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Abstract. The object of the present study is to determine effect of
space-matter tensor in several types of curvature restrictions on Rie-
mannian manifolds like Einstein manifold, quasi Einstein manifold,
generalized quasi Einstein manifold and pseudo generalized quasi Ein-
stein manifold.

1. Introduction

A. Z. Petrov [12] in 1949 introduced a tensor P of type (0, 4) sat-
isfying the equation all the algebraic properties of the Riemannian
curvature tensor. It is defined by

(1) P-
k

2
G ∧ T −R + σG = 0,
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where R is the Riemann curvature tensor of type (0, 4), T is the
energy-momentum tensor of type (0, 2), k is a cosmological constant,
σ is the energy density (scalar), G is a tensor of type (0, 4) given by

G(U1, U2, U3, U4) = G(U1, U4)G(U2, U3)−G(U1, U3)G(U2, U4)

for all U1, U2, U3, U4 ∈ χ(M), χ(M) being the Lie algebra of smooth
vector fields on M and the Kulkarni-Nomizu product u∧v of two (0, 2)
tensors u and v is defined by

(u ∧ v)(U1, U2, U3, U4) = u(U1, U4)v(U2, U3) + u(U2, U3)v(U1, U4)

− u(U1, U3)v(U2, U4)− u(U2, U4)v(U1, U3),

Ui ∈ χ(M), i = 1, 2, 3, 4. The tensor P is known as the space-matter
tensor of type (0, 4) of the manifold M . The most important char-
acteristic of space matter tensor is that it satisfies all the algebraic
properties of the Riemannian curvature tensor. The first part of the
tensor represents the curvature of the space and the second part rep-
resents the distribution and motion of the matter.

A tensor field P of type (0, 4) is said to be generalized space matter
tensor if it satisfies the following equation

(2) P− µ1R−
k

2
µ2G ∧ T − µ3G=0,

where µ1, µ2, µ3 are non-zero scalars. If we take µ1 = 1, µ2 = 1 and
µ3 = −σ then generalized space matter tensor becomes simply a space
matter tensor.
Einstein’s field equation with cosmological constant is given by

(3) kT = S +

(
λ− R

2

)
G,

where λ is a cosmological constant, R is the scalar curvature and S is
the Ricci tensor of type (0, 2). By virtue of (3), (2

(4) P = µ1R +
µ2

2
G ∧ S +

(
µ3 + µ2λ−

µ2R

2

)
G.

Some interesting properties of generalized space-matter tensor P sat-
isfying certain curvature conditions have discussed in section 2.

2. Preliminaries

In this section we deal with some fundamental properties of P under
certain curvature conditions. The Ricci tensor S of type (0, 2) and
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the scalar curvature R can be obtained from the curvature tensor by
the following relations

S(X, Y ) = G(QX, Y ) =
n∑
i=1

R(ei, X, Y, ei)

and

R =
n∑
i=1

S(ei, ei) =
n∑
i=1

G(Qei, ei),

where {ei : i = 1, 2, ..., n} be an orthonormal basis of the tangent space
at any point of the manifold and Q is the symmetric endomorphism
corresponding to the Ricci tensor S.

Differentiating (2) covariantly and then taking cyclic sum with re-
spect to X, Y , Z; we obtain by the view of Bianchi identity that

(∇XP)(Y, Z, U, V ) + (∇YP)(Z,X,U, V ) + (∇ZP)(X, Y, U, V )

=
k

2
µ2[{(∇XT )(Z,U)− (∇ZT )(X,U)}G(Y, V ) + {(∇Y T )(X,U)

−(∇XT )(Y, U)}G(Z, V ) + {(∇ZT )(Y, U)− (∇Y T )(Z,U)}G(X, V )

+{(∇XT )(Y, V )− (∇Y T )(X, V )}G(Z,U) + {(∇ZT )(X, V )

−(∇XT )(Z, V )}G(Y, U) + {(∇Y T )(Z, V )− (∇ZT )(Y, V )}G(X,U)]

+
k

2
{dµ2(X)G ∧ T (Y, Z, U, V ) + dµ2(Y )G ∧ T (Z,X,U, V )

+dµ2(Z)G ∧ T (X, Y, U, V )}+ dµ3(X){G(Z,U)G(Y, V )−G(Z, V )G(Y, U)}
+dµ3(Y ){G(Z, V )G(X,U)−G(Z,U)G(X, V )}
+dµ3(Z){G(Y, U)G(X, V )−G(X,U)G(Y, V )}.

We now list few major results (for proof refer [21]) which will be
fundamental in the entire work.

Consider a Riemannian manifold (Mn, g) (n > 3), in which the gen-
eralized space-matter tensor of type (0, 4) vanishes identically. Then
equation (4) takes the form

(5) aR +
b

2
g ∧ S +

(
c+ bλ− br

2

)
G = 0.

Contractions of (5) yields

(6) uS + [2(n− 1)(c+ bλ)− (n− 2)br]g = 0,

(7) vr + 2n(n− 1)(c+ bλ) = 0,
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where where u = 2a+ (n− 2)b, v = 2a− (n− 1)(n− 2)b.
Next in a Riemannian manifold (Mn, g) (n > 3) with

(8) (∇XP̃ )(Y, Z, U, V ) = 0.

we have

2a(∇XR)(Y, Z, U, V ) + b[(∇XS)(Y, V )g(Z,U)(9)

+(∇XS)(Z,U)g(Y, V )− (∇XS)(Y, U)g(Z, V )

−(∇XS)(Z, V )g(Y, U)] + 2[dc(X) + λdb(X)

−1

2
{bdr(X) + rdb(X)}]G(Y, Z, U, V ) + 2da(X)R(Y, Z, U, V )

+db(X)[S(Y, V )g(Z,U) + S(Z,U)g(Y, V )

−S(Y, U)g(Z, V )− S(Z, V )g(Y, U)] = 0

whose contraction gives

u(∇XS)(Z,U) + du(X)S(Z,U) + [2(n− 1){dc(X) + λdb(X)}
− (n− 2){bdr(X) + rdb(X)}]g(Z,U) = 0.

Further contraction and then letting u = 0 gives

(10) dc(X) = −λdb(X).

[2a− (n− 2)b]dr(Z) + 2du(QZ) + 4(n− 1)[dc(Z) + λdb(Z)](11)

= 2(n− 2)rdb(Z).

(12) (n− 2)udr(Z) + 2ndu(QZ) = 2du(Z)r.

If r is constant then from the above relation we get that either u is
also constant or

J1(QX) =
r

n
J1(X),

which gives

S(X, τ1) =
r

n
g(X, τ1),

where g(X, τ1) = J1(X) = du(X) for all vector fields X. Let us
consider that a, b are constants and u is non-zero. Then we have

(13) dr(X) = 0 for all X ∈ χ(M).

(14) dc(X) = 0 for all X ∈ χ(M).

(15) (∇XS)(Z,U) = 0 for all X, Z, U ∈ χ(M).

(16) ∇R = 0.

(∇XP̃ )(Y, Z, U, V ) = dc(X)G(Y, Z, U, V ).
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Again if in a Riemannian manifold (Mn, g) (n > 3) admitting Ein-
stein’s field equation, the generalized space-matter tensor P̃ of type
(0, 4) is recurrent then we have

(17) (∇XP̃ )(Y, Z, U, V ) = L(X)P̃ (Y, Z, U, V ),

where L is the non-zero 1-form of recurrence such that L(X) = g(X, ρ)
for all vector fields X and ρ be the unit vector field associated with
L. By the virtue of the above relation we obtain

(18) S(Z, ρ) =
r0
2u
g(Z, ρ),

where r0 = 2(n − 1)(n − 2)(c + λb) + {2a − (n − 2)(n − 3)b}r and
g(Z, ρ) = L(Z) for all vector fields Z. Now in the view of (17), (4)
converts into

u(∇XS)(Z,U) + du(X)S(Z,U) + [2(n− 1){dc(X)(19)

+λdb(X)} − (n− 2){bdr(X) + rdb(X)}]g(Z,U)

= L(X)[uS(Z,U) + {2(n− 1)(c+ λb)− (n− 2)br}g(Z,U)].

Taking contraction we get

vdr(X) + dv(X)r + 2n(n− 1)[dc(X) + λdb(X)](20)

= [vr + 2n(n− 1)(c+ λb)]L(X).

which reduces to

vdr(ρ) + dv(ρ)r + 2n(n− 1)[dc(ρ) + λdb(ρ)](21)

= [vr + 2n(n− 1)(c+ λb)]L(ρ).

by substituting X = ρ.
Again v = 0 gives

(22) L(X) =
dc(X) + λdb(X)

(c+ λb)
.

Further if v 6= 0 and r, a, b, c are constants gives

(23) r = −2n(n− 1)
(c+ λb)

v
,

Also

[2a− (n− 2)b]dr(Z) + 2du(QZ) + 4(n− 1)[dc(Z)(24)

+λdb(Z)]− 2(n− 2)rdb(Z)

= 2uL(QZ) + 2[2(n− 1)(c+ λb)− (n− 2)br]L(Z).

By the virtue of (20) and (24) it follows that

(25) (n− 2)udr(Z) + 2n[du(QZ)− uL(QZ)] = 2r[du(Z)− uL(Z)].
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If r is constant then the last relation yields

(26) J2(QZ) =
r

n
J2(Z),

which gives

S(Z, τ2) =
r

n
g(Z, τ2),

where g(Z, τ2) = J2(Z) = du(Z) − uL(Z) for all vector fields Z. Let
us consider r, a, b be constants. Then we have from (25)

(27) L(QZ) =
r

n
L(Z),

which yields

S(Z, ρ) =
r

n
g(Z, ρ).

At last in a Riemannian manifold (Mn, g) (n > 3) admitting Ein-
stein’s field equation, we take the generalized space-matter tensor P̃
of type (0, 4) satisfying

(∇XP̃ )(Y, Z, U, V ) = A(X)P̃ (Y, Z, U, V ) +B(Y )P̃ (X,Z, U, V )(28)

+ B(Z)P̃ (Y,X, U, V ) + E(U)P̃ (Y, Z,X, V )

+ E(V )P̃ (Y, Z, U,X),

where A, B and E are 1-forms (not simultaneously zero) such that
A(X) = g(X, ρ1), B(X) = g(X, ρ2), E(X) = g(X, ρ3) for all vector
fields X and ρ1, ρ2, ρ3 be the unit vector fields associated with A, B,
E respectively. In the view of (28), the equation (??) takes the form

(29) J3(QX) =
r0
2u
J3(X)

where g(X, τ3) = J3(X) for all vector fields X.
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Now in the view of (28), we obtain

u(∇XS)(Z,U) + du(X)S(Z,U) + [2(n− 1){dc(X) + λdb(X)}(30)

−(n− 2){bdr(X) + rdb(X)}]g(Z,U)

= A(X)[uS(Z,U) + {2(n− 1)(c+ λb)

−(n− 2)br}g(Z,U)] + [2aR(X,Z, U, ρ2) + b{B(QX)g(Z,U)

+B(X)S(Z,U)−B(Z)S(X,U)−B(QZ)g(X,U)}+ 2(c+ λb

−br
2

)G(X,Z, U, ρ2)] +B(Z)[2aS(X,U) + b{rg(X,U)

+(n− 2)S(X,U)}+ 2(n− 1)(c+ λb− br

2
)g(X,U)]

+E(U)[2aS(X,Z) + b{rg(X,Z) + (n− 2)S(X,Z)}+ 2(n− 1)(c+ λb

−br
2

)g(X,Z)] + [2aR(ρ3, Z, U,X) + b{E(QX)g(Z,U)

+E(X)S(Z,U)− E(U)S(X,Z)− E(QU)g(X,Z)}

+2(c+ λb− br

2
)G(ρ3, Z, U,X)].

Setting Z = U = ei in (??) and taking summation over i, 1 ≤ i ≤ n,
we find

vdr(X) + rdv(X) + 2n(n− 1)[dc(X) + λdb(X)](31)

= [vr + 2n(n− 1)(c+ λb)]A(X) + 2[uJ4(QX)

+ {br + 2(n− 1)(c+ λb− br

2
)}J4(X)],

where J4(X) = B(X)+E(X) for all vector fields X. Contracting (??)
with respect to X and U , we have

1

2
[2a− (n− 2)b]dr(Z) + du(QZ)(32)

+2(n− 1)[dc(Z) + λdb(Z)]− (n− 2)rdb(Z)

= uA(QZ) + [2(n− 1)(c+ λb)− (n− 2)br]A(Z)

+[{2a+ (2n− 3)b}r + 2(n− 1)2(c+ λb− br

2
)]B(Z)

−uJ5(QZ) + [br + 2(n− 1)(c+ λb− br

2
)]E(Z),
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where J5(Z) = B(Z)−E(Z) for all vector fields Z. Finally contracting
(??) with respect to X, Z and replacing U by Z, we get

1

2
[2a− (n− 2)b]dr(Z) + du(QZ)(33)

+2(n− 1)[dc(Z) + λdb(Z)]− (n− 2)rdb(Z)

= uA(QZ) + [2(n− 1)(c+ λb)− (n− 2)br]A(Z)

+uJ5(QZ) + [br + 2(n− 1)(c+ λb− br

2
)]B(Z)

+[{2a+ (2n− 3)b}r + 2(n− 1)2(c+ λb− br

2
)]E(Z).

Now (32) and (33) yield

(34) J5(QX) =
1

u
[{a+(n−2)b}r+(n−1)(n−2){c−(r−2λ)

b

2
}]J5(X),

provided that u is non-zero. Which gives

S(X, τ5) =
1

u
[{a+ (n− 2)b}r+ (n− 1)(n− 2){c− (r− 2λ)

b

2
}]g(X, τ5),

where g(X, τ5) = J5(X) = B(X)− E(X) for all vector fields X. And
if u = 0, then we can obtain

(35) either r =
2(n− 1)(c+ λb)

(n− 2)b
or B(X) = E(X).

Again we have

[2a− (n− 2)b]dr(Z) + 2du(QZ)(36)

+4(n− 1)[dc(Z) + λdb(Z)]− 2(n− 2)rdb(Z)

= 2uA(QZ) + 2[2(n− 1)(c+ λb)− (n− 2)br]A(Z)

+2[{a+ (n− 1)b}r + n(n− 1)(c+ λb− br

2
)]J4(Z),

(n− 2)udr(Z) + 2ndu(QZ)− 2du(Z)r(37)

= 2u[nA(QZ)− rA(Z)− 2J4(QZ)]

+ 4[{2na− (n− 2)(n2 − n− 4)b}r
+ 2(n+ 2)(n− 1)(n− 2)(c+ λb)]J4(Z).

Suppose u = 0. Then from the above relation we get

(38) either r =
2(n− 1)(c+ λb)

(n− 2)b
or B(X) = −E(X).
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Hence from (35) and (38) we have, if u = 0 then the only possible case

is r = 2(n−1)(c+λb)
(n−2)b . Now by the virtue of (31) and (36), we have

[2da(Z)− (n− 2)(n− 3)db(Z)]r(39)

+2(n− 1)(n− 3)[dc(Z) + λdb(Z)]

−(n− 2)2bdr(Z)− [2ar − (n− 2)

·{(n− 3)br − 2(n− 1)(c+ λb)}]J6(Z)

= 2du(QZ)− 2uJ6(QZ),

where J6(Z) = A(Z)−B(Z)−E(Z) for all vector fields Z. If r, a, b, c
are constants and u is non-zero then the above relation becomes

J6(QZ) =
1

2u
[{2a− (n− 3)(n− 2)b}r+ 2(n− 2)(n− 1)(c+λb)]J6(Z),

which implies

S(Z, τ6) =
1

2u
[{2a−(n−3)(n−2)b}r+2(n−2)(n−1)(c+λb)]g(Z, τ6),

where g(Z, τ6) = J6(Z) = A(Z)−B(Z)−E(Z) for all vector fields Z.
Further using (31) and (36), we can obtain

[4a− n(n− 2)b]dr(Z) + 2du(QZ)(40)

+[2da(Z)− (n+ 1)(n− 2)db(Z)]r

+2(n+ 2)(n− 1)[dc(Z) + λdb(Z)]

= 2uJ7(QZ) + [2ar − (n+ 1)(n− 2)br

+2(n+ 2)(n− 1)(c+ λb)]J7(Z),

where J7(Z) = A(Z) +B(Z) + E(Z) for all vector fields Z.

3. Einstein manifold with generalized space-matter
tensor

In the present section we study about some interesting properties
of Einstein manifold admitting generalized space-matter tensor. If a
Riemannian manifold is Einstein manifold then its Ricci tensor satisfies
the following condition

(41) S(X, Y ) =
R

n
G(X, Y )

from which it follows that

(42) (∇ZS)(X, Y ) = 0 and dR(X) = 0 for all X, Y, Z ∈ χ(M).
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By the virtue of (41), we find from (18) and also from (23) that

(43) R = −2n(n− 1)
(µ3 + λµ2)

v
,

which leads to the following:

Theorem 1. In an Einstein manifold (Mn, G) (n > 3) admitting
Einstein’s field equation and recurrent generalized space-matter tensor,
if µ2, µ3 are constants then the scalar curvature is given by the relation
( 43), provided that either µ1 is also constant or the energy-momentum
tensor is of Codazzi type.

Let us assume that µ1, µ2, µ3 be constants then by the virtue of
(41), (42) and (34) it follows that

(44) R = −2n(n− 1)
(µ3 + λµ2)

v
.

Hence we can state the following:

Theorem 2. In an Einstein manifold (Mn, G) (n > 3) admitting
Einstein’s field equation and with weakly symmetric generalized space-
matter tensor if µ1, µ2, µ3 are constants, then always µ1, µ2 are
connected by the relation 2µ1 + (n− 2)µ2 = 0 and the scalar curvature
R is given by the relation ( 44).

4. Quasi-Einstein manifold with generalized
space-matter tensor

This section is concerned about Quasi-Einstein manifold ad-
mitting generalized space-matter tensor. A Riemannian manifold
(Mn, G) (n > 3) is said to be quasi-Einstein ([2], [4], [5], [6], [7], [8])
if its Ricci tensor S is not identically zero and satisfies the following
relation

(45) S = α1G+ α2π ⊗ π,

where α1, α2(6= 0) are associated scalars and π is a non-zero 1-form
which is defined by G(X, ς) = π(X) for any vector field X; ς being a
unit vector field, called the generator of the manifold. Such type of
manifold is denoted by (QE)n (n > 3). The relation (45) implies

(46) S(ς, ς) = α1 + α2 and R = nα1 + α2.
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Differentiating covariantly the equation (45) with respect to X, we
obtain

(∇XS)(Y, Z) = dα1(X)G(Y, Z) + dα2(X)π(Y )π(Z)(47)

+ α2[(∇X)π(Y )π(Z) + (∇X)π(Z)π(Y )]

Replacing X and Y by ς in (6) and using (46), we can obtain

(48) vα1 + 2µ1α2 + 2(n− 1)(µ3 + µ2λ) = 0.

Again by (46) and (7), we have

(49) v(nα1 + α2) + 2n(n− 1)(µ3 + µ2λ) = 0.

So from (48) and (49), we obtain uα2 = 0. Since α2 is non-zero,
therefore u = 0 i.e. 2µ1 + (n− 2)µ2 = 0. Therefore from (49) we have

(n− 2)µ2(nα1 + α2) = 2(n− 1)(µ3 + µ2λ).

Hence we can state the following:

Theorem 3. In a (QE)n (n > 3) admitting Einstein’s field equation
and with vanishing generalized space-matter tensor; α1, α2, µ2, µ3

are connected by the relation (n−2)µ2(nα1 +α2) = 2(n−1)(µ3 +µ2λ)
whenever µ1, µ2 are connected by the relation 2µ1 + (n− 2)µ2 = 0.

Let us consider nα1 + α2 be constant. Then by the virtue of (46)
and (12) it follows that either u is also constant or

(50) J1(QX) =
nα1 + α2

n
J1(X),

which gives S(X, τ1) = nα1+α2

n
G(X, τ1). This leads to the following:

Theorem 4. If in a (QE)n (n > 3) admitting Einstein’s field equa-
tion and with symmetric generalized space-matter tensor; nα1 + α2 is
constant then either u is also constant or nα1+α2

n
is an eigen value

of the Ricci tensor S corresponding to the eigen vector τ1 defined by
G(X, τ1) = J1(X) = du(X) for all X ∈ χ(M).

Again if µ1, µ2 are constants and u 6= 0 then also by the virtue of
(46), (12) reduces to ndα1(X) + dα2(X) = 0 and consequently from
(15) it can be shown that dα1(X) +dα2(X) = 0. Therefore we get the
following equation

(51) dα1(X) = 0 and dα2(X) = 0.

Now in the view of (15) and (51), (47) takes the form

(52) (∇X)π(Y )π(Z) + (∇X)π(Z)π(Y ) = 0.
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Putting Z = ς in the above relation we obtain

(53) (∇X)π(Y ) = 0.

Hence we can state the following:

Theorem 5. If in a (QE)n (n > 3) admitting Einstein’s field equa-
tion and with symmetric generalized space-matter tensor; µ1, µ2 are
constants and u is non-zero then α1, α2 and the 1-form π all are
constants.

Applying (45) in (18), we have

L(QX) =
R1

2u
L(X),

which implies

S(X, ρ) =
R1

2u
G(X, ρ),

whereR1 = 2(n−1)(n−2)(µ3+λµ2)+{2µ1−(n−2)(n−3)µ2}(nα1+α2).
This leads to the following:

Theorem 6. If in a (QE)n (n > 3) admitting Einstein’s field equation
with recurrent generalized space-matter tensor, the energy-momentum
tensor is of Codazzi type then R1

2u
is the eigenvalue of the Ricci tensor

S corresponding to the eigenvector ρ, defined by G(X, ρ) = L(X) for
all X ∈ χ(M), whenever µ2, µ3 are constants.

Now setting X = ρ in (20) and using (46), we get

v[ndα1(ρ) + dα2(ρ)] + dv(ρ)(nα1 + α2) + 2n(n− 1)[dµ3(ρ) + λdµ2(ρ)]

= v(nα1 + α2) + 2n(n− 1)(µ3 + λµ2)L(ρ).

Therefore we gate the following:

Theorem 7. In a (QE)n (n > 3) admitting Einstein’s field equation
and with recurrent generalized space-matter tensor, the generator of
recurrence ρ is given by the relation (??).

Suppose nα1 + α2 is constant. Then by the virtue of (46), (20) we
get that

(54) v(nα1 + α2) + 2n(n− 1)(µ3 + λµ2) = 0,

provided that µ1, µ2, µ3 are constants and again by the virtue of (46)
and (25), we also get that

(55) J2(QX) =
nα1 + α2

n
J2(X),
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which gives S(X, τ2) = nα1+α2

n
G(X, τ2) and

(56) L(QX) =
nα1 + α2

n
L(X),

which implies S(X, ρ) = nα1+α2

n
G(X, ρ), provided that µ1, µ2 are con-

stants. Thus we can state the following:

Theorem 8. In a (QE)n (n > 3) admitting Einstein’s field equation
and recurrent generalized space-matter tensor, if nα1 + α2 is constant
then,
(i) nα1+α2

n
is an eigen value of the Ricci tensor S corresponding to the

eigen vector τ2, defined by G(X, τ2) = J2(X) = du(X)−uL(X) for all
X ∈ χ(M);
(ii) nα1+α2

n
is an eigen value of the Ricci tensor S corresponding to

the eigen vector ρ, defined by L(X) = G(X, ρ) for all X ∈ χ(M),
whenever µ1, µ2 are constants.
(iii) α1, α2, µ1, µ2, µ3 are connected by the relation (54), whenever
µ1, µ2, µ3 are constants.

Again applying (45) in (29), we find

(57) J3(QX) =
R1

2u
J3(X),

which implies

(58) S(X, τ3) =
R1

2u
G(X, τ3).

Hence we have the following:

Theorem 9. If in a (QE)n, (n > 3) admitting Einstein’s field
equation with weakly symmetric generalized space-matter tensor, the
energy-momentum tensor is of Codazzi type then R1

2u
is the eigenvalue

of the Ricci tensor S corresponding to the eigenvector τ3, defined by
G(X, τ3) = J3(X) = µ1(X) − 2µ2(X) for all X ∈ χ(M), whenever
µ2, µ3 are constants.

Now (46), (32) and (33) yield

J5(QX) =
1

u
[(nα1 + α2){µ1 + (n− 2)µ2}

+(n− 1)(n− 2){µ3 − (nα1 + α2 − 2λ)
µ2

2
}]J5(X),(59)
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provided that u is non-zero, which in turn gives

S(X, τ5) =
1

u
[(nα1 + α2){µ1 + (n− 2)µ2}

+(n− 1)(n− 2){µ3 − (nα1 + α2 − 2λ)
µ2

2
}]G(X, τ5).(60)

And if u = 0, then

(n− 2)(nα1 + α2)µ2 = 2(n− 1)(µ3 + λµ2).

If nα1 + α2, µ1, µ2, µ3 are constants then by the virtue of (46), (??)
and (40); we obtain

J6(QX) =
1

2u
[(nα1 + α2){2µ1

−(n− 3)(n− 2)µ2}+ 2(n− 2)(n− 1)(µ3 + λµ2)]J6(X),(61)

which implies

S(X, τ6) =
1

2u
·[(nα1 + α2){2µ1 − (n− 3)(n− 2)µ2}
+2(n− 2)(n− 1)(µ3 + λµ2)]G(X, τ6)(62)

and

J7(QX) =
−1

2u
[(nα1 + α2){2µ1 − (n+ 1)(n− 2)µ2}

+2(n+ 2)(n− 1)(µ3 + λµ2)]J7(X),(63)

which implies

S(X, τ7) = − 1

2u
·[(nα1 + α2) {2µ1 − (n+ 1)(n− 2)µ2}
+2(n+ 2)(n− 1)(µ3 + λµ2)]G(X, τ7)(64)

where J6(X) = µ1(X)− µ2(X)− E(X)
and
J7(X) = µ1(X) + µ2(X) + E(X)
provided that u is non-zero unless it follows that

(65) (n− 2)(nα1 + α2)µ2 = 2(n− 1)(µ3 + λµ2).

This leads to the following:

Theorem 10. In a (QE)n (n > 3) admitting Einstein’s field equation
and with weakly symmetric generalized space-matter tensor if u is zero
then the scalars α1, α2, µ2, µ3 are connected by the relation (n −
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2)(nα1 + α2)µ2 = 2(n− 1)(µ3 + λµ2) otherwise,
(i) 1

u
[(nα1+α2){µ1+(n−2)µ2}+(n−1)(n−2){µ3−(nα1+α2−2λ)µ2

2
}]

is an eigen value of the Ricci tensor S corresponding to the eigen vector
τ5, defined by G(X, τ5) = J5(X) = µ2(X)− E(X) for all X ∈ χ(M);
(ii) 1

2u
[(nα1+α2){2µ1−(n−3)(n−2)µ2}+2(n−2)(n−1)(µ3+λµ2)] and

−1
2u

[(nα1 +α2){2µ1− (n+ 1)(n−2)µ2}+ 2(n+ 2)(n−1)(µ3 +λµ2)] are
eigen values of the Ricci tensor S corresponding to the eigen vector
τ6, defined by G(X, τ6) = J6(X) = µ1(X) − µ2(X) − E(X) for all
X ∈ χ(M) and the eigen vector τ7, defined by G(X, τ7) = J7(X) =
µ1(X)+µ2(X)+E(X) for all X ∈ χ(M) respectively, whenever nα1+
α2, µ1, µ2, µ3 are constants.

5. Generalized quasi-Einstein manifold(U. C. De) with
generalized space-matter tensor

This section deals with the study of generalized quasi-Einstein man-
ifold admitting generalized space-matter tensor. A Riemannian mani-
fold (Mn, G) (n > 3) is said to be generalized quasi-Einstein manifold
[] if its Ricci tensor is not identically zero and satisfies the following
relation

(66) S(X, Y ) = β1G(X, Y ) + β2µ(X)µ(Y ) + β3ϕ(X)ϕ(Y ).

where β1, β2( 6= 0), β3(6= 0) are nonzero scalars and µ, ϕ are non-zero
1-forms such that µ(X) = G(X, ς1), ϕ(X) = G(X, ς2) for all vector
fields X and ς1, ς2 are the unit vector fields. This type of manifold of
dimension n is denoted by G(QE)n.
From (66) we have
(67)
S(ς1, ς1) = β1+β2, S(ς2, ς2) = β1+β3, S(ς1, ς2) = 0; R = nβ1+β2+β3.

By the virtue of (66), (5) becomes to the following equation

(68) 2µ1R = [µ2R− 2(λµ2 + µ3 + β1)]G− µ2(β2G ∧ µ′ + β3G ∧ ϕ′),

where µ′(X, Y ) = µ(X)µ(Y ) and ϕ′(X, Y ) = ϕ(X)ϕ(Y ). The con-
traction of (68) gives

2µ1S(Z,U) = [(n− 1){µ2R− 2(λµ2 + µ3 + β1)} − µ2(β2 + β3)]G(Z,U)

− (n− 2)µ2[β2µ
′(Z,U) + β3ϕ

′(Z,U).

Setting Z = U = ς1 in, we get
(69)
2µ1S(ς1, ς1) = (n−1){µ2R−2(λµ2+µ3+β1)}−µ2(β2+β3)−(n−2)µ2β2.
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Further setting Z = U = ς2 we have
(70)
2µ1S(ς2, ς2) = (n−1){µ2R−2(λµ2+µ3+β1)}−µ2(β2+β3)−(n−2)µ2β3.

In the view of (67), (69) and (70) it follows that

(71) S(ς1, ς1) = β1 + β2 = S(ς2, ς2), provided that u 6= 0

This gives the following:

Theorem 11. In a G(QE)n (n > 3) manifold admitting Einstein’s
field equation and with vanishing generalized space matter tensor, the
scalar β1 + β2 is the Ricci curvature in the directions of both the gen-
erators ς1 and ς2, whenever u 6= 0.

Differentiating covariantly the equation (66) with respect to X, we
obtain

(∇XS)(Y, Z) = dβ1(X)G(Y, Z) + dβ2(X)µ(Y )µ(Z)(72)

+ dβ3(X)ϕ(Y )ϕ(Z)

+ β2[(∇X)µ(Y )µ(Z) + (∇X)µ(Z)µ(Y )]

+ β3[(∇X)ϕ(Y )ϕ(Z) + (∇X)ϕ(Z)ϕ(Y )].

By the virtue of (67), (7) takes the form

(73) v(nβ1 + β2 + β3) + 2n(n− 1)(µ3 + µ2λ) = 0.

Hence we have the following:

Theorem 12. In a G(QE)n (n > 3) admitting Einstein’s
field equation and with vanishing generalized space-matter tensor;
β1, β2, β3, µ1, µ2, µ3 are connected by the relation (73).

Suppose nβ1 + β2 + β3 is constant. Then using the equations (67)
and (12), we find that either u is also constant or

J1(QX) =
nβ1 + β2 + β3

n
J1(X),

which gives S(X, τ1) = nβ1+β2+β3
n

G(X, τ1). This leads to the following:

Theorem 13. If in a G(QE)n (n > 3) admitting Einstein’s field equa-
tion and with symmetric generalized space-matter tensor, the scalar
curvature nβ1 + β2 + β3 is constant then either u is also constant or
nβ1+β2+β3

n
is an eigen value of the Ricci tensor S corresponding to the

eigen vector τ1, defined by G(X, τ1) = J1(X) = du(X) for all vector
fields X.
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Applying (67) in (18), we have

L(QX) =
R2

2u
L(X),

which implies

S(X, ρ) =
R2

2u
G(X, ρ),

where R2 = 2(n−1)(n−2)(µ3 +λµ2)+{2µ1− (n−2)(n−3)µ2}(nβ1 +
β2 + β3). Thus we can state the following:

Theorem 14. If in a G(QE)n (n > 3) admitting Einstein’s field
equation with recurrent generalized space-matter tensor, the energy-
momentum tensor is of Codazzi type then R2

2u
is the eigenvalue of

the Ricci tensor S corresponding to the eigenvector ρ, defined by
G(X, ρ) = L(X) for all vector fields X, whenever µ2, µ3 are con-
stants.

Now setting X = ρ in (20) and using (67), (72); we have

v[ndβ1(ρ) + dβ2(ρ) + dβ3(ρ)] + 2n(n− 1)[dµ3(ρ) + λdµ2(ρ)](74)

= {v − dv(ρ)}(nβ1 + β2 + β3) + 2n(n− 1)(µ3 + λµ2).

Hence we have the following:

Theorem 15. In a G(QE)n (n > 3) admitting Einstein’s field equa-
tion and with recurrent generalized space-matter tensor, the generator
of recurrence ρ is given by the relation (74).

Let us consider nβ1 + β2 + β3 be constant. Then by the virtue of
(67), (20) reduces to

(75) v(nβ1 + β2 + β3) + 2n(n− 1)(µ3 + λµ2) = 0,

provided that µ1, µ2, µ3 are constants and by the virtue of (67), (25)
it also reduces to

J2(QX) =
nβ1 + β2 + β3

n
J2(X),

which gives S(X, τ2) = nβ1+β2+β3
n

G(X, τ2) and

L(QX) =
nβ1 + β2 + β3

n
L(X),

which implies S(X, ρ) = nβ1+β2+β3
n

G(X, ρ), provided that µ1, µ2 are
constants. Thus we can state the following:



50 S.K.JANA,K.BAISHYA,B.DAS

Theorem 16. In a G(QE)n (n > 3) admitting Einstein’s field equa-
tion and recurrent generalized space-matter tensor, if nβ1 + β2 + β3 is
constant then,
(i) nβ1+β2+β3

n
is an eigen value of the Ricci tensor S corresponding to

the eigen vector τ2, defined by G(X, τ2) = J2(X) = du(X) − uL(X)
for all X ∈ χ(M);
(ii) nβ1+β2+β3

n
is an eigen value of the Ricci tensor S corresponding

to the eigen vector ρ, defined by L(X) = G(X, ρ) for all X ∈ χ(M),
whenever µ1, µ2 are constants;
(iii) β1, β2, β3, µ1, µ2, µ3 are connected by the relation (75), when-
ever µ1, µ2, µ3 are constants.

Again applying (67) in (29), we get

J3(QX) =
R2

2u
J3(X),

which implies

S(X, τ3) =
R2

2u
G(X, τ3).

This gives the following:

Theorem 17. If in a G(QE)n (n > 3) admitting Einstein’s field
equation with weakly symmetric generalized space-matter tensor, the
energy-momentum tensor is of Codazzi type then R2

2u
is the eigenvalue

of the Ricci tensor S corresponding to the eigenvector τ3, defined by
G(X, τ3) = J3(X) = µ1(X) − 2µ2(X) for all X ∈ χ(M), whenever
µ2, µ3 are constants.

Now in the view of (67), (32) and (33) it follows that

J5(QX) =
1

u
[(nβ1 + β2 + β3){µ1 + (n− 2)µ2}

+(n− 1)(n− 2){µ3 − (nβ1 + β2 + β3 − 2λ)
µ2

2
}]J5(X),

which gives

S(X, τ5) =
1

u
[(nβ1 + β2 + β3){µ1 + (n− 2)µ2}

+(n− 1)(n− 2){µ3 − (nβ1 + β2 + β3 − 2λ)
µ2

2
}]G(X, τ5),

provided that u is non-zero. And if u = 0, then we can obtain

(n− 2)(nβ1 + β2 + β3)µ2 = 2(n− 1)(µ3 + λµ2).
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If β1, β2, β3, µ1, µ2, µ3 are constants then by the virtue of (67), (??)
and (40); we have

J6(QX) =
1

2u
[(nβ1 + β2 + β3){2µ1 − (n− 3)(n− 2)µ2}

+2(n− 2)(n− 1)(µ3 + λµ2)]J6(X),(76)

which implies

S(X, τ6) =
1

2u
·[(nβ1 + β2 + β3)

{2µ1 − (n− 3)(n− 2)µ2}
+2(n− 2)(n− 1)(µ3 + λµ2)]G(X, τ6)(77)

and

J7(QX) =
−1

2u
[(nβ1 + β2 + β3){2µ1 − (n+ 1)(n− 2)µ2}

+2(n+ 2)(n− 1)(µ3 + λµ2)]J7(X),(78)

which implies

S(X, τ7) =
−1

2u
·[(nβ1 + β2 + β3){2µ1 − (n+ 1)(n− 2)µ2}
fr + 2(n+ 2)(n− 1)(µ3 + λµ2)]G(X, τ7).(79)

And if u = 0, then we have

(n− 2)(nβ1 + β2 + β3)µ2 = 2(n− 1)(µ3 + λµ2).

Thus we have the following:

Theorem 18. In a G(QE)n (n > 3) admitting Einstein’s field equa-
tion and with weakly symmetric generalized space-matter tensor if
u is zero then β1, β2, β3, µ2, µ3 are connected by the relation
(n− 2)(nβ1 + β2 + β3)µ2 = 2(n− 1)(µ3 + λµ2) otherwise,
(i) 1

u
[(nβ1 +β2 +β3){µ1 + (n−2)µ2}+ (n−1)(n−2){µ3− (nβ1 +β2 +

β3 − 2λ)µ2
2
}] is an eigen value of the Ricci tensor S corresponding to

the eigen vector τ5, defined by G(X, τ5) = J5(X) = µ2(X)−E(X) for
all X ∈ χ(M);
(ii) 1

2u
[(nβ1+β2+β3){2µ1−(n−3)(n−2)µ2}+2(n−2)(n−1)(µ3+λµ2)]

and −1
2u

[(nβ1+β2+β3){2µ1−(n+1)(n−2)µ2}+2(n+2)(n−1)(µ3+λµ2)]
are eigen values of the Ricci tensor S corresponding to the eigen vec-
tor τ6, defined by G(X, τ6) = J6(X) = µ1(X)− µ2(X)− E(X) for all
X ∈ χ(M) and the eigen vector τ7, defined by G(X, τ7) = J7(X) =
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µ1(X) + µ2(X) + E(X) for all X ∈ χ(M) respectively, whenever
nβ1 + β2 + β3, µ1, µ2, µ3 are constants.

6. Generalized quasi-Einstein manifold(M. C. Chaki) with
generalized space-matter tensor

In this section we study about generalized quasi-Einstein manifold,
which is introduced by M. C. Chaki [3], admitting generalized space-
matter tensor. A Riemannian manifold (Mn, G) (n > 3) is said to be
generalized quasi-Einstein manifold if its Ricci tensor is not identically
zero and satisfies the following condition
(80)
S(X, Y ) = γ1G(X, Y ) + γ2ϑ(X)ϑ(Y ) + γ3[ϑ(X)ν(Y ) + ϑ(Y )ν(X)],

where γ1, γ2(6= 0), γ3 are nonzero scalars and ϑ, ν are non-zero 1-forms
such that ϑ(X) = G(X, ς3), ν(X) = G(X, ς4) for all vector fields X
and ς3, ς4 are the unit vector fields. This type of manifold of dimension
n is denoted by G(QE)n.
Now (80) gives

(81) S(ς3, ς3) = γ1 + γ2, S(ς4, ς4) = γ1, S(ς3, ς4) = γ3; R = nγ1 + γ2.

By the equation (80), (5) takes the form

(82) 2µ1R = [µ2R− 2(λµ2 + µ3 + γ1)]G− µ2(γ2G ∧ ϑ′ + γ3G ∧ ν ′),

where ϑ′(X, Y ) = ϑ(X)ϑ(Y ) and ν ′(X, Y ) = ϑ(X)ν(Y ) + ϑ(Y )ν(X).
Contracting (82), we obtain

2µ1S(Z,U) = [(n− 1){µ2R− 2(λµ2 + µ3 + γ1)} − µ2(γ2 + γ3)]G(Z,U)

− (n− 2)µ2[γ2ϑ
′(Z,U) + γ3ν

′(Z,U).

Replacing Z and U by ς3, we have
(83)
2µ1S(ς3, ς3) = (n−1){µ2R−2(λµ2+µ3+γ1)}−µ2(γ2+γ3)−(n−2)µ2γ2.

Again replacing Z and U by ς4 , we have

(84) 2µ1S(ς4, ς4) = (n− 1){µ2R− 2(λµ2 + µ3 + γ1)} − µ2(γ2 + γ3).

Now using (81) in (83) and (84), we find that u = 0 i.e. 2µ1 =
−(n− 2)µ2, since γ3 6= 0. Thus we can state the following:

Theorem 19. In a G(QE)n (n > 3) manifold admitting Einstein’s
field equation and with vanishing generalized space matter tensor;
µ1, µ2 are always connected by the relation 2µ1 = −(n− 2)µ2.
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Further we obtain by covariant differentiation of the equation (80)
with respect to X

(∇XS)(Y, Z) = dγ1(X)G(Y, Z) + dγ2(X)ϑ(Y )ϑ(Z)(85)

+ dγ3(X)ν(Y )ν(Z)

+ γ2[(∇X)ϑ(Y )ϑ(Z) + (∇X)ϑ(Z)ϑ(Y )]

+ γ3[(∇X)ϑ(Y )ν(Z) + (∇X)ϑ(Z)ν(Y )

+ (∇X)ν(Y )ϑ(Z) + (∇X)ν(Z)ϑ(Y )].

In the view of (81), (7) takes the form

(86) v(nγ1 + γ2) + 2n(n− 1)(µ3 + µ2λ) = 0.

Hence we have the following:

Theorem 20. In a G(QE)n (n > 3) admitting Einstein’s
field equation and with vanishing generalized space-matter tensor;
γ1, γ2, µ1, µ2, µ3 are connected by the relation (86).

Suppose nγ1 + γ2 is constant. Then in the view of (81) and (12) it
follows that either u is also constant or

J1(QX) =
nγ1 + γ2

n
J1(X),

which gives S(X, τ1) = nγ1+γ2
n

G(X, τ1). This leads to the following:

Theorem 21. If in a G(QE)n (n > 3) admitting Einstein’s field equa-
tion and with symmetric generalized space-matter tensor; nγ1 + γ2 is
constant then either u is also constant or nγ1+γ2

n
is an eigen value

of the Ricci tensor S corresponding to the eigen vector τ1 defined by
G(X, τ1) = J1(X) = du(X) for all X ∈ χ(M).

By the virtue of (81), (18) reduces to the following relation

L(QX) =
R3

2u
L(X),

which implies

S(X, ρ) =
R3

2u
G(X, ρ),

where R3 = 2(n−1)(n−2)(µ3+λµ2)+{2µ1−(n−2)(n−3)µ2}(nγ1+γ2).
This gives the following:

Theorem 22. If in a G(QE)n (n > 3) admitting Einstein’s field
equation with recurrent generalized space-matter tensor, the energy-
momentum tensor is of Codazzi type then R3

2u
is the eigenvalue of

the Ricci tensor S corresponding to the eigenvector ρ, defined by
G(X, ρ) = L(X) for all X ∈ χ(M), whenever µ2, µ3 are constants.
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Again setting X = ρ in (20) and using (81), (85); we have

v[ndγ1(ρ) + dγ2(ρ)] + 2n(n− 1)[dµ3(ρ) + λdµ2(ρ)](87)

= {v − dv(ρ)}(nγ1 + γ2) + 2n(n− 1)(µ3 + λµ2),

which leads to the following:

Theorem 23. In a G(QE)n (n > 3) admitting Einstein’s field equa-
tion and with recurrent generalized space-matter tensor, the generator
of recurrence ρ is given by the relation (87).

Now let nγ1 + γ2 be constant. Then by the application of (81), (20)
we have

(88) v(nγ1 + γ2) + 2n(n− 1)(µ3 + λµ2) = 0,

provided that µ1, µ2, µ3 are constants and again by the application
of (81), (25) we also have

J2(QX) =
nγ1 + γ2

n
J2(X),

which gives S(X, τ2) = nγ1+γ2
n

G(X, τ2) and

L(QX) =
nγ1 + γ2

n
L(X),

which gives S(X, ρ) = nγ1+γ2
n

G(X, ρ), provided that µ1, µ2 are con-
stants. Thus we can state the following:

Theorem 24. In a G(QE)n (n > 3) admitting Einstein’s field equa-
tion and recurrent generalized space-matter tensor, if nγ1 + γ2 is con-
stant then,
(i) nγ1+γ2

n
is an eigen value of the Ricci tensor S corresponding to the

eigen vector τ2, defined by G(X, τ2) = J2(X) = du(X)−uL(X) for all
X ∈ χ(M);
(ii) nγ1+γ2

n
is an eigen value of the Ricci tensor S corresponding to the

eigen vector ρ, defined by L(X) = G(X, ρ) for all X ∈ χ(M), when-
ever µ1, µ2 are constants;
(iii) γ1, γ2, µ1, µ2, µ3 are connected by the relation (88), whenever
µ1, µ2, µ3 are constants.

In the view of (81), (29) yields

J3(QX) =
R3

2u
J3(X),

which implies

S(X, τ3) =
R3

2u
G(X, τ3).



A STUDY ON GENERALIZED SPACE-MATTER TENSOR 55

Hence we have the following:

Theorem 25. If in a G(QE)n (n > 3) admitting Einstein’s field
equation with weakly symmetric generalized space-matter tensor, the
energy-momentum tensor is of Codazzi type then R3

2u
is the eigenvalue

of the Ricci tensor S corresponding to the eigenvector τ3, defined by
G(X, τ3) = J3(X) = µ1(X) − 2µ2(X) for all X ∈ χ(M), whenever
µ2, µ3 are constants.

By the relations (81), (32) and (33); we get

J5(QX) =
1

u
[(nγ1 + γ2){µ1 + (n− 2)µ2}

+(n− 1)(n− 2){µ3 − (nγ1 + γ2 − 2λ)
µ2

2
}]J5(X),(89)

which implies

S(X, τ5) =
1

u
[(nγ1 + γ2){µ1 + (n− 2)µ2}

+(n− 1)(n− 2){µ3 − (nγ1 + γ2 − 2λ)
µ2

2
}]G(X, τ5),(90)

provided that u is non-zero, otherwise

(n− 2)(nγ1 + γ2)µ2 = 2(n− 1)(µ3 + λµ2).

Again if nγ1 + γ2, µ1, µ2, µ3 are constants and u is non-zero then
using (81) we also obtain

J6(QX) =
1

2u
[(nγ1 + γ2){2µ1 − (n− 3)(n− 2)µ2}

+2(n− 2)(n− 1)(µ3 + λµ2)]J6(X),(91)

which implies

S(X, τ6) =
1

2u
·[(nγ1 + γ2){2µ1 − (n− 3)(n− 2)µ2}+ 2(n− 2)(n− 1)

(µ3 + λµ2)]G(X, τ6)(92)

and

J7(QX) =
−1

2u
[(nγ1 + γ2){2µ1 − (n+ 1)(n− 2)µ2}

+2(n+ 2)(n− 1)(µ3 + λµ2)]J7(X),(93)
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which implies

S(X, τ7) =
−1

2u
·[(nγ1 + γ2){2µ1 − (n+ 1)(n− 2)µ2}
+2(n+ 2)(n− 1)(µ3 + λµ2)]G(X, τ7).(94)

And if u = 0, then we get

nγ1 + γ2 =
2(n− 1)(n− 2)(µ3 + λµ2)

(n− 2)(n− 3)µ2 − 2µ1

=
2(n− 1)(µ3 + λµ2)

(n− 2)µ2

.

Hence we have the following:

Theorem 26. In a G(QE)n (n > 3) admitting Einstein’s field
equation and with weakly symmetric generalized space-matter ten-
sor if u is zero then γ1, γ2, µ2, µ3 are connected by the relation
(n− 2)(nγ1 + γ2)µ2 = 2(n− 1)(µ3 + λµ2) otherwise,
(i) 1

u
[(nγ1+γ2){µ1+(n−2)µ2}+(n−1)(n−2){µ3−(nγ1+γ2−2λ)µ2

2
}] is

an eigen value of the Ricci tensor S corresponding to the eigen vector
τ5, defined by G(X, τ5) = J5(X) = µ2(X)− E(X) for all X ∈ χ(M);
(ii) 1

2u
[(nγ1 + γ2){2µ1− (n− 3)(n− 2)µ2}+ 2(n− 2)(n− 1)(µ3 +λµ2)]

and −1
2u

[(nγ1 +γ2){2µ1− (n+ 1)(n−2)µ2}+ 2(n+ 2)(n−1)(µ3 +λµ2)]
are eigen values of the Ricci tensor S corresponding to the eigen vec-
tor τ6, defined by G(X, τ6) = J6(X) = µ1(X)− µ2(X)− E(X) for all
X ∈ χ(M) and the eigen vector τ7, defined by G(X, τ7) = J7(X) =
µ1(X) + µ2(X) + E(X) for all X ∈ χ(M) respectively, whenever
nγ1 + γ2, µ1, µ2, µ3 are constants.

7. Pseudo generalized quasi-Einstein manifold with
generalized space-matter tensor

This section concerned about the study of pseudo generalized quasi-
Einstein manifold admitting generalized space-matter tensor. A Rie-
mannian manifold (Mn, G) (n > 3) is said to be pseudo generalized
quasi-Einstein manifold [14] if its Ricci tensor is not identically zero
and satisfies the following relation
(95)
S(X, Y ) = δ1G(X, Y ) + δ2H(X)H(Y ) + δ3F (X)F (Y ) + δ4D(X, Y ),

where δ1, δ2, δ3, δ4 are nonzero scalars and H, F are non-zero 1-
forms such that H(X) = G(X, ς5), F (X) = G(X, ς6) for all vector
fields X and ς5, ς6 are the unit vector fields; D is a symmetric (0, 2)
tensor, with zero trace, which satisfies the condition D(X, ς5) = 0 for
all vector fields X. This type of manifold is denoted by P(GQE)n.
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Some types of recurrence can also be found in [17], [18], [19] and [20].
Now we get from (95)

(96)

{
S(ς5, ς5) = δ1 + δ2, S(ς6, ς6) = δ1 + δ3 +D(ς6, ς6),

S(ς5, ς6) = 0; R = nδ1 + δ2 + δ3.

In the view of (95), (5) reduces to the following equation
(97)
2µ1R = [µ2R−2(λµ2 +µ3 +δ1)]G−µ2(δ2G∧H ′+δ3G∧F ′+δ4G∧D),

where H ′(X, Y ) = H(X)H(Y ) and F ′(X, Y ) = F (X)F (Y ). Taking
contraction we have

2µ1S(Z,U) = [(n− 1){µ2R− 2(λµ2 + µ3 + δ1)} − µ2(δ2 + δ3)]G(Z,U)

− (n− 2)µ2[δ2H
′(Z,U) + δ3F

′(Z,U) + δD(Z,U)].

Let us set Z = U = ς5 to get
(98)
2µ1S(ς5, ς5) = (n−1){µ2R−2(λµ2+µ3+δ1)}−µ2(δ2+δ3)−(n−2)µ2δ2.

Further setting Z = U = ς6 we also get
(99)
2µ1S(ς6, ς6) = (n−1){µ2R−2(λµ2+µ3+δ1)}−µ2(δ2+δ3)−(n−2)µ2[δ3+δD(ς6, ς6)].

By the virtue of (96), (98) and (99); we have

S(ς5, ς5) = δ1 + δ2 = S(ς6, ς6), provided that u 6= 0

This leads to the following:

Theorem 27. In a P(GQE)n (n > 3) manifold admitting Einstein’s
field equation and with vanishing space matter tensor, the scalar δ1+δ2
is the Ricci curvature in the directions of both the generators ς5 and
ς6, whenever u 6= 0.

Taking covariant differentiation of the equation (95) with respect to
X, we obtain

(∇XS)(Y, Z) = dδ1(X)G(Y, Z) + dδ2(X)H(Y )H(Z)(100)

+ dδ3(X)F (Y )F (Z) + dδ4D(Y, Z)

+ δ2[(∇X)H(Y )H(Z) + (∇X)H(Z)H(Y )]

+ δ3[(∇X)F (Y )F (Z) + (∇X)F (Z)F (Y )]

+ δ4(∇X)D(Y, Z).

In the view of (96), (7) yields

(101) v(nδ1 + δ2 + δ3) + 2n(n− 1)(µ3 + µ2λ) = 0.

Hence we have the following:
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Theorem 28. In a P(GQE)n (n > 3) admitting Einstein’s
field equation and with vanishing generalized space-matter tensor;
δ1, δ2, δ3, µ1, µ2, µ3 are connected by the relation (101).

Suppose nδ1 + δ2 + δ3 is constant. Then in the view of (96) and (12)
it follows that either u is also constant or

J1(QX) =
nδ1 + δ2 + δ3

n
J1(X),

which gives S(X, τ1) = nδ1+δ2+δ3
n

G(X, τ1). This leads to the following:

Theorem 29. If in a P(GQE)n (n > 3) admitting Einstein’s field
equation and with symmetric generalized space-matter tensor; nδ1 +
δ2 + δ3 is constant then either u is also constant or nδ1+δ2+δ3

n
is an

eigen value of the Ricci tensor S corresponding to the eigen vector τ1
define by G(X, τ1) = J1(X) = du(X) for all X ∈ χ(M).

Using (96) in (18), we have

L(QX) =
R4

2u
L(X),

which implies

S(X, ρ) =
R2

2u
G(X, ρ),

where R4 = 2(n−1)(n−2)(µ3 +λµ2)+{2µ1− (n−2)(n−3)µ2}(nδ1 +
δ2 + δ3). Therefore we have the following:

Theorem 30. If in a Riemannian manifold (Mn, G) (n > 3) admit-
ting Einstein’s field equation with recurrent generalized space-matter
tensor, the energy-momentum tensor is of Codazzi type then R4

2u
is the

eigenvalue of the Ricci tensor S corresponding to the eigenvector ρ,
defined by G(X, ρ) = L(X) for all vector fields X, whenever µ2, µ3

are constants.

Now setting X = ρ in (20) and by the relations (96), (100); we have

v[ndδ1(ρ) + dδ2(ρ) + dδ3(ρ)] + 2n(n− 1)[dµ3(ρ) + λdµ2(ρ)](102)

= {v − dv(ρ)}(nδ1 + δ2 + δ3) + 2n(n− 1)(µ3 + λµ2).

Hence we get the following:

Theorem 31. In a P(GQE)n (n > 3) admitting Einstein’s field equa-
tion and with recurrent generalized space-matter tensor, the generator
of recurrence ρ is given by the relation (102).
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Let us consider nδ1 + δ2 + δ3 as constant. Then in the view of (96),
(20) takes the form

(103) v(nδ1 + δ2 + δ3) + 2n(n− 1)(µ3 + λµ2) = 0,

provided that µ1, µ2, µ3 are constants and in the view of (96), (25)
also takes the form

J2(QX) =
nδ1 + δ2 + δ3

n
J2(X),

which gives S(X, τ2) = nδ1+δ2+δ3
n

G(X, τ2) and

L(QX) =
nδ1 + δ2 + δ3

n
L(X),

which implies S(X, ρ) = nδ1+δ2+δ3
n

G(X, ρ), provided that µ1, µ2 are
constants. Thus we can state the following:

Theorem 32. In a P(GQE)n (n > 3) admitting Einstein’s field equa-
tion and recurrent generalized space-matter tensor, if nδ1 + δ2 + δ3 is
constant then,
(i) nδ1+δ2+δ3

n
is an eigen value of the Ricci tensor S corresponding to

the eigen vector τ2, defined by G(X, τ2) = J2(X) = du(X) − uL(X)
for all X ∈ χ(M);
(ii) nδ1+δ2+δ3

n
is an eigen value of the Ricci tensor S corresponding to

the eigen vector ρ, defined by L(X) = G(X, ρ) for all X ∈ χ(M),
whenever µ1, µ2 are constants;
(iii) δ1, δ2, δ3, µ1, µ2, µ3 are connected by the relation (103), when-
ever µ1, µ2, µ3 are constants.

Using (96) in (29), we obtain

J3(QX) =
R4

2u
J3(X),

which implies

S(X, τ3) =
R4

2u
G(X, τ3).

Thus we can state the following:

Theorem 33. If in a P(GQE)n (n > 3) admitting Einstein’s field
equation with weakly symmetric generalized space-matter tensor, the
energy-momentum tensor is of Codazzi type then R4

2u
is the eigenvalue

of the Ricci tensor S corresponding to the eigenvector τ3, defined by
G(X, τ3) = J3(X) = µ1(X) − 2µ2(X) for all X ∈ χ(M), whenever
µ2, µ3 are constants.
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Again if u is non-zero then by the virtue of (96), we find

J5(QX) =
1

u
[(nδ1 + δ2 + δ3){µ1 + (n− 2)µ2}

+(n− 1)(n− 2){µ3 − (nδ1 + δ2 + δ3 − 2λ)
µ2

2
}]J5(X),(104)

which gives
S(X, τ5) = 1

u
[(nδ1 + δ2 + δ3){µ1 + (n − 2)µ2} + (n − 1)(n − 2){µ3 −

(nδ1 + δ2 + δ3 − 2λ)µ2
2
}]G(X, τ5).

And if u = 0, then we have

(n− 2)(nδ1 + δ2 + δ3)µ2 = 2(n− 1)(µ3 + λµ2).

Further if δ1, δ2, δ3, µ1, µ2, µ3 are constants and u is non-zero then
by the virtue of (96) and (40); we get

J6(QX) =
1

2u
[(nδ1+δ2+δ3){2µ1−(n−3)(n−2)µ2}+2(n−2)(n−1)(µ3+λµ2)]J6(X),

which implies
S(X, τ6) = 1

2u
[(nδ1 + δ2 + δ3){2µ1 − (n− 3)(n− 2)µ2}+ 2(n− 2)(n−

1)(µ3 + λµ2)]G(X, τ6)
and

J7(QX) =
−1

2u
[(nδ1+δ2+δ3){2µ1−(n+1)(n−2)µ2}+2(n+2)(n−1)(µ3+λµ2)]J7(X),

which implies S(X, τ7) = −1
2u

[(nδ1 + δ2 + δ3){2µ1− (n+ 1)(n− 2)µ2}+
2(n+ 2)(n− 1)(µ3 + λµ2)]G(X, τ7). And if u = 0, then it follows that

(n− 2)(nδ1 + δ2 + δ3)µ2 = 2(n− 1)(µ3 + λµ2).

This leads to the following:

Theorem 34. In a P(GQE)n (n > 3) admitting Einstein’s field
equation and with weakly symmetric generalized space-matter tensor
if u is zero then δ1, δ2, δ3, µ2, µ3 are connected by the relation
(n− 2)(nδ1 + δ2 + δ3)µ2 = 2(n− 1)(µ3 + λµ2) otherwise,
(i) 1

u
[(nδ1 + δ2 + δ3){µ1 + (n− 2)µ2}+ (n− 1)(n− 2){µ3− (nδ1 + δ2 +

δ3 − 2λ)µ2
2
}] is an eigen value of the Ricci tensor S corresponding to

the eigen vector τ5, defined by G(X, τ5) = J5(X) = µ2(X)−E(X) for
all X ∈ χ(M);
(ii) 1

2u
[(nδ1+δ2+δ3){2µ1−(n−3)(n−2)µ2}+2(n−2)(n−1)(µ3+λµ2)]

and −1
2u

[(nδ1+δ2+δ3){2µ1−(n+1)(n−2)µ2}+2(n+2)(n−1)(µ3+λµ2)]
are eigen values of the Ricci tensor S corresponding to the eigen vec-
tor τ6, defined by G(X, τ6) = J6(X) = µ1(X)− µ2(X)− E(X) for all
X ∈ χ(M)and the eigen vector τ7, defined by G(X, τ7) = J7(X) =
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µ1(X) + µ2(X) + E(X) for all X ∈ χ(M) respectively, whenever
nδ1 + δ2 + δ3, µ1, µ2, µ3 are constants.
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