” and “α2

(
log[2](M(r, f))

)
” respectively in the denomina-

tors.
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Theorem 7. Let f and g be two non-constant entire functions such
that 0 < λ(α,β,γ)[f ] ≤ ρ(α,β,γ)[f ] < +∞ and λ(α,β,γ)[f(g)] = +∞. Then

lim
r→+∞

α(log[2](M(r, f(g))))

α(log[2](M(r, f)))
= +∞.

Proof. If possible, let the conclusion of the theorem does not hold.
Then we can find a constant ∆ > 0 such that for a sequence of values
of r tending to infinity

(15) α(log[2](M(r, f(g)))) ≤ ∆ · α(log[2](M(r, f))).

Again from the definition of ρ(α,β,γ)[f ], it follows for all sufficiently
large values of r that

(16) α(log[2](M(r, f))) ≤ (ρ(α,β,γ)[f ] + ε)β(log(γ(r))).

From (15) and (16), for a sequence of values of r tending to +∞, we
have

α(log[2](M(r, f(g)))) ≤ ∆(ρ(α,β,γ)[f ] + ε)β(log(γ(r))),

i.e.,
α(log[2](M(r, f(g))))

β(log(γ(r)))
≤ ∆(ρ(α,β,γ)[f ] + ε),

i.e., lim inf
r→+∞

α(log[2](M(r, f(g))))

β(log(γ(r)))
< +∞,

i.e., λ(α,β,γ)[f(g)] < +∞.

This is a contradiction.
Thus the theorem follows.

Remark 8. If we take “ 0 < λ(α,β,γ)[g] ≤ ρ(α,β,γ)[g] < +∞” in-
stead of “ 0 < λ(α,β,γ)[f ] ≤ ρ(α,β,γ)[f ] < +∞” and other condi-
tions remain same, the conclusion of Theorem 7 remains true with
“α(log[2](M(r, g)))” in replace of “α(log[2](M(r, f)))” in the denomi-
nators.

Remark 9. Theorem 7 and Remark 8 are also valid with “limit su-
perior” instead of “limit” if “λ(α,β,γ)[f(g)] = +∞” is replaced by
“ρ(α,β,γ)[f(g)] = +∞” and the other conditions remain the same.

Theorem 10. Let f and g be two entire functions such that 0 <
σ(α1,β,γ)[f(g)] ≤ σ(α1,β,γ)[f(g)] < +∞, 0 < σ(α2,β,γ)[f ] ≤ σ(α2,β,γ)[f ]
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< +∞ and ρ(α1,β,γ)[f(g)] = ρ(α2,β,γ)[f ]. Then

σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]
≤ lim inf

r→+∞

exp(α1(log[2] (M(r, f(g)))))

exp(α2(log[2] (M(r, f))))

≤ min

{
σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]
,
σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]

}
≤ max

{
σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]
,
σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]

}
≤ lim sup

r→+∞

exp(α1(log[2] (M(r, f(g)))))

exp(α2(log[2] (M(r, f))))
≤
σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]
.

Proof. From the definition of σ(α2,β,γ)[f ], σ(α2,β,γ)[f ], σ(α1,β,γ)[f(g)] and
σ(α1,β,γ)[f(g)], we have for arbitrary ε(> 0) and for all sufficiently large
values of r that

exp(α1(log[2] (M(r, f(g)))))(17)

≤
(
σ(α1,β,γ)[f(g)] + ε

)
(exp(β(log(γ(r)))))ρ(α1,β,γ)[f(g)],

exp(α1(log[2] (M(r, f(g)))))(18)

≥
(
σ(α1,β,γ)[f(g)]− ε

)
(exp(β(log(γ(r)))))ρ(α1,β,γ)[f(g)],

(19)

exp(α2(log[2] (M(r, f)))) ≤
(
σ(α2,β,γ)[f ] + ε

)
(exp(β(log(γ(r)))))ρ(α2,β,γ)[f ],

(20)

exp(α2(log[2] (M(r, f)))) ≥
(
σ(α2,β,γ)[f ]− ε

)
(exp(β(log(γ(r)))))ρ(α2,β,γ)[f ].

Again for a sequence of values of r tending to infinity, we get that

exp(α1(log[2] (M(r, f(g)))))(21)

> (σ(α1,β,γ)[f(g)]− ε)(exp(β(log(γ(r)))))ρ(α1,β,γ)[f(g)],

exp(α1(log[2] (M(r, f(g)))))(22)

≤
(
σ(α1,β,γ)[f(g)] + ε

)
(exp(β(log(γ(r)))))ρ(α1,β,γ)[f(g)],

(23)

exp(α2(log[2] (M(r, f)))) ≤
(
σ(α2,β,γ)[f ] + ε

)
(exp(β(log(γ(r)))))ρ(α2,β,γ)[f ],

(24)

exp(α2(log[2] (M(r, f)))) ≥
(
σ(α2,β,γ)[f ]− ε

)
(exp(β(log(γ(r)))))ρ(α2,β,γ)[f ].
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Now from (18), (19) and the condition ρ(α1,β,γ)[f(g)] = ρ(α2,β,γ)[f ],
it follows for all sufficiently large values of r that

exp(α1(log[2] (M(r, f(g)))))

exp(α2(log[2] (M(r, f))))
>
σ(α1,β,γ)[f(g)]− ε
σ(α2,β,γ)[f ] + ε

.

As ε (> 0) is arbitrary, we obtain from above that

(25) lim inf
r→+∞

exp(α1(log[2] (M(r, f(g)))))

exp(α2(log[2] (M(r, f))))
>
σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]
.

Combining (20) and (22) and the condition ρ(α1,β,γ)[f(g)] =
ρ(α2,β,γ)[f ], we get for a sequence of values of r tending to infinity
that

exp(α1(log[2] (M(r, f(g)))))

exp(α2(log[2] (M(r, f))))
≤
σ(α1,β,γ)[f(g)] + ε

σ(α2,β,γ)[f ]− ε
.

Since ε (> 0) is arbitrary, it follows from above that

(26) lim inf
r→+∞

exp(α1(log[2] (M(r, f(g)))))

exp(α2(log[2] (M(r, f))))
≤
σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]
.

Again from (18), (23) and the condition ρ(α1,β,γ)[f(g)] = ρ(α2,β,γ)[f ],
we obtain for a sequence of values of r tending to infinity that

exp(α1(log[2] (M(r, f(g)))))

exp(α2(log[2] (M(r, f))))
≥
σ(α1,β,γ)[f(g)]− ε
σ(α2,β,γ)[f ] + ε

.

As ε (> 0) is arbitrary, we get from above that

(27) lim sup
r→+∞

exp(α1(log[2] (M(r, f(g)))))

exp(α2(log[2] (M(r, f))))
≥
σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]
.

In view of the condition ρ(α1,β,γ)[f(g)] = ρ(α2,β,γ)[f ], it follows from
(17) and (20) for all sufficiently large values of r that

exp(α1(log[2] (M(r, f(g)))))

exp(α2(log[2] (M(r, f))))
≤
σ(α1,β,γ)[f(g)] + ε

σ(α2,β,γ)[f ]− ε
.

Since ε (> 0) is arbitrary, we obtain that

(28) lim sup
r→+∞

exp(α1(log[2] (M(r, f(g)))))

exp(α2(log[2] (M(r, f))))
≤
σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]
.

From (17), (24) and the condition ρ(α1,β,γ)[f(g)] = ρ(α2,β,γ)[f ], it
follows for a sequence of values of r tending to infinity that

exp(α1(log[2] (M(r, f(g)))))

exp(α2(log[2] (M(r, f))))
≤
σ(α1,β,γ)[f(g)] + ε

σ(α2,β,γ)[f ]− ε
.
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As ε (> 0) is arbitrary, we obtain that

(29) lim inf
r→+∞

exp(α1(log[2] (M(r, f(g)))))

exp(α2(log[2] (M(r, f))))
≤
σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]
.

Combining (19) and (21) and in view of the condition ρ(α1,β,γ)[f(g)]
= ρ(α2,β,γ)[f ], we get for a sequence of values of r tending to infinity
that

exp(α1(log[2] (M(r, f(g)))))

exp(α2(log[2] (M(r, f))))
>
σ(α1,β,γ)[f(g)]− ε
σ(α2,β,γ)[f ] + ε

.

Since ε (> 0) is arbitrary, it follows that

(30) lim sup
r→+∞

exp(α1(log[2] (M(r, f(g)))))

exp(α2(log[2] (M(r, f))))
>
σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]
.

Thus the theorem follows from (25) , (26) , (27), (28) , (29) and (30) .

Remark 11. If we take “ 0 < σ(α3,β,γ)[g] ≤ σ(α3,β,γ)[g] < +∞”and
“ρ(α1,β,γ)[f(g)] = ρ(α3,β,γ)[g]” instead of “ 0 < σ(α2,β,γ)[f ] ≤
σ(α2,β,γ)[f ] < +∞” and “ρ(α1,β,γ)[f(g)] = ρ(α2,β,γ)[f ]” and other con-
ditions remain same, the results of Theorem 10 remain true with
“σ(α3,β,γ)[g]”, “σ(α3,β,γ)[g]” and“exp(α3(log[2] (M(r, g))))” instead of

“σ(α2,β,γ)[f ]”, “σ(α2,β,γ)[f ]” and “exp(α2(log[2] (M(r, f))))” respectively
in the denominators.

Remark 12. If we take “ 0 < τ(α2,β,γ)[f ] ≤ τ (α2,β,γ)[f ] < +∞”
and “ρ(α1,β,γ)[f(g)] = λ(α2,β,γ)[f ]” instead of “ 0 < σ(α2,β,γ)[f ] ≤
σ(α2,β,γ)[f ] < +∞” and “ρ(α1,β,γ)[f(g)] = ρ(α2,β,γ)[f ]” and other
conditions remain same, the results of Theorem 10 remain true
with “τ (α2,β,γ)[f ]” and “τ(α2,β,γ)[f ]” in place of “σ(α2,β,γ)[f ]” and
“σ(α2,β,γ)[f ]“ respectively in the denominators.

Remark 13. If we take “ 0 < τ(α3,β,γ)[g] ≤ τ (α3,β,γ)[g] < +∞”
and “ρ(α1,β,γ)[f(g)] = λ(α3,β,γ)[g]” instead of “ 0 < σ(α2,β,γ)[f ] ≤
σ(α2,β,γ)[f ] < +∞” and “ρ(α1,β,γ)[f(g)] = ρ(α2,β,γ)[f ]” and other con-
ditions remain same, the results of Theorem 10 remain true with
“τ(α3,β,γ)[g]”, “τ (α3,β,γ)[g]” and “exp(α3(log[2] (M(r, g))))” in place of

“σ(α2,β,γ)[f ]”, “σ(α2,β,γ)[f ]” and “exp(α2(log[2] (M(r, f))))” respectively
in the denominators.

Now in the line of Theorem 10 , one can easily prove the fol-
lowing theorem using the notions of (α, β, γ)-weak type and (α, β, γ)-
upper weak type and so the proof is omitted.
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Theorem 14. Let f and g be two entire functions such that 0 <
τ(α1,β,γ)[f(g)] ≤ τ (α1,β,γ)[f(g)] < +∞, 0 < τ(α2,β,γ)[f ] ≤ τ (α2,β,γ)[f ]
< +∞ and λ(α1,β,γ)[f(g)] = λ(α2,β,γ)[f ]. Then

τ(α1,β,γ)[f(g)]

τ (α2,β,γ)[f ]
≤ lim inf

r→+∞

exp(α1(log[2] (M(r, f(g)))))

exp(α2(log[2] (M(r, f))))

≤ min

{
τ(α1,β,γ)[f(g)]

τ(α2,β,γ)[f ]
,
τ (α1,β,γ)[f(g)]

τ (α2,β,γ)[f ]

}
≤ max

{
τ(α1,β,γ)[f(g)]

τ(α2,β,γ)[f ]
,
τ (α1,β,γ)[f(g)]

τ (α2,β,γ)[f ]

}
≤ lim sup

r→+∞

exp(α1(log[2] (M(r, f(g)))))

exp(α2(log[2] (M(r, f))))
≤
τ (α1,β,γ)[f(g)]

τ(α2,β,γ)[f ]
.

Remark 15. If we take “ 0 < τ(α3,β,γ)[g] ≤ τ (α3,β,γ)[g] < +∞”
and “λ(α1,β,γ)[f(g)] = λ(α3,β,γ)[g]” instead of “ 0 < τ(α2,β,γ)[f ] ≤
τ (α2,β,γ)[f ] < +∞” and “λ(α1,β,γ)[f(g)] = λ(α2,β,γ)[f ]” and other con-
ditions remain same, the results of Theorem 14 remain true with
“τ(α3,β,γ)[g]”, “τ (α3,β,γ)[g]” and “exp(α3(log[2] (M(r, g))))” in place of

“τ(α2,β,γ)[f ]”, “τ (α2,β,γ)[f ]” and “exp(α2(log[2] (M(r, f))))” respectively
in the denominators.

Remark 16. If we take “ 0 < σ(α2,β,γ)[f ] ≤ σ(α2,β,γ)[f ] < +∞”
and “λ(α1,β,γ)[f(g)] = ρ(α2,β,γ)[f ]” instead of “ 0 < τ(α2,β,γ)[f ] ≤
τ (α2,β,γ)[f ] < +∞” and “λ(α1,β,γ)[f(g)] = λ(α2,β,γ)[f ]” and other
conditions remain same, the results of Theorem 14 remain true
with “σ(α2,β,γ)[f ]” and “σ(α2,β,γ)[f ]” in place of “τ(α2,β,γ)[f ]” and
“τ (α2,β,γ)[f ]” respectively in the denominators.

Remark 17. If we take “ 0 < σ(α3,β,γ)[g] ≤ σ(α3,β,γ)[g] < +∞”
and “λ(α1,β,γ)[f(g)] = ρ(α3,β,γ)[g]” instead of “ 0 < τ(α2,β,γ)[f ] ≤
τ (α2,β,γ)[f ] < +∞” and “λ(α1,β,γ)[f(g)] = λ(α2,β,γ)[f ]” and other con-
ditions remain same, the results of Theorem 14 remain true with
“σ(α3,β,γ)[g]”, “σ(α3,β,γ)[g]” and “exp(α3(log[2] (M(r, g))))” in place of

“τ(α2,β,γ)[f ]”, “τ (α2,β,γ)[f ]” and “exp(α2(log[2] (M(r, f))))” respectively
in the denominators.
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