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Abstract. We prove in the setting of a general metric space
(X,d) the bi-Lipschitz equivalence of generalized versions of Vuori-
nen’s distance ratio metric, Gehring-Osgood metric, Dovgoshey-
Hariri-Vuorinen metric, Nikolov-Andreev metric and Ibragimov met-
ric. For the generalized Vuorinen’s distance ratio metric j on the com-
plement of a nonempty closed subset M of X we show that the identity
of X\ M between (X \ M,d) and (X \ M, j) is 1—quasiconformal. We
also provide sufficient conditions for the completeness of (X \ M, j),
that is equivalent to the completeness of X \ M with each of the above
mentioned metrics.

1. INTRODUCTION

Hyperbolic-type metrics have a long history, but the interest for
their study is constantly renewed, partly due to applications of these
metrics to various fields of mathematics, such as geometry, group the-
ory, geometric function theory, dynamical system theory etc., as well
as to theoretical computer science. In the setting of Euclidean space
R™, with n > 3, the counterparts for the classical hyperbolic metrics
are defined only on the unit ball B” and on the upper half-plane H".

Keywords and phrases: hyperbolic-type metric, bi-Lipschitz equiv-
alent metrics, quasiconformal map.
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The introduction of quasihyperbolic metric as a counterpart for
the hyperbolic metric, in an arbitrary proper subdomain of R", by
Gehring and Palka [11], was motivated by the study of quasiconfor-
mal mappings in n—dimensional Euclidean spaces and opened the way
for advances of geometric function theory, in particular in the theory
of quasiregular mappings [30]. A thorough study of hyperbolic-type
metrics and their applications to the theory of quasiregular mappings
can be found in the monograph of Hariri, Klén and Vuorinen [13].
The study of hyperbolic-type metrics has been extended by the intro-
duction of new metrics, by Gehring and Osgood (1979 [10]), Vuorinen
(1985 [29]), Ferrand (1988 [7]), Beardon (1998 [1]), Seittenranta (1999
[26]), Hasto (2002 [14]), Hasto and Lindén (2004 [15]), Ibragimov (2009
[18] and 2011 [17]), Dovgoshey, Hariri and Vuorinen (2016 [6]), Boskoff
and Suceava (2017 [3]), Nikolov and Andreev (2017 [24]), Rainio and
Vuorinen (2022 [25]), Song and Wang (2024 [27]), Chen and Zhang
(2024 [4]) ete. Very recently, in 2024, results on hyperbolic-type met-
rics have been obtained by Luo, Rasila, Wang, Zhuo [22], Zhou, Zheng,
Ponnusamy and Guan [32], Fujimura and Vuorinen [9].

The metrics of hyperbolic type in a proper open subset G of the Eu-
clidean space R" are intrinsic metrics, in the sense that their formulas
take into account, besides the Euclidean distance between two points,
the position of the points with respect to the boundary 0G.

There is a long tradition in studying the hyperbolicity of general
metric spaces, with the remarkable case of geodesic spaces, starting
with Gromov (1987 [12]), see also the survey of Viisild (2005 [28])
and, to mention only a few, the paper of Ibragimov (2011 [17]), the
studies on hyperbolic-type metrics on Ptolemy spaces by Zhang and
Xiao (2019 [31]) and by Chen and Zhang (2024 [4]). In [17], the role
of the boundary of GG is played by a nonempty proper closed subset M
of a metric space X. Note that in [24] some preliminary estimates for
the Nikolov-Andreev metric involved a general positive 1—Lipschitz
function F on X \ M instead of the distance from the points in G to
the boundary 0G.

Following ideas from [17] and [24], we considered in [23], in the set-
ting of metric spaces, some generalized versions of Gehring-Osgood
metric, Dovgoshey-Hariri-Vuorinen metric, Nikolov-Andreev metric
and Ibragimov metric. In the following, (X, d) is an arbitrary metric
space and M C X is a nonempty closed set. For each generaliza-
tion p of the hyperbolic-type metrics mentioned above we prove that
(X \ M, p) is a Gromov hyperbolic space and that the identity map
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between (X \ M, d) and (X \ M, p) is quasiconformal. Some improve-
ments for the Gromov constants for the Gehring-Osgood metric and
the Nikolov-Andreev metric, as well for the quasiconformality constant
(in the sense of metric definition) of the identity map of X \ M with
the Ibragimov metric have been obtained.

In the present paper, using the same setting as in [23], we consider
an analogous generalization of distance ratio metric j introduced by
Vuorinen [29], as a more manageable replacement of Gehring-Osgood
metric. It turns out that each of the following metrics: Gehring-
Osgood, Dovgoshey-Hariri-Vuorinen, Nikolov-Andreev and Ibragimov,
is bi-Lipschitz equivalent to the distance ratio metric, that plays
therefore a pivotal role. It is proved that the identity map between
(X \ M,d) and (X \ M, j) is quasiconformal. Moreover, if F' has a
continuous extension F' to (X, d) with F'(z) = 0 for every x € M and
(X,d) is complete, then (X \ M, p) is also a complete metric space,
for each of the five above mentioned metrics.

We will show that the distance ratio metric 7 does not change the
quasiconformal geometry of the space, using the below metric defi-
nition of quasiconformal maps between metric spaces [16]. Given a
homeomorphism f from a metric space (X, d) to a metric space (Y, p),
then for x € X and r > 0 we set

_ Sup {:0< (ZL‘), (y)) (ZE y) < r}
Hrter) = inf {p(f (), f(y)) : d(z,y) >}
(

A homeomorphism f : (X,d) — (Y, p) is called H—quasiconformal,
with a nonnegative constant H < oo, if limsupHy (x,r) < H for every

r—0
z e X.

2. A GENERALIZATION OF VUORINEN’S DISTANCE RATIO METRIC

Let (X,d) be a metric space and let G C X be an open set with
non-empty boundary. For every z € X denote the distance from x to
the boundary of G by dg (z) = dist (z,0G) = inf {d(z,y) : y € 0G}.
It is well-known that dg () is a 1—Lipschitz function on (X, d).

The distance ratio metric introduced by Vuorinen [29] is defined by

. d(x, n 3
Jao (z,y) = log <1+m>,wherex7y€GandGCR is an

open set with non-empty boundary.
Now we consider a generalization of Vuorinen’s distance ratio metric
and investigate its properties.
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Theorem 2.1. Let (X,d) be a metric space and M be a nonempty
closed proper subset of X. Let F' : (X\M,d) — (0,00) be a
1—Lipschitz function. Define j(z,y) = log (1—1— #) for
x,y € X\ M. Then:

(1) j is a metric on X \ M;

(2) The identity map lx\n @ (X\M,d) — (X\M,j) is
1—quasiconformal; N N

(3) If F has a continuous extension F to (X,d) with F'(z) =0 for
every x € M and (X, d) is complete, then (X \ M, j) is also a complete
metric space.

Proof. As an immediate consequence of the definition of j, for every
x,y € X \ M we get
(2.1) j(z,y) >log | 1+ d@.y) :
T F(x)
Since F is 1—Lipschitz, for every z,y € X \ M we have
max {F(z), F(y)} — min {F(x), F(y)} < d(x,y), hence
‘ max {F(z), F(y)} _ |, F(z)
(2.2) j(z,y) = log = |log
min {F(z), F(y)} F(y)
and min {F'(z), F(y)} > F(z) — d(x,y), therefore if d(x,y) < F(x),

then
(2.3) j(2,y) < log F(x)li <fl>(x 5

(1) Clearly, j (z,y) > 0 and j (z,y) = j (y,z) for every x,y € X \ M
and j(z,y) = 0 if and only if z = y. We will prove the triangle
inequality j (z,y) < j(x,z) + j(z,y) for every z,y,z € X \ M. The
latter inequality is equivalent to

d(z,y) d(z,2) d(z,y)
G R @), F)T = min{F (@), FG)}  win {F(:), F)}
a(z,2) A(2,9)

Twin (F(r), FG)} min (F(2), F(y)}
If the following inequality is true, then the above inequality follows by
the triangle inequality for the metric d:

d(z,z)+d(z,y) d(z,2) d(z,y)
25 i (F@). Fly)} = min (F(2), (=)} min (F(=), F(y)]
d(,2) d(21y)

+min{F(z),F(z)} " min {F(2),F(y)}
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We may assume by symmetry that F(z) < F(y).

Case 1. Assume that F(z) < min{F(z),F(y)} = F(z). Then
d(z,2) + d(z,y) — dz2)+d(zy) d(z,2)+d(2,y)
min{F(z),F(z)} * min{F(2),F(y)} F(2) = min{F(z),F(y)}

equality (2.5) follows.
Case 2. Assume that F(z) > max{F(z),F(y)} = F(y). The

day)  dez) | dGy) | d@s) dz)
Fa) = F) T FG) T F@) B

and the in-

inequality (2.4) writes in this case as
which is equivalent to

(d(z,y) —d(z,2)) Fy) < d(z,y) (F(z) + d(z, 2)).

Note that F(x) + d(x,z) > F(z), since F is 1—Lipschitz. But
F(z) > F(y) in this case, therefore F(x) + d(x,z) > F(y). Then

d(z,y) (F(x) + d(x, 2)) =2 d(z,y) F (y) = (d(z,y) — d(z,2)) - FEy)-

Case 3. It remains to consider the case where F(z) < F (z2) <
. . . d(z,z)+d(z, d(x,z d(z,
F(y). The inequality (2.5) writes as & 13“(+9:)( v < P(ﬂ(z)) + }(Zy)) +
d};{;ﬂ? d}jj) , which is equivalent to

d(z,y) (F(z) = F(z) —d(z,2)) < 0.

) —
Since F is 1—Lipschitz, F'(z)—F(z) < d(z, z) and the above inequality
follows.

(2)
a) Assume that lim d (z,,2z) =0, where x € X\ M and z,, € X\ M
n—oo
for every n > 1. Then lim F'(z,) = F () > 0, hence lim j (z,,z) =
n—00 n—00

nll_)IIolo log (1 + %) = 0. We proved that the identity map

Iyt (X \ M, d) = (X \ M,j) is continuous.
b) Assume that lim j (z,,x) =0, where z € X\ M and z,, € X\ M
n—oo

for every n > 1. By (2.1), d(2n,7) < F(z) (e/@® — 1) for every
n > 1. It follows that lim d(z,,z) = 0, therefore the identity map

n—00
Lyt (X \ M,d) = (X \ M, j) is open.
c) We proved that the identity map 1x\a : (X \ M, d) = (X \ M, j)
is a homeomorphism. For f = 1x\) we have, whenever x € X and
r >0,

sup {j(z,y) 1 d(v,y) <r,y € X\ M}
inf {j(z,y):d(z,y) >r,ye X\ M}

Hy(z,r) =

Let x € X\ M.

By (2.1), it follows that inf {j(z,y) : d (z,y) > r} > log (1 + FE@)
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Using (2.3) for d(z,y) < r < F(z) and the fact that the func-
tion t — - w th a > 0 is increasing on [0,a), we infer that
sup{j(z,y) : d(z,y) <r} <log F( ())

log F'(z)—log(F(x
thTthen Hy(z,r) < 1o§(F(( ))M)g( logF(x ) for every 1 € (0, F(x)). It follows
a

. . log F(x) — log (F(x) — )
lim supH < lim .

1
log F'(x)—log(F(x)—r) __ Fle)—r __
But i ou(Ftrn—tog ooy — M7= = 1, hence limsupHy (z,7) < 1.

(3) Assuming that F has a continuous extension F to X with

F(x) = 0 for every x € M and that (X,d) is complete, we prove
that (X \ M, j) is complete.

Let (2),~; be a Cauchy sequence in (X \M,j). By (2.2),
(log F (x,,)),~, is a Cauchy sequence in R. Then (log F (,)),, is
bounded: o = inf log F(r,) € R and B8 = sup log F(z,) € R.

<

n>1

Then e* = mf F(a:n) < supF(z,) = €’. As (2.1) implies d (z,, )

n>1
F(z) (et 3’) -1) <¢€f (69(’”” - 1) for all z,y € X \ M, it follows
that (z,),, is a Cauchy sequence in (X,d). Let z € X be such that

lim d (z,,2) = 0. Since F is continuous on X, F (z) = lim F (z,) =
n—oo

n—o0

lim F(z,) > e > 0, hence z € X \ M and F (z) = F(z). Finally,

n—oo

lim j (zp,2) = hm log (1 + %) = 0, hence (), con-

s o0 min{ F(zn),F

verges to z in (X \ M;j). n

3. COMPARISON RESULTS AND COMPLETENESS OF
HYPERBOLIC-TYPE METRICS

In the following, we assume that (X,d) is a metric space, M is a
closed nonempty proper subset of X and F': (X \ M,d) — (0,00) is
a 1—Lipschitz function.

In order to generalize known metrics, we considered in [23] the follow-
ing functions defined on (X \ M) x (X \ M):
1) The generalized Gehring-Osgood metric

= _1 d(z,y) d(x,y)
2) The generalized Dovgoshey—Harlrl—Vuorinen metric

he (2,y) =log [ 1+ c—228 ) wh > 2] tant.
(x,y) 0g< +c For ) Where ¢ = 2 is a constan
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3) The generalized Nikolov-Andreev metric
)+HE@)+dy)

i(x,y) = 2log
2y/F(x)F(y)
4) The generalized Ibragimov metric
_ d(z,y)+max{F(z),F(y)}

v(x,y) = 2log JrOre) .

We proved in [23] that these functions are indeed metrics, that are
Gromov hyperbolic. Note that for the generalized Ibragimov metric
the function F : (X \ M,d) — (0, 00) is not assumed to be 1—Lipschitz

in order to obtain the triangle inequality and Gromov hyperbolicity.

For each p € {3, he, 1, v} we obtained a Gromov constant d(p) of p,
as follows:

1) ¢ (]) = }Llog24; 2) 0 (h.) = log (2 + %),

3) (i) =1log9; 4) 6 (v) = log4.

In addition, for each p € {;7 hc,i,v} it is proved in [23] that the
identity map 1x\a : (X \ M,d) — (X \ M, p) is H—quasiconformal
in the sense of the metric definition of quasiconformality of a homeo-
morphism, with a constant H as follows:

1)H=1ifp=j;2) H=1ifp=h;3) H=3ifp=1i;4) H=2
if p = v (where it is assumed that F' is 1—Lipschitz).

Moreover, if F' has a continuous extension F to (X, d) with F (z) = 0
for every € M and (X,d) is complete, then (X \ M,v) is also a
complete metric space [23].

We will show, under the assumptions that F': (X \ M, d) — (0, c0)

is 1—Lipschitz and has a continuous extension F to (X, d) with F (z) =
0 for every z € M, that the completeness of (X, d) guarantees the

completeness of (X \ M, p) for each p € {3, hc,i,v}. This follows

from the completeness of (X \ M, j), provided by Theorem 2.1 and

from the bi-Lipschitz equivalence of p and j, where p € {}, he,, v}.
We recall that the completeness of every Euclidean domain with

nonempty boundary with respect to the Dovgoshey-Hariri-Vuorinen
metric h, has been proved in [32].

It remains to prove that every metric p € {3, he, i, v} is bi-Lipschitz
equivalent to the distance ratio metric j.

We recall that two metrics pp, p on a nonempty set Y are said to
be bi-Lipschitz equivalent if there exist some positive real constants
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a < b such that

apy (€, y) < pa2 (2,y) < bpy (2, y)
forall z,y € Y. In other words, two metrics py, p2 on Y are bi-Lipschitz
equivalent if and only if the identity map 1y : (Y, p1) — (Y, p2) is bi-
Lipschitz.
The following lemma is well-known, we note this here for the sake
of the reader.

Lemma 3.1. Let Y be a nonempty set and py, pa be two bi-Lipschitz
equivalent metrics on'Y . Then (Y, p1) is complete if and only if (Y, p2)
18 complete.

Proof. By symmetry, it suffices to check that the completeness of
(Y, p1) implies the completeness of (Y, p).

Let (z,),,; be a Cauchy sequence in (Y, p2). Since p; < 1p; on'Y,
we see that (1,,), -, is a Cauchy sequence in (Y, p;). Since (Y, p1) is a
complete metric space, there exists « € Y such that T}Lrgo p1 (zp, ) =0,

which implies lim py (2,,2) =0, as ps < bp; on Y. &
n—oo

The following comparison result showing the bi-Lipschitz equiva-
lence of Gehring-Osgood metric and Vuorinen’s distance ratio metric
is well-known in the classical case.

Lemma 3.2. The metrics defined by ;(ZE Y) =
1log <1 + d(ag’y))> (1 + d}agyy) ) and j (z,y) = log (1 + mm{Fx—y)> for
z,y € X\ M satisfy the inequalities j < j < 27 on (X \ M) x (X \ M).
Proof. For every a > 0 and b, ¢ > 0 we have maX{( —) ( %)} <
1+ m, hence log (1 + %) (1 + %) < 2log (1 + mm{b c}), and, ob-

viously, log (1 + mm{bc}> < log(1+4%)(1+%). Fora = d(z,y),

b= F(z) and ¢ = F(y) it follows that j (z,y) < j (z,y) < 2] (,y) for
every z,y € X \ M. 1

The following partial generalization of [6, Lemma 4.4] shows that
the generalized versions of distance ratio metric and Dovgoshey-Hariri-
Vuorinen metric are bi-Lipschitz equivalent.

Lemma 3.3. For every ¢ > 1 and all z,y € X \ M we have

1. .
5] (iL‘,y) g hc (xay) S Ccj (iL‘,y) :
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Proof. Fix z,y € X \ M. Since \/F(z)F (y) > min{F(z), F(y)},
using Bernoulli’s inequality (1 +¢)" > 1+ rt for real numbers r > 1

d(x, .
and t > —1, we get h. (z,y) < log (1 + cW) < cj(z,y).

By symmetry, we may assume that F'(xz) < F(y).
Since F is 1—Lipschitz, F(y) < F(z) + d(z,y), hence —2&% __ >

F(z)F(y) —
d(‘r,y) — a — d(rvy)
T Em ey~ Vire where we denoted a = o)
We have h, (z,y) > log (1 + c\/ﬁr—a> and j (z,y) = log (1 + a).

For ¢ > 1 and ¢ > 0 we have

2
t 2c t
1+c¢ —(1+t) =t + 2 —1
( \/1+t> ( ) <\/1+t 1+t )

2 t WIti—1
t + ) =T S,
Vitt 1+t 1+t
Then
t 1
3.1 log (14 ¢ > ~log (1 -+t
3.1 o1+ o) 2 e
10g<1+c\/%>

for every ¢ > 1 and ¢t > 0. Since 1tlim = % for every ¢ > 0,

oo log(1+1)

1 1+ _t
we see that inf {% ct > 0} = % whenever ¢ > 1.

In particular, inequality (3.1) implies %j (z,y) < he(z,y). 1

The study of some estimates of Dovgoshey-Hariri-Vuorinen metric
in the Euclidean setting have led to the introduction of a new intrinsic

metric in [8]. Let F, (¢) = log (1 + 2csinh %), where ¢, > 0. It was
proved in [8, Lemma 3.4] that FT(t) is decreasing from (0,00) onto
(3,¢) if (and only if) ¢ > 1. Then F, is subadditive on [0,00), since

F.(0) =0 and for every s,t > 0 we have

F F, F F
c(s+1) 1t c(s+1) <s c(s) 1t C(t>'
s+t s+t s t

Therefore, as shown in Theorem 1.1 from [8], given any metric space
(X,p) and a constant ¢ > 1, the function defined by W, (z,y) =

log (1 + 2csinh @) for z,y € X is a metric. This result and Theo-

F.(s+t)=s

rem 2.1 imply the following:
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Proposition 3.4. Let (X, d) be a metric space and M be a nonempty
closed proper subset of X. Assume that F : (X \ M,d) — (0,00)

is a 1—Lipschitz function. Let j(x,y) = log (1 + %) for

x,y € X\ M and ¢ > 1. Then the function defined by W. (x,y) =
log (1 + 2¢sinh ](” ) for x,y € X is a metric satisfying the inequal-
ities

1. .
5](1'71/) < Wc<x7y) < ](~T,y),

whenever x,y € X \ M are distinct points. In addition, W, (x,y) <
he (z,y) for all x,y € X \ M.

Proof. It remains to check that W, (z,y) < h.(z,y) for all z,y €
X \ M, a inequality that was proved in the Euclidean setting in [6,
Lemma 4.4], for all ¢ > 0. If t = j (z,y), then

.t et—1 d(z,y)
2sinh - = —— = : - '
2 ¢ Vmin {F(2), Fy)} (win {F(2), F(y)} +d (z,9))
Since F' : (X\M,d) — (0,00) is a 1-Lipschitz function,
min {F(z), F(y)} + d (z,y) > max{F(x), F(y)}. Then 2¢sinh mTw >
d(z,y)
F(z)F(y)
Corollary 3.5. For every ¢ > 1 and all x,y € X \ M we have
3 (2.y) < We (2, y) < min{j(z,y), he (2,y)} < ¢j (2,y).

and the claim follows. &

The generalized Nikolov-Andreev metric is bi-Lipschitz equivalent
to the generalized distance ratio metric, as shown below.
Lemma 3.6. For all z,y € X \ M we have
1. . .
5l (@ y) Si(ey) <2j(wy).

Proof. Let z,y € X \ M. Due to mean inequality,

z'(x,y)Elog( ;\/M> :10g< \/i ng(w Z/))

: q ¢ d(z.y) R E)
Using Lemma 3.3, we see that log <1+ NGO + F(I)F(y)> >

og (14 A2 ) = by () 2 45 00): Then 45 ) < 0.0).
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By symmetry, we may assume that F'(x) < F (y).
Then j (z,y) = log (1 d(xxy)) and

. B F(z) 1 (y) F(z)d(x,y)
i(x,y) = 210g< 5\/ Fla) + 5 \/F(y) F(a:))

(y)  1ld(z,y)
= 210%(2*5 F@)*iF())'

Since F' is 1—Lipschitz, % <1+ d}@y)). The latter two inequalities
imply
: 11 d(z,y)  1d(z,y)
<21 — 4+ —4/1 — .
oy s 2o (5451 Ty Y2 Fm)

Since 1 + 1+t +t < 2(1+1t) for every t > 0, the above inequality
implies i (x,y) < 2j (z,y). &

Now we check that the generalized Ibragimov metric is bi-Lipschitz
equivalent to the generalized distance ratio metric.

Lemma 3.7. For all x,y € X \ M we have j(z,y) < v(z,y) <
3j (z,y).

Proof. Let z,y € X \ M. By symmetry, we may assume that
F(r) < F(y).

Then j (z,y) = log 1+ ( ) and

- bg(F(x) F(m) '+

hence j (2, ) < v (z,1).
On the other hand,

Fly)  d(z,y) d(z,y)  d(z,y)
< <
v(:c,y)_2log( F(:z:)+ F o) < 2log 1+ F o) + F )
The inequality log (\/1 +t+ t) < %log (1+1t), where t > 0 is equiv-

N~—r
[\

alent to (1 + t ( 1+t+t)” >0,¢t > 0. The latter inequality is
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equivalent to ¢ (t + \315%1111) > 0, t > 0, that is obviously true. We

conclude that v (z,y) < 35 (z,y). B

Theorem 3.8. Let (X,d) be a metric space and M be a nonempty
closed proper subset of X. Let F : (X\M,d) — (0,00) be a

1—Lipschitz function, that has a continuous extension F to (X,d)
with F(xz) = 0 for every x € M. If the metric space (X,d) is
complete, then (X \ M, p) is also a complete metric space, for every

pE {j,;, hc,i,v}. Here ¢ > 2.

Proof. For p = j, the distance ratio metric, the claim follows from
Theorem 2.1.

Each metric p € {;, he, 1, v}is bi-Lipschitz equivalent to the distance

ratio metric on X \ M, by Lemmas 3.2, 3.3, 3.6 and 3.7, respectively.
The using Lemma 3.1, the completeness of (X \ M, j) implies the

completeness of (X \ M, p), for each p € {3, he, i, v}. 1
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